1
|
Wu X, Wan X, Yu H, Liu H. Recent advances in CRISPR-Cas system for Saccharomyces cerevisiae engineering. Biotechnol Adv 2025; 81:108557. [PMID: 40081781 DOI: 10.1016/j.biotechadv.2025.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Yeast Saccharomyces cerevisiae (S. cerevisiae) is a crucial industrial platform for producing a wide range of chemicals, fuels, pharmaceuticals, and nutraceutical ingredients. It is also commonly used as a model organism for fundamental research. In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has become the preferred technology for genetic manipulation in S. cerevisiae owing to its high efficiency, precision, and user-friendliness. This system, along with its extensive toolbox, has significantly accelerated the construction of pathways, enzyme optimization, and metabolic engineering in S. cerevisiae. Furthermore, it has allowed researchers to accelerate phenotypic evolution and gain deeper insights into fundamental biological questions, such as genotype-phenotype relationships. In this review, we summarize the latest advancements in the CRISPR-Cas toolbox for S. cerevisiae and highlight its applications in yeast cell factory construction and optimization, enzyme and phenotypic evolution, genome-scale functional interrogation, gene drives, and the advancement of biotechnologies. Finally, we discuss the challenges and potential for further optimization and applications of the CRISPR-Cas system in S. cerevisiae.
Collapse
Affiliation(s)
- Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbin Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Liu J, Li Y, Xu X, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 2025; 81:108560. [PMID: 40068711 DOI: 10.1016/j.biotechadv.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis. In this review, we discuss the advanced strategies used to enhance the local enzyme concentration and catalytic properties of P450s in Saccharomyces cerevisiae, with a focus on recent developments in metabolic and protein engineering. Expression enhancement and subcellular compartmentalization are specifically employed to increase the local enzyme concentration, whereas cofactor, redox partner, and enzyme engineering are utilized to improve the catalytic efficiency and substrate specificity of P450s. Subsequently, we discuss the application of P450s for the pathway engineering of terpenoid synthesis and whole-cell biotransformation, which are profitable for the industrial application of P450s in S. cerevisiae chassis. Finally, we explore the potential of using computational and artificial intelligence technologies to rationally design and construct high-performance cell factories, which offer promising pathways for future terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Xiang L, Sun W, Zhang S, Zhang H, Lv B, Qin L, Li C. Discovery, Biomanufacture, and Derivatization of Licorice Triterpenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4-29. [PMID: 39644261 DOI: 10.1021/acs.jafc.4c08110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Triterpenoids are the major active constituents of licorice, a well-known traditional medicinal herb. Licorice triterpenoids, represented by glycyrrhizin and glycyrrhetic acid, have a high structural diversity and are excellent lead compounds for the development of potent pharmaceuticals. However, their further application can be limited by insufficient activities, low bioavailability, and the presence of side effects, as well as the inefficiency of traditional plant extraction processes for compound production. To address these issues, researchers are focusing on rare triterpenoid components in the genus Glycyrrhiza and developing derivatives to preserve or enhance the original physiological activities with improved bioavailability and reduced side effects. At the same time, synthetic biology offers opportunities to shorten the production cycle, create eco-friendly manufacturing processes, and reduce the cost of producing licorice triterpenoids. Although much progress has been achieved in this field in recent years, there is still a lack of a comprehensive review to summarize the overall characteristics of licorice triterpenoids rather than glycyrrhizin and glycyrrhetinic acid. Based on this, our review comprehensively outlines the structures, origins, and pharmacological activities of licorice triterpenoids and predicts their pharmacological activities using the drugCIPHER algorithm. Furthermore, this paper reviews the advances and strategies for the biomanufacturing of licorice triterpenoids using synthetic biology methods and outlines the perspectives and structure-activity relationships for the derivatization of licorice triterpenoids. This review provides new insights into the discovery and synthesis of pharmaceuticals derived from natural triterpenes.
Collapse
Affiliation(s)
- Lin Xiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Siqin Zhang
- Department of Automation, Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Tsinghua University, Beijing 100084, China
| | - Haocheng Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Ge J, Wang T, Yu H, Ye L. De novo biosynthesis of nylon 12 monomer ω-aminododecanoic acid. Nat Commun 2025; 16:175. [PMID: 39747160 PMCID: PMC11695860 DOI: 10.1038/s41467-024-55739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Nylon 12 is valued for its exceptional properties and diverse industrial applications. Traditional chemical synthesis of nylon 12 faces significant technical challenges and environmental concerns, while bioproduction from plant-extracted decanoic acid (DDA) raises issues related to deforestation and biodiversity loss. Here, we show the development of an engineered Escherichia coli cell factory capable of biosynthesizing the nylon 12 monomer, ω-aminododecanoic acid (ω-AmDDA), from glucose. We enable de novo biosynthesis of ω-AmDDA by introducing a thioesterase specific to C12 acyl-ACP and a multi-enzyme cascade converting DDA to ω-AmDDA. Through modular pathway engineering, redesign and dimerization enhancement of the rate-limiting P450, reconstruction of redox and energy homeostasis, and enhancement of oxidative stress tolerance, we achieve a production level of 471.5 mg/L ω-AmDDA from glucose in shake flasks. This work paves the way for sustainable nylon 12 production and offers insights for bioproduction of other fatty acid-derived products.
Collapse
Affiliation(s)
- Jiawei Ge
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ting Wang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Wang J, Ji X, Yi R, Li D, Shen X, Liu Z, Xia Y, Shi S. Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae. Biotechnol J 2025; 20:e202400712. [PMID: 39834096 DOI: 10.1002/biot.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids. This article primarily centers on the heterologous expression of terpenoids in Saccharomyces cerevisiae, detailing the expression of terpenoid biosynthesis pathways through the utilization of cellular microcompartments, strategies for the efficient expression of key P450 enzymes in the synthesis pathway, and the regulation and optimization of host metabolism to enhance flux to terpenoids synthesis. Additionally, we analyze current challenges and propose solutions to further refine yeast chassis for more effective terpenoids production.
