1
|
Costa G, Escudero-Escribano M. Electrode-Electrolyte Engineering and In Situ Spectroscopy for Urea Electrosynthesis from Carbon Dioxide and Nitrate Co-Reduction. JACS AU 2025; 5:1538-1548. [PMID: 40313822 PMCID: PMC12042039 DOI: 10.1021/jacsau.5c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/03/2025]
Abstract
The biogeochemical cycles of carbon and nitrogen are globally disturbed due to the intensive use of fossil fuels and fertilizers, which is reflected by the accumulation of carbon dioxide in the atmosphere and nitrate in water streams. The co-electroreduction of carbon dioxide and nitrate is a promising low-carbon alternative for urea synthesis that would help to reestablish both carbon and nitrogen cycles. This Perspective highlights the importance of rational catalyst and electrolyte engineering to enable electrochemical urea synthesis. Although the field has gained significant attention over the past few years, fundamental research under well-defined conditions remains underexplored. We highlight the importance of investigating structure-sensitivity and electrolyte effects on electrochemical C-N coupling through complementary in situ spectroscopy and online techniques. Model studies, including in situ surface-sensitive investigations, will be crucial to understand the molecular mechanisms and thus to rationally design more efficient systems for urea electrosynthesis, paving the way for their scalable and industrial applications.
Collapse
Affiliation(s)
- Gabriel
F. Costa
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona
Institute of Science and Technology, UAB Campus, Bellaterra, 08193 Barcelona, Spain
| | - María Escudero-Escribano
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona
Institute of Science and Technology, UAB Campus, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Zhang J, Zhang Z, Chen T, Zhang J, Zhang Y. Electrolyte Effect on Electrocatalytic CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:648. [PMID: 40358265 DOI: 10.3390/nano15090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Electrocatalytic CO2 reduction reaction shows great potential for converting CO2 into high-value chemicals and fuels at normal temperature and pressure, combating climate change and achieving carbon neutrality goals. However, the complex reaction pathways involve the transfer of multiple electrons and protons, resulting in poor product selectivity, and the existence of competitive hydrogen evolution reactions further increases the associated difficulties. This review illustrates the research progress on the micro mechanism of electrocatalytic CO2 reduction reaction in the electrolyte environment in recent years. The reaction pathways of the products, pH effects, cation effects and anion effects were systematically summarized. Additionally, further challenges and difficulties were also pointed out. Thus, this review provides a theoretical basis and future research direction for improving the efficiency and selectivity of electrocatalytic CO2 reduction reaction.
Collapse
Affiliation(s)
- Jiandong Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Ziliang Zhang
- School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tianye Chen
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Jiayi Zhang
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wu W, Wang Y. The Role of Protons in CO 2 Reduction on Gold under Acidic Conditions. J Am Chem Soc 2025; 147:11662-11666. [PMID: 40162909 DOI: 10.1021/jacs.5c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Carbonate formation constitutes a major obstacle in the electrochemical CO2 reduction reaction (CO2RR), restricting the industrial implementation of this reaction. Even when adopting mild acidic electrolytes, carbonate formation is still observed. The fundamental reason lies in the inevitable OH- generation when H2O is the proton donor, leading to subsequent carbonate formation. Thus, exploring the reaction pathway of the CO2RR in the acid, especially if a proton can directly participate in the reaction, is critical. Herein, we employed a rotating ring-disk electrode and surface interrogation scanning electrochemical microscopy to investigate the electrode process of the CO2RR in acid. A pH-dependent behavior of CO2RR is observed, indicating proton acting as the reactant in the RDS, originating from the early onset of CO2 adsorption under locally acidic conditions.
