1
|
Li H, Ajmal M, Wu X, Zhang S, Liu X, Huang ZF, Gao R, Pan L, Zhang X, Zou JJ. Enhancing the Activity and Stability of Pt Nanoparticles Supported on Multiscale Porous Antimony Tin Oxide for Oxygen Reduction Reaction. SMALL METHODS 2025:e2500232. [PMID: 40195801 DOI: 10.1002/smtd.202500232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Pt nanoparticles dispersed on carbon supports (Pt/C) are the benchmark oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells (PEMFCs). However, their widespread application is hindered by severe stability degradation under high potentials and acidic environments, primarily due to carbon support corrosion. To address this challenge, a multiscale template-assisted method is proposed, combined with ethylene glycol reduction, to fabricate Pt nanoparticles supported onto multiscale porous conductive antimony tin oxides (Pt/PT-SSO). Both theoretical and experimental approaches have shown that the strong interaction between Pt and support markedly accelerates electron transfer and optimizes the adsorption strength of key intermediates on the Pt surface. Furthermore, the unique multiscale porous structure of support not only provides an ideal platform for the uniform dispersion of Pt nanoparticles but also greatly enhances confinement effect, effectively preventing Pt aggregation. As a result, the Pt/PT-SSO exhibits superior ORR activity and durability compared to commercial Pt/C catalysts. Specifically, its mass activity at 0.9 V (vs RHE) reaches 0.617 A mgPt⁻¹, which is twice that of Pt/C, while maintaining outstanding stability over 50 h. Notably, PEMFCs utilizing Pt/PT-SSO achieve a high power density of 1.173 W cm⁻2 and retain 94.9% after 30,000 cycles of accelerated durability testing.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Muhammad Ajmal
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xinquan Wu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shishi Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiaokang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Ruijie Gao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, National Industry-Education Platform for Energy Storage, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Kodama K, Todoroki N. Progress in Experimental Methods Using Model Electrodes for the Development of Noble-Metal-Based Oxygen Electrocatalysts in Fuel Cells and Water Electrolyzers. SMALL METHODS 2025:e2401851. [PMID: 39888223 DOI: 10.1002/smtd.202401851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Hydrogen plays a key role in maximizing the benefits of renewable energy, and the widespread adoption of water electrolyzers and fuel cells, which convert the chemical energy of hydrogen and electrical energy into each other, is strongly desired. Electrocatalysts used in these devices, typically in the form of nanoparticles, are crucial components because they significantly affect cell performance, but their raw materials rely on limited resources. In catalyst research, electrochemical experimental studies using model catalysts, such as single-crystal electrodes, have provided valuable information on reaction and degradation mechanisms, as well as catalyst development strategies aimed at overcoming the trade-off between activity and durability, across spatial scales ranging from the atomic to the nanoscale. Traditionally, these experiments are conducted using well-defined, simple model surfaces like bare single-crystal electrodes in pure systems. However, in recent years, experimental methods using more complex interfaces-while still precisely controlling elemental distribution, microstructure, and modification patterns-have been established. This paper reviews the history of those studies focusing on noble-metal-based electrocatalysts for oxygen reduction reactions and oxygen evolution reactions, which account for the majority of efficiency losses in fuel cells and water electrolyzers, respectively. Furthermore, potential future research themes in experimental studies using model electrodes are identified.
