1
|
Yue W, Zhou R, Wang Z, Han X, Zhu J. Co(III)-Catalyzed, N-Amino-Directed C-H Coupling with 4-Hydroxy-2-alkynoates for Indole Synthesis. Org Lett 2025; 27:3188-3192. [PMID: 40116233 DOI: 10.1021/acs.orglett.5c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Conventional synthetic organic chemistry typically relies on site-centered reactivity for the reaction discovery. Herein, skeleton-chaperoned reactivity is exploited for reaction development, with the skeleton utilized as a structural scaffold for assisting functional group activation into a proper reactivity sequence. A Co(III) catalytic method has been developed for N-amino-directed C-H coupling with 4-hydroxy-2-alkynoates, allowing convenient access to 2-alkene-3-carboxylic acid type indole derivatives. This reaction features phenyl/pyrrole/lactone skeleton-chaperone reactivity and simultaneous conversion of five functional groups.
Collapse
Affiliation(s)
- Wenjie Yue
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Renpeng Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Zhixin Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuanzhen Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Tao X, Lee W, Xu Z, Shu H, Wang Q, Ni S, Pan Y, Hong S, Wang Y. Reductive deaminative cross-coupling of alkyl bistriflimides enabled by electrocatalysis. SCIENCE ADVANCES 2024; 10:eads5410. [PMID: 39576851 PMCID: PMC11584002 DOI: 10.1126/sciadv.ads5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
We present a versatile nickel-electrocatalytic deaminative cross-coupling platform for the efficient construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds from readily available alkyl bistriflimides. This methodology involves the assembly of two leaving groups on alkyl amines to form alkyl bistriflimides, followed by their effective coupling with a wide range of alkyl halides, alkyl pseudohalides, aryl halides, and alkenyl halides under electrochemical reductive conditions. Moreover, the successful application of electrochemical reductive relay cross-coupling and transition metal-free cross-electrophile coupling further demonstrates the versatility of alkyl bistriflimides as valuable building blocks in organic synthesis. Combined control experiments and density functional theory calculations provide insights into the reaction pathway and the crucial role of iodide in the catalytic process.
Collapse
Affiliation(s)
- Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wooseok Lee
- Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zhimin Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Shu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sungwoo Hong
- Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Zuo H, Qu ZW, Kemper S, Klare HFT, Grimme S, Oestreich M. Silylium-Ion-Promoted (3 + 2) Annulation of Allenylsilanes with Internal Alkynes Involving a Pentadienyl-to-Allyl Cation Electrocyclization. J Am Chem Soc 2024; 146:31377-31383. [PMID: 39503618 PMCID: PMC11583337 DOI: 10.1021/jacs.4c09885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
A (3 + 2) annulation of allenyl- and, after rapid isomerization, propargylsilanes with internal 1-aryl-1-alkynes to form 4-methylenecyclopentenes is reported. The reaction is initiated by a silylium ion, and the catalytic cycle is subsequently maintained by the self-regeneration of the silylium-ion promoter. Unlike the well-established Danheiser annulation, where the allenylsilane serves as a three-carbon synthon, the present transformation engages the allenylsilane as a two-carbon synthon. Experimental observations and DFT calculations unveil a reaction cascade involving various β-silicon-stabilized carbocations, where a pentadienyl-to-allyl cation electrocyclization is the key step.
Collapse
Affiliation(s)
- Honghua Zuo
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Zheng-Wang Qu
- Mulliken
Center for Theoretical Chemistry, Clausius-Institut für Physikalische
und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität
Bonn, Beringstraße
4, 53115 Bonn, Germany
| | - Sebastian Kemper
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius-Institut für Physikalische
und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität
Bonn, Beringstraße
4, 53115 Bonn, Germany
| | - Martin Oestreich
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
4
|
Wan Y, Lu Y, Ren Y, Xu H, Zhao G, Zheng C. Pd-Catalyzed Hydroboration of Vinylarenes with B 2pin 2. J Org Chem 2024; 89:9056-9062. [PMID: 38857440 DOI: 10.1021/acs.joc.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A palladium(II)-catalyzed Markovnikov hydroboration of aryl alkenes with readily available bis(pinacolato)diboron (B2pin2) is reported. The reaction proceeded with low catalyst loading (0.5 mol %) in the absence of N- or P-containing ligands, affording the products in up to 90% yield. Trifluoracetic acid serves as the hydrogen source, enabling the synthesis of benzylic boronic esters under mild ambient conditions.