Collapse
Affiliation(s)
- Junyang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Renhe Yi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dengbin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yaying Xia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Li Y, Wang X, Jiang H, Xu S, Xu Y, Liu Z, Luo Y. Functional characterization of Camptotheca acuminata 7-deoxyloganetic acid synthases and 7-deoxyloganetic acid glucosyltransferases involved in camptothecin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109305. [PMID: 39571455 DOI: 10.1016/j.plaphy.2024.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
Camptothecin (CAM), a well-known plant-derived antitumor compound, is a structurally complex pentacyclic pyrroloquinoline monoterpene indole alkaloid (MIA) found in various plant species. As a specific MIA, CAM had been thought to share a common upstream biosynthetic pathway with other MIAs such as the antitumor vinblastine and vincristine from Catharanthus roseus. Nevertheless the key enzymes responsible for the consecutive three-step oxidation of the -CH3 of nepetalactol to form the -COOH of 7-deoxyloganetic acid and the subsequent glycosylation of 7-deoxyloganetic acid to yield 7-deoxyloganic acid have yet to be functionally characterized. Here we established an in vivo tandem catalysis assay for the enzymatic catalytic activity characterization of 7-deoxyloganetic acid synthase (7DLS) and 7-deoxyloganetic acid glucosyltransferase (7DLGT), two crucial catalytic enzymes in MIAs biosynthesis, thereby avoiding the difficulty in the detection of the unstable biosynthetic intermediates. The enzyme activity assay platform was conducted through the co-expression of functionally characterized Cr7DLS and Cr7DLGT in Saccharomyces cerevisiae WAT11, substrate feeding, and enzymatic product verification. Two cytochrome P450 enzymes (CYPs) from Camptotheca acuminata, the prestigious resource for CAM, CaCYP76A75 and CaCYP76A76, were identified and functionally characterized to be responsible for the consecutive three-step oxidation of nepetalactol to yield 7-deoxyloganetic acid through reciprocal replacement of Cr7DLS in the in vivo tandem enzyme activity assay platform. Two uridine 5'-diphosphate glycosyltransferases (UGTs), CaUGT709C10 and CaUGT709C11, were functionally characterized to be capable of glycosylating 7-deoxyloganetic acid to yield 7-deoxyloganic acid. This study provides two CYPs as 7DLSs and two UGTs as 7DLGTs, offering potential applications in MIAs biosynthesis.
Collapse
Affiliation(s)
- Yi Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglan Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangyu Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| |
Collapse
|
7
|
Zhang X, Feng Y, Hua Y, Zhang C, Fang B, Long X, Pan Y, Gao B, Zhang JZH, Li L, Ni H, Zhang L. Biosynthesis of eriodictyol in citrus waster by endowing P450BM3 activity of naringenin hydroxylation. Appl Microbiol Biotechnol 2024; 108:84. [PMID: 38189953 PMCID: PMC10787690 DOI: 10.1007/s00253-023-12867-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024]
Abstract
The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: •The compound I is proposed as the starting point for the rational design of the P450BM3 •"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin •Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.
Collapse
Affiliation(s)
- Xingyi Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanzhe Hua
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Chuanxi Zhang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bohuan Fang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yue Pan
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bei Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
8
|
Zhang L, Jiang P, Jin H, Zhang C. Achieving Regioselectivity for Remote C-H Activation by Substructure Conformations: an Approach of Paralogous Cytochrome P450 Enzymes. Chemistry 2024; 30:e202402635. [PMID: 39194284 DOI: 10.1002/chem.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
For advanced synthetic intermediates or natural products with multiple unactivated and energetically similar C(sp3)-H bonds, controlling regioselectivity for the C-H activation is particularly challenging. The use of cytochrome P450 enzymes (CYPs) is a promising solution to the 'regioelectivity' challenge in remote C-H activation. Notably, CYPs and organic catalysts share a fundamental principle: they strive to control the distance and geometry between the metal reaction center and the target C-H site. Most structural analyses of the regioselectivity of CYPs are limited to the active pocket, particularly when explaining why regioselectivity could be altered by enzyme engineering through mutagenesis. However, the substructures responsible for forming the active pocket in CYPs are well known to display complex dynamic changes and substrate-induced plasticity. In this context, we highlight a comparative study of the recently reported paralogous CYPs, IkaD and CftA, which achieve different regioselectivity towards the same substrate ikarugamycin by distinct substructure conformations. We propose that substructural conformation-controlled regioselectivity might also be present in CYPs of other natural product biosynthesis pathways, which should be considered when engineering CYPs for regioselective modifications.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| | - Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Hongbo Jin
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| |
Collapse
|
9
|
Wu L, Ma T, Zang C, Xu Z, Sun W, Luo H, Yang M, Song J, Chen S, Yao H. Glycyrrhiza, a commonly used medicinal herb: Review of species classification, pharmacology, active ingredient biosynthesis, and synthetic biology. J Adv Res 2024:S2090-1232(24)00538-1. [PMID: 39551128 DOI: 10.1016/j.jare.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Licorice is extensively and globally utilized as a medicinal herb and is one of the traditional Chinese herbal medicines with valuable pharmacological effects. Its therapeutic components primarily reside within its roots and rhizomes, classifying it as a tonifying herb. As more active ingredients in licorice are unearthed and characterized, licorice germplasm resources are gaining more and more recognition. However, due to the excessive exploitation of wild licorice resources, the degrading germplasm reserves fail to meet the requirements of chemical extraction and clinical application. AIM OF REVIEW This article presents a comprehensive review of the classification and phylogenetic relationships of species in genus Glycyrrhiza, types of active components and their pharmacological activities, licorice omics, biosynthetic pathways of active compounds in licorice, and metabolic engineering. It aims to offer a unique and comprehensive perspective on Glycyrrhiza, integrating knowledge from diverse fields to offer a comprehensive understanding of this genus. It will serve as a valuable resource and provide a solid foundation for future research and development in the molecular breeding and synthetic biology fields of Glycyrrhiza. KEY SCIENTIFIC CONCEPTS OF REVIEW Licorice has an abundance of active constituents, primarily triterpenoids, flavonoids, and polysaccharides. Modern pharmacological research unveiled its multifaceted effects encompassing anti-inflammatory, analgesic, anticancer, antiviral, antioxidant, and hepatoprotective activities. Many resources of Glycyrrhiza species remain largely untapped, and multiomic studies of the Glycyrrhiza lineage are expected to facilitate new discoveries in the fields of medicine and human health. Therefore, strategies for breeding high-yield licorice plants and developing effective biosynthesis methods for bioactive compounds will provide valuable insights into resource conservation and drug development. Metabolic engineering and microorganism-based green production provide alternative strategies to improve the production efficiency of natural products.
Collapse
Affiliation(s)
- Liwei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chenxi Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongmei Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
10
|
Chen Y, Huang R, Chen J, Lin C, Wu Y, Chen J, Shen Q, Wang F, Duan L, Cui H. Molecular cloning and functional characterization of 2,3-oxidosqualene cyclases from Artemisia argyi. Protein Expr Purif 2024; 222:106533. [PMID: 38876402 DOI: 10.1016/j.pep.2024.106533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Artemisia argyi is a traditional medicinal and edible plant, generating various triterpenoids with pharmacological activities, such as anti-virus, anti-cancer, and anti-oxidant. The 2,3-oxidosqualene cyclase family of A. argyi offers novel insights into the triterpenoid pathway, which might contribute to the medicinal value of its tissue extracts. Nevertheless, the biosynthesis of active triterpenoids in Artemisia argyi is still uncertain. In this study, four putative OSC (2,3-oxidosqualene cyclase) genes (AaOSC1-4) were first isolated and identified from A. argyi. Through the yeast heterologous expression system, three AaOSCs were characterized for the biosynthesis of diverse triterpenoids including cycloartenol, β-amyrin, (3S,13R)-malabarica-14(27),17,21-trien-3β-ol, and dammara-20,24-dien-3β-ol. AaOSC1 was a multifunctional dammara-20,24-dien-3β-ol synthase, which yielded 8 different triterpenoids, including tricyclic, and tetracyclic products. AaOSC2 and AaOSC3 were cycloartenol, and β-amyrin synthases, respectively. As a result, these findings provide a deeper understanding of the biosynthesis pathway of triterpenes in A. argyi.