Collapse
Affiliation(s)
- Kensaku Kodama
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192, Japan
| | | |
Collapse
|
3
|
Zhang B, Ma P, Wang R, Cao H, Bao J. A Janus Platinum/Tin Oxide Heterostructure for Durable Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405234. [PMID: 39358963 DOI: 10.1002/smll.202405234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Designing efficient and durable electrocatalysts for oxygen reduction reaction (ORR) is essential for proton exchange membrane fuel cells (PEMFCs). Platinum-based catalysts are considered efficient ORR catalysts due to their high activity. However, the degradation of Pt species leads to poor durability of catalysts, limiting their applications in PEMFCs. Herein, a Janus heterostructure is designed for high durability ORR in acidic media. The Janus heterostructure composes of crystalline platinum and cassiterite tin oxide nanoparticles with carbon support (J-Pt@SnO2/C). Based on the synchrotron fine structure analysis and electrochemical investigation, the crystalline reconstruction and charge redistribution at the interface of Janus structure are revealed. The tightly coupled interface could optimize the valance states of Pt and the adsorption/desorption of oxygenated intermediates. As a result, the J-Pt@SnO2/C catalyst possesses distinguishing long-term stability during the accelerated durability test without obvious degradation after 40 000 cycles and keeps the majority of activity after 70 000 cycles. Meanwhile, the catalyst exhibits outstanding activity with half-wave potential at 0.905 V and a mass activity of 0.355 A mgPt -1 (2.7 times higher than Pt/C). The approach of the Janus catalyst paves an avenue for designing highly efficient and stable Pt-based ORR catalyst in the future implementation.
Collapse
Affiliation(s)
- Boyan Zhang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Heng Cao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Hirano T, Tsuboi T, Ho TTN, Tanabe E, Takano A, Kataoka M, Ogi T. Macroporous Structures of Nb-SnO 2 Particles as a Catalyst Support Induce High Porosity and Performance in Polymer Electrolyte Fuel Cell Catalyst Layers. NANO LETTERS 2024; 24:10426-10433. [PMID: 39140557 DOI: 10.1021/acs.nanolett.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Macroporous niobium-doped tin oxide (NTO) is introduced as a robust alternative to conventional carbon-based catalyst supports to improve the durability and performance of polymer electrolyte fuel cells (PEFCs). Metal oxides like NTO are more stable than carbon under PEFC operational conditions, but they can compromise gas diffusion and water management because of their denser structures. To address this tradeoff, we synthesized macroporous NTO particles using a flame-assisted spray-drying technique employing poly(methyl methacrylate) as a templating agent. X-ray diffraction analysis and scanning electron microscopy confirmed the preservation of crystallinity and revealed a macroporous morphology with larger pore volumes and diameters than those in flame-made NTO nanoparticles, as revealed by mercury porosimetry. The macroporous NTO particles exhibited enhanced maximum current density and reduced gas diffusion resistance relative to commercial carbon supports. Our findings establish a foundation for integrating macroporous NTO structures into PEFCs to optimize durability and performance.
Collapse
Affiliation(s)
- Tomoyuki Hirano
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Takama Tsuboi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Thi Thanh Nguyen Ho
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Eishi Tanabe
- Hiroshima Prefectural Institute of Industrial Science and Technology, 3-10-31 Kagamiyama, Higashi Hiroshima, Hiroshima 739-0046, Japan
| | - Aoi Takano
- Cataler Corporation, 7800 Chihama, Kakegawa, Shizuoka 437-1492, Japan
| | - Mikihiro Kataoka
- Cataler Corporation, 7800 Chihama, Kakegawa, Shizuoka 437-1492, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
5
|
Ji Y, Kwon O, Jeon OS, Yim S, Jeon Y, Shul YG. Effective single web-structured electrode for high membrane electrode assembly performance in polymer electrolyte membrane fuel cell. SCIENCE ADVANCES 2023; 9:eadf4863. [PMID: 37115932 PMCID: PMC10146897 DOI: 10.1126/sciadv.adf4863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To achieve a sustainable society, CO2 emissions must be reduced and efficiency of energy systems must be enhanced. The polymer electrolyte membrane fuel cell (PEMFC) has zero CO2 emissions and high effectiveness for various applications. A well-designed membrane electrolyte assembly (MEA) composed of electrode layers of effective materials and structure can alter the performance and durability of PEMFC. We demonstrate an efficient electrode deposition method through a well-designed carbon single web with a porous 3D web structure that can be commercially adopted. To achieve excellent electrochemical properties, active Pt nanoparticles are controlled by a nanoglue effect on a highly graphitized carbon surface. The developed MEA exhibits a notable maximum power density of 1082 mW/cm2 at 80°C, H2/air, 50% RH, and 1.8 atm; low cathode loading of 0.1 mgPt/cm2; and catalytic performance decays of only 23.18 and 13.42% under commercial-based durability protocols, respectively, thereby achieving all desirables for commercial applications.