Collapse
Affiliation(s)
- Yunhui Wan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Yingpeng Lu
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yi Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Gang Zhao
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
- Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
5
|
Latha AT, P CAS. Air-Stable Iron(III) Salen Complexes for Selective Hydroboration of Ketones and Unactivated Imines without Base Activation. J Org Chem 2024; 89:8376-8384. [PMID: 38847608 DOI: 10.1021/acs.joc.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Herein, we designed and synthesized a series of air-stable, cost-effective, and readily synthesizable iron(III) salen complexes (Fe-1 and Fe-2) for facilitating the selective hydroboration of ketones and unactivated imines with pinacolborane in the absence of any additive. These catalyst systems exhibited good yields, chemoselectivity, high atom economy, and a broad substrate scope under mild reaction conditions with a minimal catalyst loading of 0.2 mol %. The catalytic efficiency of Fe-1 has been demonstrated through the hydroboration of diverse aromatic, aliphatic, and heterocyclic ketones and imines with a turnover number of up to 1000, highlighting its broad substrate scope. Ketones are chemoselectively hydroborated over other functional groups such as imines, alkenes, esters, nitriles, acids, and alcohols. Besides, the synthetic utility of this strategy has also been showcased by the construction of a natural chiral monoterpenoid carveol. This protocol can be readily scaled up for gram-scale synthesis of alcohols, which underscores the potential industrial applicability of our catalyst system in the synthesis of secondary alcohols on a larger scale.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India
| | - Chinna Ayya Swamy P
- Main Group Organometallics Optoelectronic Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut 673601, India
| |
Collapse
|
6
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
7
|
Phang YL, Jin JK, Zhang FL, Wang YF. Radical hydroboration for the synthesis of organoboron compounds. Chem Commun (Camb) 2024; 60:4275-4289. [PMID: 38566567 DOI: 10.1039/d4cc00398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.
Collapse
Affiliation(s)
- Yee Lin Phang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ji-Kang Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Feng-Lian Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yi-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
8
|
Sokolnicki T, Alharbi MM, van Ingen Y, Rahim S, Pramanik M, Roldan A, Walkowiak J, Melen RL. Reactivity of a series of triaryl borates, B(OAr x) 3, in hydroboration catalysis. Dalton Trans 2023; 52:16118-16122. [PMID: 37901910 DOI: 10.1039/d3dt03333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In this paper, we compare the reactivity of a series of triaryl borates B(OArx)3 as catalysts for the hydroboration of alkenes and alkynes. It was observed that commercially available B(OPh)3 performed the poorest, whereas catalysts with o-F atoms appeared to perform much better.
Collapse
Affiliation(s)
- Tomasz Sokolnicki
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
- Adam Mickiewicz University, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Mashael M Alharbi
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Department of Chemistry, King Faisal University, College of Science, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Yara van Ingen
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Shahnaz Rahim
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Milan Pramanik
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Alberto Roldan
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Jędrzej Walkowiak
- Adam Mickiewicz University, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| |
Collapse
|
9
|
Tian X, Zhang YK, You YX, Han JR, Cheng QS, Fan SM, Chen DD, Wang TT, Liu S, Su W. LiO tBu-Promoted trans-Stereoselective and β-Regioselective Hydroboration of Propargyl Alcohols. Org Lett 2023; 25:6401-6406. [PMID: 37603790 DOI: 10.1021/acs.orglett.3c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A convenient and efficient trans-stereoselective and β-regioselective hydroboration of propargyl alcohols was achieved simply with LiOtBu as the base and (Bpin)2 as the boron reagent in dimethyl sulfoxide at room temperature. Both terminal and internal propargyl alcohols with diverse structures and functional groups underwent the transformation smoothly to produce β-Bpin-substituted (E)-allylic alcohols, of which the synthetic potentials were demonstrated by the downstream conversions of boronate, alkenyl, and hydroxyl groups.