Collapse
Affiliation(s)
- Yaman Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruoshi Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiabo Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chumin Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuhong Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jitong Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Shen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Feng Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lixin Duan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Honghua Cui
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Sun W, Wan S, Liu C, Wang R, Zhang H, Qin L, Wang R, Lv B, Li C. Establishing cell suitability for high-level production of licorice triterpenoids in yeast. Acta Pharm Sin B 2024; 14:4134-4148. [PMID: 39309497 PMCID: PMC11413661 DOI: 10.1016/j.apsb.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 09/25/2024] Open
Abstract
Yeast has been an indispensable host for synthesizing complex plant-derived natural compounds, yet the yields remained largely constrained. This limitation mainly arises from overlooking the importance of cell and pathway suitability during the optimization of enzymes and pathways. Herein, beyond conventional enzyme engineering, we dissected metabolic suitability with a framework for simultaneously augmenting cofactors and carbon flux to enhance the biosynthesis of heterogenous triterpenoids. We further developed phospholipid microenvironment engineering strategies, dramatically improving yeast's suitability for the high performance of endoplasmic reticulum (ER)-localized, rate-limiting plant P450s. Combining metabolic and microenvironment suitability by manipulating only three genes, NHMGR (NADH-dependent HMG-CoA reductase), SIP4 (a DNA-binding transcription factor)and GPP1 (Glycerol-1-phosphate phosphohydrolase 1), we enabled the high-level production of 4.92 g/L rare licorice triterpenoids derived from consecutive oxidation of β-amyrin by two P450 enzymes after fermentation optimization. This production holds substantial commercial value, highlighting the critical role of establishing cell suitability in enhancing triterpenoid biosynthesis and offering a versatile framework applicable to various plant natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Shengtong Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chuyan Liu
- The University of Chicago, Chicago, IL 60637, USA
| | - Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haocheng Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Khalkho JP, Beck A, Priyanka, Panda B, Chandra R. Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids. Arch Microbiol 2024; 206:340. [PMID: 38960981 DOI: 10.1007/s00203-024-04067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.
Collapse
Affiliation(s)
- Jaya Prabha Khalkho
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Beck
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyanka
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Banishree Panda
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ramesh Chandra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
13
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Wang S, Meng D, Feng M, Li C, Wang Y. Efficient Plant Triterpenoids Synthesis in Saccharomyces cerevisiae: from Mechanisms to Engineering Strategies. ACS Synth Biol 2024; 13:1059-1076. [PMID: 38546129 DOI: 10.1021/acssynbio.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Triterpenoids possess a range of biological activities and are extensively utilized in the pharmaceutical, food, cosmetic, and chemical industries. Traditionally, they are acquired through chemical synthesis and plant extraction. However, these methods have drawbacks, including high energy consumption, environmental pollution, and being time-consuming. Recently, the de novo synthesis of triterpenoids in microbial cell factories has been achieved. This represents a promising and environmentally friendly alternative to traditional supply methods. Saccharomyces cerevisiae, known for its robustness, safety, and ample precursor supply, stands out as an ideal candidate for triterpenoid biosynthesis. However, challenges persist in industrial production and economic feasibility of triterpenoid biosynthesis. Consequently, metabolic engineering approaches have been applied to improve the triterpenoid yield, leading to substantial progress. This review explores triterpenoids biosynthesis mechanisms in S. cerevisiae and strategies for efficient production. Finally, the review also discusses current challenges and proposes potential solutions, offering insights for future engineering.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dong Meng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meilin Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Qin L, Ma D, Lin G, Sun W, Li C. Low temperature promotes the production and efflux of terpenoids in yeast. BIORESOURCE TECHNOLOGY 2024; 395:130376. [PMID: 38278452 DOI: 10.1016/j.biortech.2024.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Altering the fermentation environment provides an effective approach to optimizing the production efficiency of microbial cell factories globally. Here, lower fermentation temperatures of yeast were found to significantly improve the synthesis and efflux of terpenoids, including glycyrrhetinic acid (GA), β-caryophyllene, and α-amyrin. The production of GA at 22°C increased by 5.5 times compared to 30°C. Yeast subjected to lower temperature showed substantial changes at various omics levels. Certain genes involved in maintaining cellular homeostasis that were upregulated under the low temperature conditions, leading to enhanced GA production. Substituting Mvd1, a thermo-unstable enzyme in mevalonate pathway identified by transcriptome and proteome, with a thermo-tolerant isoenzyme effectively increased GA production. The lower temperature altered the composition of phospholipids and increased the unsaturation of fatty acid chains, which may influence GA efflux. This study presents a strategy for optimizing the fermentation process and identifying key targets of cell factories for terpenoid production.
Collapse
Affiliation(s)
- Lei Qin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dongshi Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guangyuan Lin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Wentao Sun
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Chun Li
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
16
|
Yuan F, Ding J, Sun Y, Liang J, Luo Y, Yu Y. Synthesis of Trifluoromethylated Monoterpenes by an Engineered Cytochrome P450. Chemistry 2024; 30:e202302936. [PMID: 38012074 DOI: 10.1002/chem.202302936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Protein engineering of cytochrome P450s has enabled these biocatalysts to promote a variety of abiotic reactions beyond nature's repertoire. Integrating such non-natural transformations with microbial biosynthetic pathways could allow sustainable enzymatic production of modified natural product derivatives. In particular, trifluoromethylation is a highly desirable modification in pharmaceutical research due to the positive effects of the trifluoromethyl group on drug potency, bioavailability, and metabolic stability. This study demonstrates the biosynthesis of non-natural trifluoromethyl-substituted cyclopropane derivatives of natural monoterpene scaffolds using an engineered cytochrome P450 variant, P411-PFA. P411-PFA successfully catalyzed the transfer of a trifluoromethyl carbene from 2-diazo-1,1,1-trifluoroethane to the terminal alkenes of several monoterpenes, including L-carveol, carvone, perilla alcohol, and perillartine, to generate the corresponding trifluoromethylated cyclopropane products. Furthermore, integration of this abiotic cyclopropanation reaction with a reconstructed metabolic pathway for L-carveol production in Escherichia coli enabled one-step biosynthesis of a trifluoromethylated L-carveol derivative from limonene precursor. Overall, amalgamating synthetic enzymatic chemistry with established metabolic pathways represents a promising approach to sustainably produce bioactive natural product analogs.