Collapse
Affiliation(s)
- Yunseong Ji
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
- KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ok Sung Jeon
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Sungdae Yim
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonsei-gil, Wonju, Gangwon-do 26493, Republic of Korea
- Corresponding author. (Y.Jeon); (Y.Shul)
| | - Yong-gun Shul
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author. (Y.Jeon); (Y.Shul)
| |
Collapse
|
6
|
Shi G, Arata C, Tryk DA, Tano T, Yamaguchi M, Iiyama A, Uchida M, Iida K, Watanabe S, Kakinuma K. NiFe Alloy Integrated with Amorphous/Crystalline NiFe Oxide as an Electrocatalyst for Alkaline Hydrogen and Oxygen Evolution Reactions. ACS OMEGA 2023; 8:13068-13077. [PMID: 37065081 PMCID: PMC10099113 DOI: 10.1021/acsomega.3c00322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
The rational design of efficient and low-cost electrocatalysts based on earth-abundant materials is imperative for large-scale production of hydrogen by water electrolysis. Here we present a strategy to prepare highly active catalyst materials through modifying the crystallinity of the surface/interface of strongly coupled transition metal-metal oxides. We have thermally activated the catalysts to construct amorphous/crystalline Ni-Fe oxide interfaced with a conductive Ni-Fe alloy and systematically investigated their electrocatalytic performance toward the hydrogen evolution and oxygen evolution reactions (HER and OER) in alkaline solution. It was found that the Ni-Fe/oxide material with a crystalline surface oxide phase showed remarkably superior HER activity in comparison with its amorphous or poorly crystalline counterpart. In contrast, interestingly, the amorphous/poorly crystalline oxide significantly facilitated the OER activity in comparison with the more crystalline counterpart. On one hand, the higher HER activity can be ascribed to a favorable platform for water dissociation and H-H bond formation, enabled by the unique crystalline metal/oxide structure. On the other hand, the enhanced OER catalysis on the amorphous Ni-Fe oxide surfaces can be attributed to the facile activation to form the active oxyhydroxides under OER conditions. Both are explained based on density functional theory calculations. These results thus shed light onto the role of crystallinity in the HER and OER catalysis on heterostructured Ni-Fe/oxide catalysts and provide guidance for the design of new catalysts for efficient water electrolysis.
Collapse
Affiliation(s)
- Guoyu Shi
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| | - Chisato Arata
- R&D
Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama 340-0005, Japan
| | - Donald A. Tryk
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| | - Tetsuro Tano
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| | - Miho Yamaguchi
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| | - Akihiro Iiyama
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| | - Makoto Uchida
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| | - Kazuo Iida
- R&D
Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama 340-0005, Japan
| | - Sumitaka Watanabe
- R&D
Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama 340-0005, Japan
| | - Katsuyoshi Kakinuma
- Hydrogen
and Fuel Cell Nanomaterials Center, University
of Yamanashi, Miyamae 6-43, Kofu 400-0021, Yamanashi Japan
| |
Collapse
|
7
|
Shi G, Tano T, Tryk DA, Yamaguchi M, Iiyama A, Uchida M, Iida K, Arata C, Watanabe S, Kakinuma K. Temperature Dependence of Oxygen Evolution Reaction Activity in Alkaline Solution at Ni–Co Oxide Catalysts with Amorphous/Crystalline Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guoyu Shi
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Tetsuro Tano
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Donald A. Tryk
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Miho Yamaguchi
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Akihiro Iiyama
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Makoto Uchida
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| | - Kazuo Iida
- R&D Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama340-0005, Japan
| | - Chisato Arata
- R&D Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama340-0005, Japan
| | - Sumitaka Watanabe
- R&D Center, Nihon Kagaku Sangyo Co., Ltd., Nakane 1-28-13, Soka, Saitama340-0005, Japan
| | - Katsuyoshi Kakinuma
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu, Y amanashi400-0021, Japan
| |
Collapse
|
8
|
