1
|
Li S, Cui CR, Huang N, Wang BQ, Feng C, Shi Y, Xiang SK. Palladium-Catalyzed Annulation Reaction of Bay-Diiodinated Arenes with o-Chloroaromatic Carboxylic Acids to Access Polycyclic Aromatic Compounds. J Org Chem 2024; 89:15665-15677. [PMID: 39396198 DOI: 10.1021/acs.joc.4c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A palladium-catalyzed annulation reaction of bay-diiodinated arenes with o-chloroaromatic carboxylic acids was established. This approach enables the synthesis of a variety of polycyclic aromatic compounds, especially polyalkoxy-substituted polycyclic aromatic compounds, frequently found in discotic liquid-crystalline materials. The investigations indicate that the product 2,3,8,9,12,13-hexakis(hexyloxy)-5-azadibenzo[fg,op]tetracene demonstrates favorable room-temperature liquid-crystalline properties.
Collapse
Affiliation(s)
- Song Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Cheng-Rong Cui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Na Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yingbo Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| |
Collapse
|
2
|
Zhao BW, Yang L, Long CY, Li HL, He YT, Wang XQ. Ni-Catalyzed Protecting Group Free Diphenic Acid Analog Synthesis. Org Lett 2023; 25:4700-4704. [PMID: 37314939 DOI: 10.1021/acs.orglett.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Severe side effects and drug resistance are major drawbacks of Pt-based chemotherapy in clinical practice, leading to the search for new Pt-based drugs through the tuning of coordination ligands. Therefore, seeking appropriate ligands has attracted significant interest in this area. In this study, we report a Ni-catalyzed coupling strategy for the divergent synthesis of diphenic acid derivatives and the application of these newly prepared acids in Pt(II) agent synthesis.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Liu Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Han-Lu Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yu-Ting He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xue-Qiang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), the Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
3
|
Duan A, Xiao F, Lan Y, Niu L. Mechanistic views and computational studies on transition-metal-catalyzed reductive coupling reactions. Chem Soc Rev 2022; 51:9986-10015. [PMID: 36374254 DOI: 10.1039/d2cs00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transition-metal-catalyzed reductive coupling reactions have been considered as a powerful tool to convert two electrophiles into value-added products. Numerous related reports have shown the fascinating potential. Mechanistic studies, especially theoretical studies, can provide important implications for the design of novel reductive coupling reactions. In this review, we summarize the representative advancements in theoretical studies on transition-metal-catalyzed reductive coupling reactions and systematically elaborate the mechanisms for the key steps of reductive coupling reactions. The activation modes of electrophiles and the deep insights of selectivity generation are mechanistically discussed. In addition, the mechanism of the reduction of high-oxidation-state catalysts and further construction of new chemical bonds are also described in detail.
Collapse
Affiliation(s)
- Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Fengjiao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China. .,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Linbin Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Long CY, Chen H, Ma C, Zhao BW, Li SH, Cui Y, Yang X, Ni SF, Wang XQ. Highly Chemoselective Ni-Catalyzed Protecting-Group-Free 2,2'-Biphenol Synthesis and Mechanistic Insights. Org Lett 2022; 24:4155-4159. [PMID: 35658460 DOI: 10.1021/acs.orglett.2c01367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utilization of readily available starting materials to produce useful molecules is often challenged by selectivity issues. In this study, a Ni-catalyzed protecting-group-free C-C coupling protocol is described for the efficient synthesis of 2,2'-biphenol derivatives. Its remarkable chemoselectivity control ability, wide substrate scope, and excellent functional group tolerance highlight this newly developed strategy. Detailed mechanistic studies have demonstrated that potassium tert-butoxide acts as a critical agent to prevent the occurrence of protonation events.
Collapse
Affiliation(s)
- Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hao Chen
- Hunan Gaoxin Material Co., Ltd., Huancheng North Road, Ziwu Industrial Park, Zixing 423400, China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Bo-Wei Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xinge Yang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Duan A, Yu Y, Wang F, Wang X, Wang D. Mechanism and Origin of Stereoselectivity of Ni-Catalyzed Cyclization/Carboxylation of Bromoalkynes with CO 2. J Org Chem 2022; 87:8342-8350. [PMID: 35500133 DOI: 10.1021/acs.joc.2c00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bromoalkynes play important roles in coupling reactions because they can show obvious stereoselectivity to form E- and Z-isomers when substituents are different. However, the origin of the stereoselectivity in the bromoalkynes reaction is still unclear. Density functional theory (DFT) calculations were performed to provide an in-depth study of the reaction mechanism, clarifying the mechanistic details of the main reaction and the origin of the stereoselectivity. By comparing the syn-insertion mechanism of alkynes and the radical pathway, it is indicated that the electrostatic effect caused by the different charge distributions of the reactants is the main reason that Ni(I) species are more prone to syn-insertion of alkynes than Ni(II) species. In addition, the lower reaction energy barrier in the radical pathway suggests that it is more advantageous in terms of kinetics. The bond between Ni(I) species and alkenylation products has two directions to generate products of different configurations, which are the direct stereoselectivity-determining stages. The distortion/interaction analysis shows that the distortion energy mainly affects the product configuration, and the steric hindrance is the main factor controlling the stereoselectivity.