Collapse
Affiliation(s)
- Feiyan Yuan
- Institute of Biochemical Engineering, Key Laboratory of, Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jing Ding
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yiyang Sun
- Institute of Biochemical Engineering, Key Laboratory of, Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yang Yu
- Institute of Biochemical Engineering, Key Laboratory of, Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
17
|
Zhang C, Cai Y, Zhang Z, Zheng N, Zhou H, Su Y, Du S, Hussain A, Xia X. Directed Evolution of the UDP-Glycosyltransferase UGT BL1 for Highly Regioselective and Efficient Biosynthesis of Natural Phenolic Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1640-1650. [PMID: 38213280 DOI: 10.1021/acs.jafc.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The O-glycosylation of polyphenols for the synthesis of glycosides has garnered substantial attention in food research applications. However, the practical utility of UDP-glycosyltransferases (UGTs) is significantly hindered by their low catalytic efficiency and suboptimal regioselectivity. The concurrent optimization of the regioselectivity and activity during the glycosylation of polyphenols presents a formidable challenge. Here, we addressed the long-standing activity-regioselectivity tradeoff in glycosyltransferase UGTBL1 through systematic enzyme engineering. The optimal combination of mutants, N61S/I62M/D63W/A208R/P218W/R282W (SMWRW1W2), yielded a 6.1-fold improvement in relative activity and a 17.3-fold increase in the ratio of gastrodin to para-hydroxybenzyl alcohol-4'-O-β-glucoside (with 89.5% regioselectivity for gastrodin) compared to those of the wild-type enzyme and ultimately allowed gram-scale production of gastrodin (1,066.2 mg/L) using whole-cell biocatalysis. In addition, variant SMWRW1W2 exhibited a preference for producing phenolic glycosides from several substrates. This study lays the foundation for the engineering of additional UGTs and the practical applications of UGTs in regioselective retrofitting.
Collapse
Affiliation(s)
- Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongchao Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huimin Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yumeng Su
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuang Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Asif Hussain
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Zeng W, Jiang Y, Shan X, Zhou J. Engineering Saccharomyces cerevisiae for synthesis of β-myrcene and (E)-β-ocimene. 3 Biotech 2023; 13:384. [PMID: 37928439 PMCID: PMC10620350 DOI: 10.1007/s13205-023-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023] Open
Abstract
Monoterpenes are among the important natural plant terpenes. Monoterpenes usually have the characteristics of volatility and strong aroma. β-Myrcene and its isomer (E)-β-ocimene are typical acyclic monoterpenes. They are high-value monoterpenes that have been widely applied in foods, cosmetics, and medicines. However, large-scale commercial production of β-myrcene and (E)-β-ocimene is restricted by their production method that mainly involves extraction from plant essential oils. Currently, an alternative synthetic route utilizing an engineered microbial platform was proposed for effective production. This study used a Saccharomyces cerevisiae strain previously constructed for squalene production as the starting strain. Farnesyl diphosphate synthase (Erg20) expression was weakened by promoter replacement and screened for optimal myrcene synthase (MS) and ocimene synthase (OS) activities. In the resulting S. cerevisiae engineered for β-myrcene and (E)-β-ocimene synthesis, titers of β-myrcene and (E)-β-ocimene were enhanced by a fusion expressing a mutant Erg20* with the obtained monoterpene synthase and optimizing the added solvent in a two-phase fermentation system. Finally, by scaling up in a 5-L fermenter, 8.12 mg/L of β-myrcene was obtained, which was first reported in yeast, and 34.56 mg/L of (E)-β-ocimene was obtained, which is the highest reported to date. This study provides a new synthesis route for β-myrcene and (E)-β-ocimene. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03818-2.
Collapse
Affiliation(s)
- Weizhu Zeng
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yinkun Jiang
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
19
|
Yang J, Liu Y, Zhong D, Xu L, Gao H, Keasling JD, Luo X, Chou HH. Combinatorial optimization and spatial remodeling of CYPs to control product profile. Metab Eng 2023; 80:119-129. [PMID: 37703999 PMCID: PMC10698227 DOI: 10.1016/j.ymben.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Activating inert substrates is a challenge in nature and synthetic chemistry, but essential for creating functionally active molecules. In this work, we used a combinatorial optimization approach to assemble cytochrome P450 monooxygenases (CYPs) and reductases (CPRs) to achieve a target product profile. By creating 110 CYP-CPR pairs and iteratively screening different pairing libraries, we demonstrated a framework for establishing a CYP network that catalyzes six oxidation reactions at three different positions of a chemical scaffold. Target product titer was improved by remodeling endoplasmic reticulum (ER) size and spatially controlling the CYPs' configuration on the ER. Out of 47 potential products that could be synthesized, 86% of the products synthesized by the optimized network was our target compound quillaic acid (QA), the aglycone backbone of many pharmaceutically important saponins, and fermentation achieved QA titer 2.23 g/L.
Collapse
Affiliation(s)
- Jiazeng Yang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Yuguang Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Dacai Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Linlin Xu
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haixin Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Howard H Chou
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
20
|
Li J, Wang S, Miao Y, Wan Y, Li C, Wang Y. Mining and modification of Oryza sativa-derived squalene epoxidase for improved β-amyrin production in Saccharomyces cerevisiae. J Biotechnol 2023; 375:1-11. [PMID: 37597655 DOI: 10.1016/j.jbiotec.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
β-Amyrin is a pentacyclic triterpenoid and has anti-viral, anti-bacterial and anti-inflammatory activities. The synthetic pathway of β-amyrin has been analyzed and its heterogeneous synthesis has been achieved in Saccharomyces cerevisiae. Squalene epoxidase (SQE) catalyzes the oxygenation of squalene to form 2,3-oxidosqualene and is rate-limiting in the synthetic pathways of β-amyrin. The endogenous SQE in S. cerevisiae is insufficient for high production of β-amyrin. Herein, eight squalene epoxidases derived from different plants were selected and characterized in S. cerevisiae for improved biosynthesis of β-amyrin. Among them, the squalene epoxidase from Oryza sativa (OsSQE52) showed the best performance compared to other plant-derived sources. Through protein remodeling, the mutant OsSQE52L256R, obtained based on modeling analysis, increased the titer of β-amyrin by 2.43-fold compared to that in the control strain with ERG1 overexpressed under the same conditions. Moreover, the expression of OsSQE52L256R was optimized with the improvement of precursor supply to further increase the production of β-amyrin. Finally, the constructed strains produced 66.97 mg/L β-amyrin in the shake flask, which was 6.45-fold higher than the original strain. Our study provides alternative SQEs for efficient production of β-amyrin as well as other triterpenoids derived from 2,3-oxidosqualene.
Collapse
Affiliation(s)
- Jinling Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yinan Miao
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ya Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
21
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
22
|
Lacchini E, Venegas-Molina J, Goossens A. Structural and functional diversity in plant specialized metabolism signals and products: The case of oxylipins and triterpenes. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102371. [PMID: 37148672 DOI: 10.1016/j.pbi.2023.102371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Metabolic enzymes tend to evolve towards catalytic efficacy, precision and speed. This seems particularly true for ancient and conserved enzymes involved in fundamental cellular processes that are present virtually in every cell and organism and converting and producing relatively limited metabolite numbers. Nevertheless, sessile organisms like plants have an astonishing repertoire of specific (specialized) metabolites that, by numbers and chemical complexity, by far exceed primary metabolites. Most theories agree that early gene duplication, subsequent positive selection and diversifying evolution have allowed relaxed selection of duplicated metabolic genes, thus facilitating the accumulation of mutations that could broaden substrate/product specificity and lower activation barriers and kinetics. Here, we use oxylipins, oxygenated fatty acids of plastidial origin to which the phytohormone jasmonate belongs, and triterpenes, a large group of specialized metabolites whose biosynthesis is often elicited by jasmonates, to showcase the structural and functional diversity of chemical signals and products in plant metabolism.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Jhon Venegas-Molina
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.
