Cheek LE, Zhu W. Structural features and substrate engagement in peptide-modifying radical SAM enzymes.
Arch Biochem Biophys 2024;
756:110012. [PMID:
38663796 DOI:
10.1016/j.abb.2024.110012]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
In recent years, the biological significance of ribosomally synthesized, post-translationally modified peptides (RiPPs) and the intriguing chemistry catalyzed by their tailoring enzymes has garnered significant attention. A subgroup of bacterial radical S-adenosylmethionine (rSAM) enzymes can activate C-H bonds in peptides, which leads to the production of a diverse range of RiPPs. The remarkable ability of these enzymes to facilitate various chemical processes, to generate and harbor high-energy radical species, and to accommodate large substrates with a high degree of flexibility is truly intriguing. The wide substrate scope and diversity of the chemistry performed by rSAM enzymes raise one question: how does the protein environment facilitate these distinct chemical conversions while sharing a similar structural fold? In this review, we discuss recent advances in the field of RiPP-rSAM enzymes, with a particular emphasis on domain architectures and substrate engagements identified by biophysical and structural characterizations. We provide readers with a comparative analysis of six examples of RiPP-rSAM enzymes with experimentally characterized structures. Linking the structural elements and the nature of rSAM-catalyzed RiPP production will provide insight into the functional engineering of enzyme activity to harness their catalytic power in broader applications.
Collapse