Collapse
Affiliation(s)
- Weixing Wu
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong S. A. R., China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong S. A. R., China
| |
Collapse
|
4
|
Li Y, Meng S, Wang Z, Zhang H, Zhao X, Nian Q, Ruan D, Zou L, Lu Z, Ren X. Unraveling the effect of alkali cations on Fe single atom catalysts with high coordination numbers. Chem Sci 2025; 16:6366-6375. [PMID: 40092603 PMCID: PMC11905988 DOI: 10.1039/d5sc00581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Fe single atom catalysts (SACs) with high coordination numbers have emerged as high-performance catalysts for the conversion of CO2 to CO. However, the influence of alkali cations at the catalyst-electrolyte interface has not yet been understood clearly. Here, we investigate the role of various alkali metal cations (Na+, K+, Rb+) in catalytic CO2 reduction reaction (CO2RR) behavior on high coordination number Fe SACs (FeN5 and FeN6) obtained from a facile hard template method. We find that larger cations can greatly promote the CO2RR and such effects are enhanced with increasing cation concentration. Nevertheless, the hydrogen evolution side reaction (HER) on co-existing N heteroatom sites will be worsened. This trade-off highlights the importance of manipulating the reactive sites for SACs. From theoretical simulation and in situ spectroscopy results, we confirm that the functioning mechanism of cations on Fe SACs lies in the enhancement of the adsorption of key intermediates through direct coordination and indirect hydrogen bonding effects. With the rationally designed Fe SACs (FeN5) and the electrolyte conditions (1 M KOH), our flow cell test demonstrates a maximum Faraday efficiency of CO (FECO) of approximately 100% at 100 mA cm-2. This research provides significant insights for future SACs and electrolyte design.
Collapse
Affiliation(s)
- Yecheng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China Anhui 230026 China
| | - Songjie Meng
- School of Physics, Henan Normal University Xinxiang 453007 China
| | - Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China Anhui 230026 China
| | - Hehe Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Material Science and Technology, Yanshan University Qinhuangdao 066004 China
| | - Xin Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China Anhui 230026 China
| | - Qingshun Nian
- School of Chemistry and Materials Science, University of Science and Technology of China Anhui 230026 China
| | - Digen Ruan
- School of Chemistry and Materials Science, University of Science and Technology of China Anhui 230026 China
| | - Lianfeng Zou
- Clean Nano Energy Center, State Key Laboratory of Metastable Material Science and Technology, Yanshan University Qinhuangdao 066004 China
| | - Zhansheng Lu
- School of Physics, Henan Normal University Xinxiang 453007 China
- College of Mathematics and Physics, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaodi Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China Anhui 230026 China
- School of Chemistry and Materials Science, University of Science and Technology of China Anhui 230026 China
| |
Collapse
|
5
|
Sheehan CJ, Suo S, Jeon S, Zheng Y, Meng J, Zhao F, Yang Z, Xiao L, Venkatesan S, Metlay AS, Donley CL, Stach EA, Lian T, Mallouk TE. Electron Transfer Energetics in Photoelectrochemical CO 2 Reduction at Viologen Redox Polymer-Modified p-Si Electrodes. J Am Chem Soc 2025; 147:9629-9639. [PMID: 40050224 DOI: 10.1021/jacs.4c17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
While redox polymer-mediated catalysis at silicon photoelectrodes has been studied since the 1980s, there have been few detailed studies of these materials in photoelectrochemical CO2 reduction. Here, we develop silicon photoelectrodes functionalized with a viologen-based polymer that mediates the formation of catalytic gold nanoparticles. The presence of gold was confirmed by X-ray photoelectron spectroscopy (XPS), and the nanoparticles were imaged with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). We probed the CO2 reduction process during bulk photoelectrolysis to find modest, yet consistent CO faradaic efficiencies across a range of applied potentials. Operando surface-enhanced Raman spectroscopy (SERS) was used to measure the Fermi levels of both the viologen polymer and the Au catalyst sites. The operando measurement of the Fermi levels of all three components of the photocathode provides a unified picture of the electron transfer process in the semiconductor-redox polymer-catalyst system. The redox polymer serves as the electron transfer mediator between the Si substrate and Au sites. In addition, the Au Fermi level equilibrates with the Fermi level of the viologen polymer, which in turn fixes the quasi-Fermi level of Au catalysts at the p-Si/redox polymer interface. This suggests a potential future direction of using redox polymers with tunable potentials to modulate the potential of metal cocatalysts and thus control the reaction selectivity.