| |
Collapse
|
23
|
Zhang Z, Wu QY, Ge Y, Huang ZY, Hong R, Li A, Xu JH, Yu HL. Hydroxylases involved in terpenoid biosynthesis: a review. BIORESOUR BIOPROCESS 2023; 10:39. [PMID: 38647640 PMCID: PMC10992849 DOI: 10.1186/s40643-023-00656-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/10/2023] [Indexed: 04/25/2024] Open
Abstract
Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aitao Li
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
24
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
25
|
Hu B, Zhao X, Wang E, Zhou J, Li J, Chen J, Du G. Efficient heterologous expression of cytochrome P450 enzymes in microorganisms for the biosynthesis of natural products. Crit Rev Biotechnol 2023; 43:227-241. [PMID: 35129020 DOI: 10.1080/07388551.2022.2029344] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural products, a chemically and structurally diverse class of molecules, possess a wide spectrum of biological activities, have been used therapeutically for millennia, and have provided many lead compounds for the development of synthetic drugs. Cytochrome P450 enzymes (P450s, CYP) are widespread in nature and are involved in the biosynthesis of many natural products. P450s are heme-containing enzymes that use molecular oxygen and the hydride donor NAD(P)H (coupled via enzymic redox partners) to catalyze the insertion of oxygen into C-H bonds in a regio- and stereo-selective manner, effecting hydroxylation and several other reactions. With the rapid development of systems biology, numerous novel P450s have been identified for the biosynthesis of natural products, but there are still several challenges to the efficient heterologous expression of active P450s. This review covers recent developments in P450 research and development, including the properties and functions of P450s, discovery and mining of novel P450s, modification and screening of P450 mutants, improved heterologous expression of P450s in microbial hosts, efficient whole-cell transformation with P450s, and current applications of P450s for the biosynthesis of natural products. This resource provides a solid foundation for the application of highly active and stable P450s in microbial cell factories to biosynthesize natural products.
Collapse
Affiliation(s)
- Baodong Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Endao Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Sun M, Xin Q, Hou K, Qiu J, Wang L, Chao E, Su X, Zhang X, Chen S, Wang C. Production of 11-Oxo-β-Amyrin in Saccharomyces cerevisiae at High Efficiency by Fine-Tuning the Expression Ratio of CYP450:CPR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3766-3776. [PMID: 36795896 DOI: 10.1021/acs.jafc.2c08261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The production of glycyrrhetinic acid (GA) and 11-oxo-β-amyrin, the major bioactive components in liquorice, was typically inhibited by P450 oxidation in Saccharomyces cerevisiae. This study focused on optimizing CYP88D6 oxidation by balancing its expression with cytochrome P450 oxidoreductase (CPR) for the efficient production of 11-oxo-β-amyrin in yeast. Results indicated that a high CPR:CYP88D6 expression ratio could decrease both 11-oxo-β-amyrin concentration and turnover ratio of β-amyrin to 11-oxo-β-amyrin, whereas a high CYP88D6:CPR expression ratio is beneficial for improving the catalytic activity of CYP88D6 and 11-oxo-β-amyrin production. Under such a scenario, 91.2% of β-amyrin was converted into 11-oxo-β-amyrin in the resulting S. cerevisiae Y321, and 11-oxo-β-amyrin production was further improved to 810.6 mg/L in fed-batch fermentation. Our study provides new insights into the expression of cytochrome P450 and CPR in maximizing the catalytic activity of P450s, which could guide the construction of cell factories in producing natural products.
Collapse
Affiliation(s)
- Mengchu Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Qi Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Kangxin Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- Department of Food Science, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jie Qiu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Linmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Erkun Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301607, P. R. China
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P. R. China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| |
Collapse
|
27
|
Real-time monitoring of subcellular states with genetically encoded redox biosensor system (RBS) in yeast cell factories. Biosens Bioelectron 2023; 222:114988. [PMID: 36521204 DOI: 10.1016/j.bios.2022.114988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
During industrial fermentation, microbial cell factories are usually confronted with environmental or metabolic stresses, leading to the imbalance of intracellular redox and the reduction of cell metabolic capacity. Here, we constructed the genetically encoded redox biosensor system (RBS) based on redox-sensitive fluorescent proteins to detect redox metabolites, including reactive oxygen species (ROS), oxidized glutathione, NADH, and NADPH in Saccharomyces cerevisiae. The functional biosensors were quantitatively characterized and the orthogonal redox biosensor system (oRBS) was designed for detecting multiple redox metabolites. Furthermore, the compartment targeted redox biosensor system (ctRBS) was constructed to detect ROS and NADPH, revealing the distribution and spatiotemporal dynamics of ROS in yeast under various stress conditions. As a proof-of-concept, RBS was applied to evaluate the redox states of engineered yeast with stress resistance and heterogenous triterpene synthesis in vivo, elucidating the redox balance significantly affecting the growth and production phenotypes. The RBS in this study allowed the exploration of the diversity of compartmental redox state and real-time monitoring of the production process of yeast, providing a reliable and effective approach for accurate and in-depth profiling of bottlenecks of yeast cell factories.
Collapse
|
28
|
Liu X, Jiao X, Cheng Y, Ma Y, Bu J, Jin B, Li Q, Hu Z, Tang J, Lai C, Wang J, Cui G, Chen Y, Guo J, Huang L. Structure-function analysis of CYP719As involved in methylenedioxy bridge-formation in the biosynthesis of benzylisoquinoline alkaloids and its de novo production. Microb Cell Fact 2023; 22:23. [PMID: 36737755 PMCID: PMC9898898 DOI: 10.1186/s12934-023-02024-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.
Collapse
Affiliation(s)
- Xiuyu Liu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China ,grid.256922.80000 0000 9139 560XSchool of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046 China
| | - Xiang Jiao
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Yatian Cheng
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Ying Ma
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Junling Bu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Baolong Jin
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Qishuang Li
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Zhimin Hu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jinfu Tang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Changjiangsheng Lai
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Guanghong Cui
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Yun Chen
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Juan Guo
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| |
Collapse
|
29
|
Zhang Y, Ma L, Su P, Huang L, Gao W. Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 2023; 43:1-21. [PMID: 34865579 DOI: 10.1080/07388551.2021.2003292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As the largest family of natural products, terpenoids play valuable roles in medicine, agriculture, cosmetics and food. However, the traditional methods that rely on direct extraction from the original plants not only produce low yields, but also result in waste of resources, and are not applicable at all to endangered species. Modern heterologous biosynthesis is considered a promising, efficient, and sustainable production method, but it relies on the premise of a complete analysis of the biosynthetic pathway of terpenoids, especially the functionalization processes involving downstream cytochrome P450s. In this review, we systematically introduce the biotech approaches used to discover and characterize plant terpenoid-related P450s in recent years. In addition, we propose corresponding metabolic engineering approaches to increase the effective expression of P450 and improve the yield of terpenoids, and also elaborate on metabolic engineering strategies and examples of heterologous biosynthesis of terpenoids in Saccharomyces cerevisiae and plant hosts. Finally, we provide perspectives for the biotech approaches to be developed for future research on terpenoid-related P450.