Collapse
Affiliation(s)
- Xia Tian
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Yu-Kun Zhang
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Ya-Xin You
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Jian-Rong Han
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Qiu-Shi Cheng
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Shi-Ming Fan
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Di-Di Chen
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Ting-Ting Wang
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Shouxin Liu
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| | - Wei Su
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang, Hebei 050022, People's Republic of China
| |
Collapse
|
10
|
Nunes MP, Jawale DV, Delolo FG, Araujo MH, Gravel E, Doris E, da Silva Júnior EN. Solvent-free hydroboration of alkenes and alkynes catalyzed by rhodium-ruthenium nanoparticles on carbon nanotubes. Chem Commun (Camb) 2023; 59:2763-2766. [PMID: 36786050 DOI: 10.1039/d2cc06864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A heterogeneous catalyst consisting of bimetallic rhodium-ruthenium particles immobilized on carbon nanotubes was used in the hydroboration reaction and proved highly effective for a variety of alkenes and alkynes. The reactions were carried out with low catalytic loadings (0.04 mol%), under solvent-free conditions, and at room temperature. In addition, to demonstrate its recyclability, the catalyst was recovered by a simple centrifugation process and reused over 5 consecutive cycles without losing any activity.
Collapse
Affiliation(s)
- Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Dhanaji V Jawale
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Fábio G Delolo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
11
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
12
|
Narro AL, Arman HD, Tonzetich ZJ. Insertion chemistry of iron(II) boryl complexes. Dalton Trans 2022; 51:15475-15483. [PMID: 36156616 DOI: 10.1039/d2dt02879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron(II) boryl complexes of the pyrrole-based pincer ligand, CyPNP (CyPNP = anion of 2,5-bis(dicyclohexylphophinomethyl)pyrrole) have been synthesized and their insertion reactivity interrogated. Compounds of the type [Fe(BE)(CyPNP)] (E = pinacholato or catecholato) can be generated by treatment of the precursors, [Fe(OPh)(py)(CyPNP)] or [FeMe(CyPNP)], with B2E2. The boryl complexes are meta stable, but permit additional reactivity with several unsaturated substrates. Reaction with alkynes, RCCR', leads to rapid insertion into the Fe-B bond to generate stable vinyl boronate complexes of the type [Fe(C{R}C{R'}BE)(CyPNP)] (R, R' = H, Me, Ph, -CCPh). Each of the compounds is five-coordinate in the solid state by virtue of coordination of one of the oxygen atoms of the boronate ester. Similar reaction with nitriles, RCN (R = Ph, Me), results in facile de-cyanation to produce the correpsonding hydrocarbon complexes, [FeR(CyPNP)]. In the case of the bulky nitrile 1-AdCN, the insertion intermediate, [Fe(C{Ad}NBpin)(CyPNP)], has been isolated and structurally characterized. Treatment of the boryl complexes with styrene derivatives results in initial insertion to give an alkylboronate complex followed by either β-H elimination or protonation to give the products of C-H borylation and hydroboration, respectively.
Collapse
Affiliation(s)
- Ana L Narro
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - Zachary J Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| |
Collapse
|
13
|
Yang PF, Shu W. Orthogonal Access to α‐/β‐Branched/Linear Aliphatic Amines by Catalyst‐Tuned Regiodivergent Hydroalkylations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng-Fei Yang
- Southern University of Science and Technology Chemistry CHINA
| | - Wei Shu
- Southern University of Science and Technology Chemistry Room 5-505, 1088 Xueyuan Road 518055 Shenzhen CHINA
| |
Collapse
|
14
|
Yang PF, Shu W. Orthogonal Access to α-/β-Branched/Linear Aliphatic Amines by Catalyst-Tuned Regiodivergent Hydroalkylations. Angew Chem Int Ed Engl 2022; 61:e202208018. [PMID: 35726965 DOI: 10.1002/anie.202208018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Linear, α-branched, and β-branched aliphatic amines are widespread in pharmaceuticals, agrochemicals, and fine chemicals. Thus, the development of direct and efficient methods to these structures in a tunable manner is highly desirable yet challenging. Herein, a catalyst-controlled synthesis of α-branched, β-branched and linear aliphatic amines from Ni/Co-catalyzed regio- and site-selective hydroalkylations of alkenyl amines with alkyl halides is developed. This catalytic protocol features the reliable prediction and control of the coupling position of alkylation to provide orthogonal access to α-branched, β-branched and linear alkyl amines from identical starting materials. This platform unlocks orthogonal reactivity and selectivity of nickel hydride and cobalt hydride chemistry to catalytically repurpose three types of alkyl amines under mild conditions.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
15
|
Shi Y, Wang Y, Huang Z, Zhang F, Shao Y. t BuOLi-Promoted Hydroboration of Esters and Epoxides. ACS OMEGA 2022; 7:18876-18886. [PMID: 35694491 PMCID: PMC9178618 DOI: 10.1021/acsomega.2c01866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Commercially available and inexpensive lithium tert-butoxide ( t BuOLi) acts as a good precatalyst for the hydroboration of esters, lactones, and epoxides using pinacolborane as a borylation agent. Functional groups such as cyano-, nitro-, amino-, vinyl, and alkynyl are unaffected under the presented hydroboration process, representing high chemoselectivity. This transformation has also been effectively applied to the synthesis of key intermediates of Erlotinib and Cinacalcet. Preliminary investigations of the mechanism show that the hydroboration proceeds through the in situ formed BH3 species.