Collapse
Affiliation(s)
- Colton J Sheehan
- Department of Chemistry, University of Pennsylvania, 231 S 34th St. Philadelphia, Pennsylvania 19104, United States
| | - Sa Suo
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Sungho Jeon
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yunchangxiang Zheng
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Fengyi Zhao
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Zhicheng Yang
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, 231 S 34th St. Philadelphia, Pennsylvania 19104, United States
| | - Srikar Venkatesan
- Department of Chemistry, University of Pennsylvania, 231 S 34th St. Philadelphia, Pennsylvania 19104, United States
| | - Amy S Metlay
- Department of Chemistry, University of Pennsylvania, 231 S 34th St. Philadelphia, Pennsylvania 19104, United States
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, 231 S 34th St. Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Wang YY, Li R, Cai Z, Weng S, Zhang B, Liao HT, Shahriar R, Himel MH, Shamsi E, Cronin SB. Investigating Surface p Ka and pH Using Surface-Enhanced Raman Scattering Spectroscopy with 4-Mercaptobenzoic Acid in Deionized Water and Sodium Bicarbonate Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17521-17529. [PMID: 39967234 DOI: 10.1021/acsami.4c21030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Our research presents spectroscopic measurements of the surface pKa at electrode/electrolyte interfaces using surface-enhanced Raman scattering spectroscopy of 4-mercaptobenzoic acid (4-MBA). As the electrochemical potential is varied from negative to positive, the Raman intensity of the -COOH functional group (at 1700 cm-1) decreases while the -COO- Raman intensity (at 1410 cm-1) increases. The protonation-deprotonation of this surface-bound molecule reflects an electrochemically induced shift to more acidic conditions at negative potentials and more basic conditions at positive potentials. By fitting the data to a normalized sigmoid function, we obtain the percentage of surface protonation/deprotonation, which can be related to the surface pKa of the system. The percentage of surface protonation, which gives a proxy of the two-dimensional surface pKa, follows the Fermi-Dirac distribution as a function of the applied potential. The electrolyte-electrode pH-neutral conditions at the interface are extracted by the linear fitted intercepts of -log(COO-/COOH) as a function of the applied potential based on the Nernst equation, which are 0.25, 0.07, 0.08, and -0.46 V for DI water and 0.5 M sodium bicarbonate solutions with and without CO2 purging, respectively. The shift of surface neutral conditions toward more positive voltages in the electrolytes with CO2 purging indicates that the bulk solutions dissolved in the CO2-dissolved form become more acidic. The 25% reduction of protonation at negative applied potentials in CO2-purged DI water suggests that the direct reduction of hydronium ions and/or carbonic acid increases the surface pKa in the microenvironment. Adding alkali cations (Na+) attracts more proton donors toward the working electrode, resulting in the protonation capacity near the electrode surface, approximately -1.9 V-1, being double that of DI water, which is around -1 V-1. Hydrogen evolution reaction pathways are not detected in neutral or basic conditions due to the low concentration of hydronium ions (<10-6 M). The independence of the carbonic acid concentration with applied negative potentials, as measured by the surface pKa in the Helmholtz plane, indicates that changes in the local pH/surface pKa under neutral or basic bulk conditions are governed by the acid-base equilibrium of water, carbonic acid, bicarbonate, and carbonate ions.
Collapse
Affiliation(s)
- Yu Yun Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ruoxi Li
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Sizhe Weng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Han-Ting Liao
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Rifat Shahriar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mehedi Hasan Himel
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ehsan Shamsi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Zheng T, Zhang XG. Understanding the Electrochemical Carbon Dioxide Reduction Reaction Mechanism of Lattice Tuning of Copper by Silver Single-Crystal Surface. Chemphyschem 2025; 26:e202400757. [PMID: 39363706 DOI: 10.1002/cphc.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Intermolecular interactions and adsorbate coverage on a metal electrode's surface/interface play an important role in CO2 reduction reaction (CO2RR). Herein, the activity and selectivity of CO2RR on bimetallic electrode, where a full monoatomic Cu layer covers on Ag surface (CuML/Ag) are investigated by using density functional theory calculations. The surface geometric and electronic structure results indicate that there is high electrocatalytic activity for CO2RR on the CuML/Ag electrode. Specifically, the CuML/Ag surface can accelerate the H2O and CO2 adsorption and hydrogenation while lowering the reaction energy of the rate-determining step. The structure parameters of chemisorbed CO2 with and without H2O demonstrate that activated H2O not only promotes the C-O dissociation but also provides the protons required for CO2RR on the CuML/Ag electrode surface. Furthermore, the various reaction mechanism diagrams indicate that the CuML/Ag electrode has high selectivity for CO2RR, and the efficiency of products can be regulated by modulating the reaction's electric potential.