Collapse
Affiliation(s)
- Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Abstract
Covering: 2015 to 2022Fungal terpenoids are of large structural diversity and often exhibit interesting biological activities. Recent work has focused on two main aspects: (1) the discovery and understanding of unknown biosynthetic genes and pathways, and (2) the usage of already known biosynthetic genes in the construction of high yielding production strains. Both aspects will be covered in this review article that aims to summarise the most important work of the past few years.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
31
|
Luo Y, Jiang Y, Chen L, Li C, Wang Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth Syst Biotechnol 2022; 8:20-32. [PMID: 36381964 PMCID: PMC9634032 DOI: 10.1016/j.synbio.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Triterpenoids are a class of natural products widely used in fields related to medicine and health due to their biological activities such as hepatoprotection, anti-inflammation, anti-viral, and anti-tumor. With the advancement in biotechnology, microorganisms have been used as cell factories to produce diverse natural products. Despite the significant progress that has been made in the construction of microbial cell factories for the heterogeneous biosynthesis of triterpenoids, the industrial production of triterpenoids employing microorganisms has been stymied due to the shortage of efficient enzymes as well as the low expression and low catalytic activity of heterologous proteins in microbes. Protein engineering has been demonstrated as an effective way for improving the specificity, catalytic activity, and stability of the enzyme, which can be employed to overcome these challenges. This review summarizes the current progress in the studies of Oxidosqualene cyclases (OSCs), cytochrome P450s (P450s), and UDP-glycosyltransferases (UGTs), the key enzymes in the triterpenoids synthetic pathway. The main obstacles restricting the efficient catalysis of these key enzymes are analyzed, the applications of protein engineering for the three key enzymes in the microbial synthesis of triterpenoids are systematically reviewed, and the challenges and prospects of protein engineering are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yaozhu Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Corresponding author.
| |
Collapse
|
32
|
Romsuk J, Yasumoto S, Seki H, Fukushima EO, Muranaka T. Identification of key amino acid residues toward improving the catalytic activity and substrate specificity of plant-derived cytochrome P450 monooxygenases CYP716A subfamily enzyme for triterpenoid production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:955650. [PMID: 36061436 PMCID: PMC9437279 DOI: 10.3389/fbioe.2022.955650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Triterpenoids constitute a group of specialized plant metabolites with wide structural diversity and high therapeutic value for human health. Cytochrome P450 monooxygenases (CYP) are a family of enzymes important for generating the structural diversity of triterpenoids by catalyzing the site-specific oxidization of the triterpene backbone. The CYP716 enzyme family has been isolated from various plant families as triterpenoid oxidases; however, their experimental crystal structures are not yet available and the detailed catalytic mechanism remains elusive. Here, we address this challenge by integrating bioinformatics approaches with data from other CYP families. Medicago truncatula CYP716A12, the first functionally characterized CYP716A subfamily enzyme, was chosen as the model for this study. We performed homology modeling, structural alignment, in silico site-directed mutagenesis, and molecular docking analysis to search and screen key amino acid residues relevant to the catalytic activity and substrate specificity of the CYP716A subfamily enzyme in triterpenoid biosynthesis. An in vivo functional analysis using engineered yeast that endogenously produced plant-derived triterpenes was performed to elucidate the results. When the amino acids in the signature region and substrate recognition sites (SRSs) were substituted, the product profile of CYP716A12 was modified. We identified amino acid residues that control the substrate contraction of the enzyme (D292) and engineered the enzyme to improve its catalytic activity and substrate specificity (D122, I212, and Q358) for triterpenoid biosynthesis. In addition, we demonstrated the versatility of this strategy by changing the properties of key residues in SRSs to improve the catalytic activity of Arabidopsis thaliana CYP716A1 (S356) and CYP716A2 (M206, F210) at C-28 on the triterpene backbone. This research has the potential to help in the production of desired triterpenoids in engineered yeast by increasing the catalytic activity and substrate specificity of plant CYP716A subfamily enzymes.
Collapse
Affiliation(s)
- Jutapat Romsuk
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ery Odette Fukushima
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Plant Traslational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
- *Correspondence: Ery Odette Fukushima, ; Toshiya Muranaka,
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- *Correspondence: Ery Odette Fukushima, ; Toshiya Muranaka,
| |
Collapse
|
33
|
Ding Y, Perez-Ortiz G, Peate J, Barry SM. Redesigning Enzymes for Biocatalysis: Exploiting Structural Understanding for Improved Selectivity. Front Mol Biosci 2022; 9:908285. [PMID: 35936784 PMCID: PMC9355150 DOI: 10.3389/fmolb.2022.908285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of new enzymes, alongside the push to make chemical processes more sustainable, has resulted in increased industrial interest in the use of biocatalytic processes to produce high-value and chiral precursor chemicals. Huge strides in protein engineering methodology and in silico tools have facilitated significant progress in the discovery and production of enzymes for biocatalytic processes. However, there are significant gaps in our knowledge of the relationship between enzyme structure and function. This has demonstrated the need for improved computational methods to model mechanisms and understand structure dynamics. Here, we explore efforts to rationally modify enzymes toward changing aspects of their catalyzed chemistry. We highlight examples of enzymes where links between enzyme function and structure have been made, thus enabling rational changes to the enzyme structure to give predictable chemical outcomes. We look at future directions the field could take and the technologies that will enable it.