Zhang A, Liu Y, Wu J, Xue L, Tang Y, Yan X, Zeng S. Weakening O O binding on Au-Cu2O/carbon nanotube catalysts with local misfit dislocation by interfacial coupling interaction for oxygen reduction reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Pt Nanorods Oriented on Gd-Doped Ceria Polyhedra Enable Superior Oxygen Reduction Catalysis for Fuel Cells. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Sahoo L, Garg R, Kaur K, Vinod CP, Gautam UK. Ultrathin Twisty PdNi Alloy Nanowires as Highly Active ORR Electrocatalysts Exhibiting Morphology-Induced Durability over 200 K Cycles. NANO LETTERS 2022; 22:246-254. [PMID: 34978836 DOI: 10.1021/acs.nanolett.1c03704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Even though the anion exchange membrane fuel cells have many advantages, the stability of their electrocatalysts for oxygen reduction reaction (ORR) has remained remarkably poor. We report here on the ultrathin twisty PdNi-alloy nanowires (NWs) exhibiting a very low reaction overpotential with an E1/2 ∼ 0.95 V versus RHE in alkaline media maintained over 200 K cycles, the highest ever recorded for an electrocatalyst. The mass activity of the used NWs is >10 times higher than fresh commercial Pt/C. Therein, Ni improves the Pd d-band center for a more efficient ORR, and its leaching continuously regenerates the surface active sites. The twisty nanowire morphology imparts multiple anchor points on the electrode surface to arrest their detachment or coalescence and extra stability from self-entanglement. The significance of the NW morphology was further confirmed from the high-temperature durability studies. The study demonstrates that tailoring the number of contact points to the electrode-surface may help realize commercial-grade stability in the highly active electrocatalysts.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Reeya Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Komalpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-NCL, Pune 411008, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|
11
|
Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63896-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Li Z, Sui L, Calvillo L, Alonso-Vante N, Ma J. Strengthening oxygen reduction activity and stability of carbon-supported platinum nanoparticles by fluorination. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhao MJ, Su SY, Deng N, Shi JQ, Li F, He JB. The Central Role of Nitrogen Atoms in a Zeolitic Imidazolate Framework-Derived Catalyst for Cathodic Hydrogen Evolution. CHEMSUSCHEM 2021; 14:3926-3934. [PMID: 34288529 DOI: 10.1002/cssc.202101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Platinum usually offers the most effective active center for hydrogen evolution reaction (HER), because of the optimal trade-off between the adsorption and desorption of hydrogeN atoms (H*) on Pt atoms. Herein, we report an unusual result regarding the active center of a HER catalyst, which was synthesized by electrodepositing traces of Pt nanoparticles (NPs) into a porous nitrogen-rich dodecahedron matrix derived from zeolitic imidazolate framework ZIF-8. With an ultra-low Pt loading of 2.76 μg cm-2 , the N-Pt-bonded catalyst can produce a current density of 117 mA cm-2 for the HER in 1.0 m H2 SO4 at an overpotential of 50 mV, whereas the commercial Pt/C (300 μg cm-2 Pt) can only reach 50 mA cm-2 under the same conditions. Cyclic voltammetry demonstrates that both the H* adsorption and the Pt oxidation are not allowed to occur on this catalyst, due to a full surface coverage of the trace Pt NPs by imidazole. The results from the specially designed experiments indicate that the imidazole N atoms may act as proton anchor-sites for the HER due to their electron donor nature. Density functional theory calculations also support a catalytic HER mechanism centered at the Pt-supported N active center, which needs a Gibbs free energy of H* absorption (ΔGH* ) significantly smaller than the absolute value of ΔGH* on the Pt(111) surface. We hope that the results of this study will encourage the research on novel N-centered catalysts for the HER.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Sheng-Ying Su
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ning Deng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jun-Qing Shi
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| |
Collapse
|
14
|
Enhanced oxygen reduction electrocatalysis on PtCoSn alloy nanocatalyst mediated by Ta-doped SnO2 support for polymer electrolyte fuel cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|