Collapse
Affiliation(s)
- Tao Zheng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
8
|
Jang H, Gardner AM, Walters LJ, Neale AR, Hardwick LJ, Cowan AJ. The Role of Surfactant in Electrocatalytic Carbon Dioxide Reduction in the Absence of Metal Cations. ACS ELECTROCHEMISTRY 2025; 1:20-24. [PMID: 39878147 PMCID: PMC11728718 DOI: 10.1021/acselectrochem.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 01/31/2025]
Abstract
Carbon dioxide electroreduction does not occur on Au when metal cations are absent from the electrode surfaces. Here we show that the electroreduction can be enabled without metal cations, albeit with low efficiency, by the presence of cationic surfactants on Au. The findings demonstrate that in addition to possibly stabilizing CO2 reduction intermediates the presence of surfactants plays a role in suppressing the competing reactions. At potentials negative of a critical potential, a cationic surfactant adsorbs onto the electrode surface, displacing interfacial water molecules, hampering the access of proton donors to the electrode surface and inhibiting hydrogen evolution during electrolysis.
Collapse
Affiliation(s)
- Hansaem Jang
- Stephenson
Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| | - Adrian M. Gardner
- Stephenson
Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
- Low
Energy Ion Scattering Facility, George Holt Building, University of Liverpool, Brownlow Street, Liverpool L69 3GB, United Kingdom
| | - Lucy J. Walters
- Stephenson
Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| | - Alex R. Neale
- Stephenson
Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| | - Laurence J. Hardwick
- Stephenson
Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| | - Alexander J. Cowan
- Stephenson
Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
9
|
Rodrigues Pinto M, Vos RE, Nagao R, Koper MTM. Electrolyte Effects on Electrochemical CO 2 Reduction Reaction at Sn Metallic Electrode. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21421-21429. [PMID: 39720328 PMCID: PMC11664572 DOI: 10.1021/acs.jpcc.4c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
Understanding the electrolyte factors governing the electrochemical CO2 reduction reaction (CO2RR) is fundamental for selecting the optimized electrolyte conditions for practical applications. While noble metals are frequently studied, the electrolyte effects on the CO2RR on Sn catalysts are not well explored. Here, we studied the electrolyte effect on Sn metallic electrodes, investigating the impact of electrolyte concentration, cation identity, and anion properties, and how it shapes the CO2RR activity and selectivity. The activity for formic acid and carbon monoxide increases with the cation concentration and size at mild acid conditions. In contrast, hydrogen production is not strongly influenced by the cathodic potential, electrolyte concentration, and cation size. Furthermore, we have compared the CO2RR performance at a constant cation concentration in K2SO4 (pH 4) and KHCO3 (pH 7), where we show that the reaction rate toward HCOOH and CO are minimally impacted by the anion identity on the SHE scale, while being affected by the cations in solution, which we attribute to the reaction being limited by cation-coupled electron transfer steps rather than by a proton-coupled electron transfer step. We propose that the HCOOH forms via adsorbed hydrides leading to *OCHO intermediate, while CO forms through an electron transfer step, producing *CO2 δ-. Cations facilitate both processes by stabilizing the negatively charged intermediates, and the difference in the extent of the promotion of HCOOH over CO formation would stem from the stronger cation effects on *H compared with *CO2 δ- species. Additionally, the presence of HCO3 - at high concentrations (1.0 mol L-1) is shown to significantly enhance the production of H2 at high overpotentials (>-1.0 V vs RHE) due to bicarbonate ions acting as protons donors, outcompeting water reduction. These findings underscore the significance of electrolyte engineering for enhanced formic acid synthesis, offering valuable insights for optimizing the CO2RR processes on Sn electrocatalysts.