Collapse
|
34
|
Alkhadrawi AM, Xue H, Ahmad N, Akram M, Wang Y, Li C. Molecular study on the role of vacuolar transporters in glycyrrhetinic acid production in engineered Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183890. [PMID: 35181296 DOI: 10.1016/j.bbamem.2022.183890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
Glycyrrhetinic acid (GA) is one of the major bioactive components of the leguminous plant, Glycyrrhiza spp. (Chinese licorice). Owing to GA's complicated chemical structure, its production by chemical synthesis is challenging and requires other efficient strategies such as microbial synthesis. Earlier investigations employed numerous approaches to improve GA yield by refining the synthetic pathway and improving the metabolic flux. Nevertheless, the metabolic role of transporters in GA biosynthesis in microbial cell factories has not been studied so far. In this study, we investigated the role of yeast ATP binding cassette (ABC) vacuolar transporters in GA production. Molecular docking of GA and its precursors, β-Amyrin and 11-oxo-β-amyrin, was performed with five vacuolar ABC transporters (Bpt1p, Vmr1p, Ybt1p, Ycf1p and Nft1p). Based on docking scores, two top scoring transporters were selected (Bpt1p and Vmr1p) to investigate transporters' functions on GA production via overexpression and knockout experiments in one GA-producing yeast strain (GA166). Results revealed that GA and its precursors exhibited the highest predicted binding affinity towards BPT1 (ΔG = -10.9, -10.6, -10.9 kcal/mol for GA, β-amyrin and 11-oxo-β-amyrin, respectively). Experimental results showed that the overexpression of BPT1 and VMR1 restored the intracellular as well as extracellular GA production level under limited nutritional conditions, whereas knockout of BPT1 resulted in a total loss of GA production. These results suggest that the activity of BPT1 is required for GA production in engineered Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Adham M Alkhadrawi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haijie Xue
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad 22060, Pakistan
| | - Muhammad Akram
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Department of Life Sciences, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 2022; 21:92. [PMID: 35599322 PMCID: PMC9125818 DOI: 10.1186/s12934-022-01819-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial cell factories for terpenoid synthesis form a less expensive and more environment-friendly approach than chemical synthesis and extraction, and are thus being regarded as mainstream research recently. Organelle compartmentalization for terpenoid synthesis has received much attention from researchers owing to the diverse physiochemical characteristics of organelles. In this review, we first systematically summarized various compartmentalization strategies utilized in terpenoid production, mainly plant terpenoids, which can provide catalytic reactions with sufficient intermediates and a suitable environment, while bypassing competing metabolic pathways. In addition, because of the limited storage capacity of cells, strategies used for the expansion of specific organelle membranes were discussed. Next, transporter engineering strategies to overcome the cytotoxic effects of terpenoid accumulation were analyzed. Finally, we discussed the future perspectives of compartmentalization and transporter engineering strategies, with the hope of providing theoretical guidance for designing and constructing cell factories for the purpose of terpenoid production.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Xia
- Richen Bioengineering Co., Ltd, Nantong, 226000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
36
|
Hou K, Yu W, Wang X, Liu J, Liu Y, Liu J, Su X, Zhang X, Xue Q, Wang C. Metabolic Engineering of Saccharomyces cerevisiae for de Novo Dihydroniloticin Production Using Novel CYP450 from Neem ( Azadirachta indica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3467-3476. [PMID: 35258300 DOI: 10.1021/acs.jafc.1c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Azadirachtin, a limonoid isolated from the neem tree, has attracted considerable interest due to its excellent performance in pest control. Studies have also reported pharmaceutical activities of dihydroniloticin, an intermediate in azadirachtin biosynthesis, but these pharmaceutical activities could not be validated due to the limited supply. In this study, AiCYP71CD2 was first identified as involved in azadirachtin biosynthesis in neem by expressing it in Nicotiana benthamiana and yeast (Saccharomyces cerevisiae). Homology modeling and molecular docking analysis revealed that AiCYP71CD2 may exhibit a higher ability in catalyzing tirucalla-7,24-dien-3β-ol into dihydroniloticin compared with MaCYP71CD2 from Melia azedarach L. G310 was identified as the critical residue responsible for the higher catalytic ability of AiCYP71CD2. Condon-Optimized AiCYP71CD2 greatly improved the catalytic efficiency in yeast. De novo dihydroniloticin production using the novel AiCYP71CD2 was achieved by constructing the S. cerevisiae DI-3 strain, and the titer could reach up to 405 mg/L in a fermentor, which was an alternative source for dihydroniloticin.
Collapse
Affiliation(s)
- Kangxin Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
- College of Food Science and Biology, Hebei University of Science & Technology, Shijiazhuang 050000, P.R. China
| | - Wantong Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
- College of Food Science and Biology, Hebei University of Science & Technology, Shijiazhuang 050000, P.R. China
| | - Xiaojiao Wang
- Exchange, Development & Service Center for Science & Technology Talents, The Ministry of Science and Technology (MoST), 54 Sanlihe Road, Xicheng District, Beijing 100045, P.R.China
| | - Jiarou Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
| | - Yan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
| | - Jia Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301607, P.R. China
| | - Xiaoli Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
- Department of Food Science, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, PR China
| | - Qiang Xue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P.R. China
| |
Collapse
|
37
|
Ju H, Zhang C, He S, Nan W, Lu W. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Appl Microbiol Biotechnol 2022; 106:1933-1944. [PMID: 35235006 DOI: 10.1007/s00253-022-11819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/27/2022]
Abstract
Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 μg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 μg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shifan He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Weihua Nan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| |
Collapse
|
38
|
Alkhadrawi AM, Wang Y, Li C. In-silico screening of potential target transporters for glycyrrhetinic acid (GA) via deep learning prediction of drug-target interactions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Liu J, Tian M, Wang Z, Xiao F, Huang X, Shan Y. Production of hesperetin from naringenin in an engineered Escherichia coli consortium. J Biotechnol 2022; 347:67-76. [DOI: 10.1016/j.jbiotec.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
40
|
Identification of a novel cytochrome P450 17A2 enzyme catalyzing the C17α hydroxylation of progesterone and its application in engineered Pichia pastoris. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Carruthers DN, Lee TS. Diversifying Isoprenoid Platforms via Atypical Carbon Substrates and Non-model Microorganisms. Front Microbiol 2021; 12:791089. [PMID: 34925299 PMCID: PMC8677530 DOI: 10.3389/fmicb.2021.791089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Isoprenoid compounds are biologically ubiquitous, and their characteristic modularity has afforded products ranging from pharmaceuticals to biofuels. Isoprenoid production has been largely successful in Escherichia coli and Saccharomyces cerevisiae with metabolic engineering of the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways coupled with the expression of heterologous terpene synthases. Yet conventional microbial chassis pose several major obstacles to successful commercialization including the affordability of sugar substrates at scale, precursor flux limitations, and intermediate feedback-inhibition. Now, recent studies have challenged typical isoprenoid paradigms by expanding the boundaries of terpene biosynthesis and using non-model organisms including those capable of metabolizing atypical C1 substrates. Conversely, investigations of non-model organisms have historically informed optimization in conventional microbes by tuning heterologous gene expression. Here, we review advances in isoprenoid biosynthesis with specific focus on the synergy between model and non-model organisms that may elevate the commercial viability of isoprenoid platforms by addressing the dichotomy between high titer production and inexpensive substrates.
Collapse
Affiliation(s)
- David N Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
42
|
Huang Y, Jiang D, Ren G, Yin Y, Sun Y, Liu T, Liu C. De Novo Production of Glycyrrhetic Acid 3-O-mono- β-D-glucuronide in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2021; 9:709120. [PMID: 34888299 PMCID: PMC8650490 DOI: 10.3389/fbioe.2021.709120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) is a rare compound in licorice and its short supply limits the wide applications in the pharmaceutical, cosmetic, and food industries. In this study, de novo biosynthesis of GAMG was achieved in engineered Saccharomyces cerevisiae strains based on the CRISPR/Cas9 genome editing technology. The introduction of GAMG biosynthetic pathway resulted in the construction of a GAMG-producing yeast strain for the first time. Through optimizing the biosynthetic pathway, improving the folding and catalysis microenvironment for cytochrome P450 enzymes (CYPs), enhancing the supply of UDP-glucuronic acid (UDP-GlcA), preventing product degradation, and optimizing the fermentation conditions, the production of GAMG was increased from 0.02 μg/L to 92.00 μg/L in shake flasks (4,200-fold), and the conversion rate of glycyrrhetic acid (GA) to GAMG was higher than 56%. The engineered yeast strains provide an alternative approach for the production of glycosylated triterpenoids.