Collapse
Affiliation(s)
- Yinyin Shi
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yue Wang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhefan Huang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| | - Yinlin Shao
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
16
|
Liu J, Wu C, Hu T, Yang W, Xie Y, Shi Y, Liu Q, Shao Y, Zhang F. Hexamethyldisilazane Lithium (LiHMDS)-Promoted Hydroboration of Alkynes and Alkenes with Pinacolborane. J Org Chem 2022; 87:3442-3452. [PMID: 35143184 DOI: 10.1021/acs.joc.1c03012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lithium-promoted hydroboration of alkynes and alkenes using commercially available hexamethyldisilazane lithium as a precatalyst and HBpin as a hydride source has been developed. This method will be appealing for organic synthesis because of its remarkable substrate tolerance and good yields. Mechanistic studies revealed that the hydroboration proceeds through the in situ-formed BH3 species, which acts to drive the turnover of the hydroboration of alkynes and alkenes.
Collapse
Affiliation(s)
- Jichao Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Caiyan Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tinghui Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yaoyao Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinyin Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qianrui Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
17
|
Dhara S, Ghosh S, Das AR. An iron-catalyzed domino reaction of donor-acceptor cyclopropanes: a diastereoselective approach towards diversely functionalized pyrrolo-quinazolines. Org Biomol Chem 2022; 20:1415-1424. [PMID: 35014658 DOI: 10.1039/d1ob02215f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An expeditious synthetic route to access functionalized pyrrolo[2,1-b]quinazoline scaffolds has been achieved via domino ring opening cyclization (DROC) reactions of donor-acceptor (D-A) cyclopropanes and 2-amino(methyl)aniline derivatives. This novel iron catalyzed transformation is amenable to a wide range of substrates. Three new C-N bonds and two rings were sequentially constructed in this divergent one-pot process. The advantages of simple operation, high yields and general applicability make this procedure highly attractive and practical too.
Collapse
Affiliation(s)
- Samiran Dhara
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| | - Subhadeep Ghosh
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| | - Asish R Das
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
18
|
Su W, Wang TT, Tian X, Han JR, Zhen XL, Fan SM, You YX, Zhang YK, Qiao RX, Cheng Q, Liu S. Stereoselective Dehydroxyboration of Allylic Alcohols to Access ( E)-Allylboronates by a Combination of C-OH Cleavage and Boron Transfer under Iron Catalysis. Org Lett 2021; 23:9094-9099. [PMID: 34780200 DOI: 10.1021/acs.orglett.1c03359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron-catalyzed direct SN2' dehydroxyboration of allylic alcohols has been developed to access (E)-stereoselective allylboronates. Allylic alcohols with diverse structures and functional groups, especially derived from natural products, underwent smooth transformation. The six-membered ring transition state formed by allylic alcohols and iron-boron intermediate was indicated to be the key component involved in transfer of the boron group, activation of the C-OH bond, and control of the stereoselectivity.