Collapse
Affiliation(s)
- Maria Rodrigues Pinto
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Rafaël E. Vos
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Raphael Nagao
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center
for Innovation on New Energies, University
of Campinas, Campinas, São Paulo 13083-841, Brazil
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
10
|
Yoo JM, Ingenmey J, Salanne M, Lukatskaya MR. Anion Effect in Electrochemical CO 2 Reduction: From Spectators to Orchestrators. J Am Chem Soc 2024; 146:31768-31777. [PMID: 39406354 PMCID: PMC11583205 DOI: 10.1021/jacs.4c10661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) offers a pathway to produce valuable chemical fuels from CO2. However, its efficiency in aqueous electrolytes is hindered by the concurrent H2 evolution reaction (HER), which takes place at similar potentials. While the influence of cations on this process has been extensively studied, the influence of anions remains largely unexplored. In this work, we study how eCO2RR selectivity and activity on a gold catalyst are affected by a wide range of inorganic and carboxylate anions. We utilize in situ differential electrochemical mass spectrometry (DEMS) for real-time product monitoring coupled with molecular dynamics (MD) simulations. We show that anions significantly impact eCO2RR kinetics and eCO2RR selectivity. MD simulations reveal a new descriptor─free energy of anion physisorption─where weakly adsorbing anions enable favorable CO2 reduction kinetics, despite the negative charge carried by the electrode surface. By leveraging these fundamental insights, we identify propionate as the most promising anion, achieving nearly 100% Faradaic efficiency while showing high CO production rates that are comparable to those in bicarbonate. These insights underscore the vital role of anion selection in achieving a highly efficient eCO2RR in aqueous electrolytes.
Collapse
Affiliation(s)
- Ji Mun Yoo
- Electrochemical Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Johannes Ingenmey
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Bulut Y, Sochor B, Reck KA, Schummer B, Meinhardt A, Drewes J, Liang S, Guan T, Jeromin A, Stierle A, Keller TF, Strunskus T, Faupel F, Müller-Buschbaum P, Roth SV. Investigating Gold Deposition with High-Power Impulse Magnetron Sputtering and Direct-Current Magnetron Sputtering on Polystyrene, Poly-4-vinylpyridine, and Polystyrene Sulfonic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22591-22601. [PMID: 39402930 PMCID: PMC11526365 DOI: 10.1021/acs.langmuir.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Fabricating thin metal layers and particularly observing their formation process in situ is of fundamental interest to tailor the quality of such a layer on polymers for organic electronics. In particular, the process of high power impulse magnetron sputtering (HiPIMS) for establishing thin metal layers has sparsely been explored in situ. Hence, in this study, we investigate the growth of thin gold (Au) layers with HiPIMS and compare their growth with thin Au layers prepared by conventional direct current magnetron sputtering (dcMS). Au was chosen because it is an inert noble metal and has a high scattering length density. This allows us to track the growing nanostructures via grazing incidence scattering. In particular, Au deposition on the polymer polystyrene (PS) with the respective structural analogues poly-4-vinlypyridine (P4VP) and polystyrene sulfonic acid (PSS) is studied. Additionally, the nanostructured layers on these different polymer films are further probed by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray reflectometry (XRR), and four-point probe measurements. We report that HiPIMS leads to smaller island-to-island distances throughout the whole sputter process. Moreover, an increased cluster density and an earlier percolation threshold are achieved compared to dcMS. Additionally, in the early stage, we observe a significant increase in coverage by HiPIMS, which is favorable for the improvement of the polymer-metal interface.