Collapse
Affiliation(s)
- Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chunsheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Liu T, Huang Y, Jiang L, Dong C, Gou Y, Lian J. Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Commun Biol 2021; 4:1089. [PMID: 34531512 PMCID: PMC8446080 DOI: 10.1038/s42003-021-02617-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Vindoline is a plant derived monoterpene indole alkaloid (MIA) with potential therapeutic applications and more importantly serves as the precursor to vinblastine and vincristine. To obtain a yeast strain for high yield production of vindoline from tabersonine, multiple metabolic engineering strategies were employed via the CRISPR/Cas9 mediated multiplex genome integration technology in the present study. Through increasing and tuning the copy numbers of the pathway genes, pairing cytochrome P450 enzymes (CYPs) with appropriate cytochrome P450 reductases (CPRs), engineering the microenvironment for functional expression of CYPs, enhancing cofactor supply, and optimizing fermentation conditions, the production of vindoline was increased to a final titer as high as ∼16.5 mg/L, which is more than 3,800,000-fold higher than the parent strain and the highest tabersonine to vindoline conversion yield ever reported. This work represents a key step of the engineering efforts to establish de novo biosynthetic pathways for vindoline, vinblastine, and vincristine.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
45
|
Qiu Y, Diao H, Zheng Y, Wu R. Multiscale Simulations on the Catalytic Plasticity of CYP76AH1. Front Chem 2021; 9:689731. [PMID: 34150721 PMCID: PMC8207200 DOI: 10.3389/fchem.2021.689731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The catalytic promiscuity and fidelity of cytochrome P450 enzymes are widespread in the skeletal modification of terpenoid natural products and have attracted much attention. CYP76AH1 is involved in key modification reactions in the biosynthetic pathway of tanshinone, a well-known medicinal norditerpenoid. In this work, classical molecular dynamic simulations, metadynamics, and DFT calculations were performed to investigate the protein conformational dynamics, ligand binding poses, and catalytic reaction mechanism in wide-type and mutant CYP76AH1. Our results not only reveal a plausible enzymatic mechanism for mutant CYP76AH1 leading to various products but also provide valuable guidance for rational protein engineering of the CYP76 family.
Collapse
Affiliation(s)
- Yufan Qiu
- Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongjuan Diao
- Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Zheng
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruibo Wu
- Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Chen Y, Hu B, Xing J, Li C. Endophytes: the novel sources for plant terpenoid biosynthesis. Appl Microbiol Biotechnol 2021; 105:4501-4513. [PMID: 34047817 PMCID: PMC8161352 DOI: 10.1007/s00253-021-11350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future. The four main research interests on endophytes for terpenoid production. A: Isolation of terpenoid-producing endophytes; B: The heterologous expression of endophyte-derived terpenoid synthetic genes; C: Endophytes promoting their hosts' terpenoid production. The blue dashed arrows indicate signal transduction; D: Biotransformation of terpenoids by endophytes or their enzymes. Key points• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.
Collapse
Affiliation(s)
- Yachao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Ju H, Zhang C, Lu W. Progress in heterologous biosynthesis of forskolin. J Ind Microbiol Biotechnol 2021; 48:kuab009. [PMID: 33928347 PMCID: PMC9113163 DOI: 10.1093/jimb/kuab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022]
Abstract
Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihypertensive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic biological technology, analyzes the current challenges, and proposes corresponding strategies.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R.
China
- Key Laboratory of System Bioengineering (Tianjin University),
Ministry of Education, Tianjin 300350, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of
Chemical Science and Engineering (Tianjin), Tianjin
300350, P. R. China
| |
Collapse
|
48
|
Zhou A, Zhou K, Li Y. Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102005. [PMID: 33647811 PMCID: PMC8435529 DOI: 10.1016/j.pbi.2021.102005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 05/08/2023]
Abstract
Plant natural products (NPs) are of pharmaceutical and agricultural significance, yet the low abundance is largely impeding the broad investigation and utilization. Microbial bioproduction is a promising alternative sourcing to plant NPs. Cytochrome P450s (CYPs) play an essential role in plant secondary metabolism, and functional reconstitution of plant CYPs in the microbial system is one of the major challenges in establishing efficient microbial plant NP bioproduction. In this review, we briefly summarized the recent progress in rational engineering strategies for enhanced activity of plant CYPs in Escherichia coli and Saccharomyces cerevisiae, two commonly used microbial hosts. We believe that in-depth foundational investigations on the native microenvironment of plant CYPs are necessary to adapt the microbial systems for more efficient functional reconstitution of plant CYPs.
Collapse
Affiliation(s)
- Anqi Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
49
|
Xue H, Sun W, Wang Y, Li C. Refining Metabolic Mass Transfer for Efficient Biosynthesis of Plant Natural Products in Yeast. Front Bioeng Biotechnol 2021; 9:633741. [PMID: 33748083 PMCID: PMC7973218 DOI: 10.3389/fbioe.2021.633741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Plant natural products are important secondary metabolites with several special properties and pharmacological activities, which are widely used in pharmaceutical, food, perfume, cosmetic, and other fields. However, the production of these compounds mainly relies on phytoextraction from natural plants. Because of the low contents in plants, phytoextraction has disadvantages of low production efficiency and severe environmental and ecological problems, restricting its wide applications. Therefore, microbial cell factory, especially yeast cell factory, has become an alternative technology platform for heterologous synthesis of plant natural products. Many approaches and strategies have been developed to construct and engineer the yeast cells for efficient production of plant natural products. Meanwhile, metabolic mass transfer has been proven an important factor to improve the heterologous production. Mass transfer across plasma membrane (trans-plasma membrane mass transfer) and mass transfer within the cell (intracellular mass transfer) are two major forms of metabolic mass transfer in yeast, which can be modified and optimized to improve the production efficiency, reduce the consumption of intermediate, and eliminate the feedback inhibition. This review summarized different strategies of refining metabolic mass transfer process to enhance the production efficiency of yeast cell factory (Figure 1), providing approaches for further study on the synthesis of plant natural products in microbial cell factory.
Collapse
Affiliation(s)
- Haijie Xue
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Rozen S, Vints I, Lerner A, Hod O, Brothers EN, Moncho S. The Chemistry of Short-Lived α-Fluorocarbocations. J Org Chem 2021; 86:3882-3889. [PMID: 33615796 PMCID: PMC8023664 DOI: 10.1021/acs.joc.0c02731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The present study of the chemistry
of short-lived α-fluorocarbocations
reveals that even inactive methyl carbons can serve as nucleophiles,
attacking a cationic center. This, in turn, facilitates the synthesis
of a cyclopropane ring in certain triterpene backbones. We report
the synthesis of compounds similar to 2, containing a
bridgehead cyclopropane, and compounds of type 3 with
an 11 membered bicyclic ring consisting of two bridgehead double bonds
(anti-Bredt) within a triterpene skeleton. The synthesis involves
three unconventional chemical processes: (a) a methyl group serving
as a nucleophile; (b) the unexpected and unprecedented synthesis of
a strained system in the absence of an external neighboring trigger;
and (c) the formation of an 11-membered bicyclic diene ring within
a triterpenoid skeleton. An α-fluorocarbocation mechanism is
proposed and supported by density functional theory calculations.
Collapse
Affiliation(s)
- Shlomo Rozen
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inna Vints
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ana Lerner
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.,Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Edward N Brothers
- Science Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Salvador Moncho
- Science Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| |
Collapse
|