Collapse
Affiliation(s)
- Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yali Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Fengqin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xueqiang Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Bao LY, Gao RW, Wang S, Li RH, Zhu B, Su ZM, Guan W. Theoretical study of Ni I-Ni III cycle mediated by heterogeneous zinc in C-N cross-coupling reaction. Phys Chem Chem Phys 2022; 24:7617-7623. [PMID: 35293419 DOI: 10.1039/d2cp00105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox/transition-metal dual catalysis could efficiently construct C-N bonds by a cross-coupling reaction. The limitations of low recovery, low utilization rate and high cost have hindered the application and development of low-cost and efficient transition metal catalytic cycles. The integration of heterogeneous metal and transition metal catalysis is an appealing alternative to realize the oxidation state modulation of active species. With the support of density functional theory (DFT) calculation, we have explored the mechanistic details of Ni-catalyzed C-N cross-coupling of aryl bromide and cyclic amine assisted by zinc powder. Zinc successfully regulates the oxidation state of NiII → NiI, thus achieving the NiI-NiIII-NiI catalytic cycle in the absence of light. In comparison, when the Ni(0) complex is employed as the initial catalyst, organic zinc reagents can still be involved in the transmetalation process to accelerate the cross-coupling reaction. We hope that such computational studies can provide theoretical reference for the design and development of low-cost and efficient catalytic systems for C-N cross-couplings.
Collapse
Affiliation(s)
- Lin-Yan Bao
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Rong-Wan Gao
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Shuang Wang
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Run-Han Li
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Bo Zhu
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Guan
- Faculty of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| |
Collapse
|
7
|
Medici F, Resta S, Puglisi A, Rossi S, Raimondi L, Benaglia M. Electrochemical Organic Synthesis of Electron-Rich Biaryl Scaffolds: An Update. Molecules 2021; 26:6968. [PMID: 34834060 PMCID: PMC8618477 DOI: 10.3390/molecules26226968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Biaryl scaffolds are widely spread in biologically important natural products, in numerous therapeutic agents, but they are also considered a privileged class of ligands and (organo)catalysts; therefore, the development of efficient alternative methodologies to prepare such compounds is always attracting much attention. The present review discusses the organic electrosynthesis of biaryls starting from phenols, anilines, naphthols, and naphthylamines. The most significant examples of the works reported in the last decade are presented and classified according to the single class of molecules: after the introduction, the first three sections relate to the reactions of phenols, naphthols, and anilines, respectively; the other two sections refer to cross-coupling and miscellaneous reactions.
Collapse
Affiliation(s)
- Fabrizio Medici
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (S.R.); (A.P.); (S.R.); (L.R.)
| | | | | | | | | | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (S.R.); (A.P.); (S.R.); (L.R.)
| |
Collapse
|
8
|
Fang MY, Chen LP, Huang L, Fang DM, Chen XZ, Wang BQ, Feng C, Xiang SK. Synthesis of Tribenzo[ b, d, f]azepines via Palladium-Catalyzed Annulation Reaction of 2-Iodobiphenyls with 2-Halogenoanilines. J Org Chem 2021; 86:9096-9106. [PMID: 34128663 DOI: 10.1021/acs.joc.1c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed annulation reaction of 2-iodobiphenyls with 2-halogenoanilines has been developed. A variety of 2-iodobiphenyls and 2-halogenoanilines can undergo this transformation. Diversified tribenzo[b,d,f]azepine derivatives can be synthesized in moderate to excellent yields according to this method.
Collapse
Affiliation(s)
- Mao-Ying Fang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Li-Ping Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Lin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Dong-Mei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xiao-Zhen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
9
|
Zuo Z, Kim RS, Watson DA. Synthesis of Axially Chiral 2,2'-Bisphosphobiarenes via a Nickel-Catalyzed Asymmetric Ullmann Coupling: General Access to Privileged Chiral Ligands without Optical Resolution. J Am Chem Soc 2021; 143:1328-1333. [PMID: 33439640 DOI: 10.1021/jacs.0c12843] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report an asymmetric homocoupling of ortho-(iodo)arylphosphine oxides and ortho-(iodo)arylphosphonates resulting in highly enantioenriched axially chiral bisphosphine oxides and bisphosphonates. These products are readily converted to enantioenriched biaryl bisphosphines without need for chiral auxiliaries or optical resolution. This provides a practical route for the development of previously uninvestigated atroposelective biaryl bisphosphine ligands. The conditions have also proven effective for asymmetric dimerization of other, non-phosphorus-containing aryl halides.
Collapse
Affiliation(s)
- Ziqing Zuo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Raphael S Kim
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|