Collapse
Affiliation(s)
- Wei Su
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Ting-Ting Wang
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Xia Tian
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Jian-Rong Han
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Xiao-Li Zhen
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Shi-Ming Fan
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Ya-Xin You
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Yu-Kun Zhang
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Rui-Xiao Qiao
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Qiushi Cheng
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050022, China.,Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Shouxin Liu
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang 050022, China
| |
Collapse
|
19
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. Angew Chem Int Ed Engl 2021; 60:24488-24492. [PMID: 34435424 PMCID: PMC8596825 DOI: 10.1002/anie.202110736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/21/2022]
Abstract
A MnI‐catalyzed hydroboration of terminal alkenes and a 1,2‐diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti‐Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans‐1,2‐selectivity. The most active pre‐catalyst is bench‐stable alkyl bisphosphine MnI complex fac‐[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn–alkyl bond to yield an acyl intermediate, which undergoes B−H bond cleavage of HBPin (for alkenes) and rapid C−H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Daniel Zobernig
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060, Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| |
Collapse
|
21
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:24693-24697. [PMID: 38505543 PMCID: PMC10947181 DOI: 10.1002/ange.202110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/21/2022]
Abstract
A MnI-catalyzed hydroboration of terminal alkenes and a 1,2-diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti-Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans-1,2-selectivity. The most active pre-catalyst is bench-stable alkyl bisphosphine MnI complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate, which undergoes B-H bond cleavage of HBPin (for alkenes) and rapid C-H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Daniel Zobernig
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Berthold Stöger
- X-Ray CenterVienna University of TechnologyGetreidemarkt 9A-1060WienAustria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv Rovisco Pais1049-001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| |
Collapse
|
22
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
23
|
Hajiloo Shayegan M, Li ZY, Cui X. Ligand-Controlled Regiodivergence for Catalytic Stereoselective Semireduction of Allenamides. Chemistry 2021; 28:e202103402. [PMID: 34693580 DOI: 10.1002/chem.202103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Ligand-controlled regiodivergence has been developed for catalytic semireduction of allenamides with excellent chemo- and stereocontrol. This system also provides an example of catalytic regiodivergent semireduction of allenes for the first time. The divergence of the semireduction is enabled by ligand switch with the same palladium pre-catalyst under operationally simple and mild conditions. Monodentate ligand XPhos exclusively promotes selective 1,2-semireduction to afford allylic amides, while bidentate ligand BINAP completely switched the regioselectivity to 2,3-semireduction, producing (E)-enamide derivatives.
Collapse
Affiliation(s)
| | - Zhong-Yuan Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
24
|
Zhang B, Xu X, Tao L, Lin Z, Zhao W. Rhodium-Catalyzed Regiodivergent Synthesis of Alkylboronates via Deoxygenative Hydroboration of Aryl Ketones: Mechanism and Origin of Selectivities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, 999077 Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Lei Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, 999077 Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
25
|
Li C, Song S, Li Y, Xu C, Luo Q, Guo Y, Wang X. Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst. Nat Commun 2021; 12:3813. [PMID: 34155208 PMCID: PMC8217234 DOI: 10.1038/s41467-021-24117-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Homogeneous earth-abundant metal catalysis based on well-defined molecular complexes has achieved great advance in synthetic methodologies. However, sophisticated ligand, hazardous activator and multistep synthesis starting from base metal salts are generally required for the generation of active molecular catalysts, which may hinder their broad application in large scale organic synthesis. Therefore, the development of metal cluster catalysts formed in situ from simple earth-abundant metal salts is of importance for the practical utilization of base metal resource, yet it is still in its infancy. Herein, a mixture of catalytic amounts of cobalt (II) iodide and potassium tert-butoxide is discovered to be highly active for selective hydroboration of vinylarenes and dihydroboration of nitriles, affording a good yield of diversified hydroboration products that without isolation can readily undergo further one pot transformations. It should be highlighted that the alkoxide-pinacolborane combination acts as an efficient activation strategy to activate cobalt (II) iodide for the generation of metastable heterotopic cobalt catalysts in situ, which is proposed to be catalytically active species. Homogeneous earth-abundant metal catalysis based on well-defined metal complexes is of interest for organic synthesis, but typically employs expensive catalysts, air sensitive or synthetically challenging chemicals. Here, the authors report an efficient and regio-selective catalytic system for hydroboration of vinylarenes and organic nitriles with HBPin, using commercially available CoI2 and KOtBu under ligand-free conditions.
Collapse
Affiliation(s)
- Chuhan Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Song
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yuling Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chang Xu
- Department of Chemistry, Anhui University, Hefei, Anhui, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
26
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|