Collapse
Affiliation(s)
- Yusuf Bulut
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
| | - Benedikt Sochor
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Kristian A. Reck
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Bernhard Schummer
- Fraunhofer
Institute for Integrated Circuits IIS, Development
Center for X-ray Technology EZRT, Flugplatzstr. 75, Fürth 90768, Germany
| | - Alexander Meinhardt
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, University of Hamburg, Notkestr. 9-11, Hamburg 22607, Germany
| | - Jonas Drewes
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Suzhe Liang
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
| | - Tianfu Guan
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
| | - Arno Jeromin
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Andreas Stierle
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, University of Hamburg, Notkestr. 9-11, Hamburg 22607, Germany
| | - Thomas F. Keller
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, University of Hamburg, Notkestr. 9-11, Hamburg 22607, Germany
| | - Thomas Strunskus
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Franz Faupel
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Peter Müller-Buschbaum
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technical
University of Munich, Lichtenbergstraße 1, Garching 85748, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- KTH
Royal Institute of Technology, Teknikringen 56-58, Stockholm 100 44, Sweden
| |
Collapse
|
12
|
Tan Y, Wang X, Liao X, Chen Q, Li H, Liu K, Fu J, Liu M. Near-Electrode Concentration Gradients of Bicarbonate and pH within Porous Gas Diffusion Electrode for Optimized Selective CO 2 Electroreduction to C 2+ Products. NANO LETTERS 2024; 24:12163-12170. [PMID: 39291795 DOI: 10.1021/acs.nanolett.4c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
With high current density, the intense near-electrode CO2 reduction reaction (CO2RR) will cause the concentration gradients of bicarbonate (HCO3-) and hydroxyl (OH-) ions, which affect the selectivity of high-value C2+ products of the CO2RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H+ and local CO2 concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C2+ Faraday efficiency (FE) of ∼79.61% at 500 mA cm-2 under 1 M KHCO3, far more than the FEC2+ ≈ 38.20% with the low-porosity sample (Cu-LP).
Collapse
Affiliation(s)
- Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Xiangqiong Liao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
13
|
Wang B, Song L, Peng C, Lv X, Zheng G. Pd-induced polarized Cu 0-Cu + sites for electrocatalytic CO 2-to-C 2+ conversion in acidic medium. J Colloid Interface Sci 2024; 671:184-191. [PMID: 38797144 DOI: 10.1016/j.jcis.2024.05.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The acidic CO2 reduction reaction (CO2RR) offers a promising approach to mitigate CO2 reactant loss and carbonate deposition, which are challenging issues in alkaline or neutral electrolytes. However, the hydrogen evolution reaction (HER) competes in the proton-rich environment near the catalyst surface as a side reaction, reducing the energy efficiency of generating multi-carbon (C2+) products. In this work, we proposed a palladium (Pd) doping strategy in a copper (Cu)-based catalyst to stabilize polarized Cu0-Cu+ sites, thus enhancing the CC coupling step during the CO2RR while suppressing HER. At an optimal doping ratio of 6%, the Pd dopants were well dispersed as single atoms without aggregation, allowing for the stabilization of subsurface oxygen (OSub), preserving the polarized Cu0-Cu+ active sites, and reducing the energy barrier of CC coupling. The Pd-doped Cu/Cu2O catalyst exhibited a peak Faradaic efficiency (FE) of 64.0% for C2+ products with a corresponding C2+ partial current density of 407.1 mA∙cm-2 at -2.18 V versus a reversible hydrogen electrode, a high CO2 single-pass conversion efficiency (SPCE) of 73.2%, as well as a high electrochemical stability of ∼ 150 h at industrially relevant current densities, thus suggesting a potential approach for tuning the electrocatalytic CO2 performances in acidic environments with higher carbon conversion efficiencies.
Collapse
Affiliation(s)
- Bowen Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lu Song
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
14
|
Liu W, Dunne H, Ballotta B, Massie AA, Ghaani MR, McKelvey K, Dooley S. CO 2 Loss into Solution: An Experimental Investigation of CO 2 Electrolysis with a Membrane Electrode Assembly Cell. ACS APPLIED ENERGY MATERIALS 2024; 7:7712-7723. [PMID: 39328829 PMCID: PMC11423278 DOI: 10.1021/acsaem.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
In pursuit of commercial viability for carbon dioxide (CO2) electrolysis, this study investigates the operational challenges associated with membrane electrode assembly (MEA)-type CO2 electrolyzers, with a focus on CO2 loss into the solution phase through bicarbonate (HCO3 -) and carbonate (CO3 2-) ion formation. Utilizing a silver electrode known for selectively facilitating CO2 to CO conversion, the molar production of CO2, CO, and H2 is measured across a range of current densities from 0 to 600 mA/cm2, while maintaining a constant CO2 inlet flow rate of 58 mL/min. The dynamics of CO2 loss are monitored through measurements of pH changes in the electrolyte and carbon elemental balance analysis. Employing the concept of conservation of elemental carbon, a chemical reaction analysis is conducted, identifying the critical role of the hydroxide (OH-) ion. At lower current densities below 125 mA/cm2, where CO2 reduction predominates, it is observed that CO2 loss is proportional to current density, reaching up to 0.18 mmol/min, and directly correlates with the rate of OH- ion production, indicative of HCO3 -/CO3 2- ion formation. Conversely, at higher current densities above 450 mA/cm2, where hydrogen evolution is the dominant process, CO2 loss is shown to decouple from the OH- ion production rate with a constant limit condition of 0.12 mmol/min, regardless of the current density. This suggests that electrolyte-induced cathode flooding restricts CO2 access to cathode sites. Additionally, pH change in the electrolyte during the electrolysis further infers differing ion populations in the CO2 reduction and hydrogen evolution regimes, and their movement across the membrane. Continued monitoring of the pH change after the cessation of electricity offers insights into the accumulation of HCO3 -/CO3 2- ion at the cathode, influencing salt formation.
Collapse
Affiliation(s)
- Weiming Liu
- School
of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Harry Dunne
- School
of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | | | | | - Mohammad Reza Ghaani
- School
of Engineering, Department of Civil, Structural & Environmental
Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Kim McKelvey
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Chemical
and Physical Sciences, Victoria University
of Wellington, Wellington 6140, New Zealand
| | - Stephen Dooley
- School
of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
15
|
Katsoukis G, Heida H, Gutgesell M, Mul G. Time-Resolved Infrared Spectroscopic Evidence for Interfacial pH-Dependent Kinetics of Formate Evolution on Cu Electrodes. ACS Catal 2024; 14:13867-13876. [PMID: 39324054 PMCID: PMC11420947 DOI: 10.1021/acscatal.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
By deployment of rapid-scan (second time scale) electrochemical FT-IR reflection-absorption spectroscopy, we studied the reduction of CO2 in 0.1 M Na2SO4 in deuterated water at a pD of 3.7. We report on the impact of dynamic changes in the bicarbonate equilibrium concentration in the vicinity of a polycrystalline Cu electrode, induced by step changes in applied electrode potential. We correlate these changes in interfacial composition and concentrations of dissolved species to the formation rate of formate, and provide evidence for the following conclusions: (i) the kinetics for the conversion of dissolved CO2 to formate (formic acid) are fast, (ii) bicarbonate is also converted to formate, but with less favorable kinetics, and (iii) carbonate does not yield any formate. These results reveal that formate formation requires (mildly) acidic conditions at the interface for CO2 to undergo a proton-coupled conversion step, and we postulate that bicarbonate reduction to formate is driven by catalytic hydrogenation via in situ formed H2. Interestingly CO was not observed, suggesting that the kinetics of the CO2 to CO reaction are significantly less favorable than formate formation under the experimental conditions (pH and applied potential). We also analyzed the feasibility of pulsed electrolysis to enhance the (average) rate of formation of formate. While a short positive potential pulse enhances the CO2 concentration, this also leads to the formation of basic copper carbonates, resulting in electrode deactivation. These observations demonstrate the potential of rapid-scan EC-IRRAS to elucidate the mechanisms and kinetics of electrochemical reactions, offering valuable insights for optimizing catalyst and electrolyte performance and advancing CO2 reduction technologies.
Collapse
Affiliation(s)
- Georgios Katsoukis
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Hilbert Heida
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Merlin Gutgesell
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Guido Mul
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| |
Collapse
|
16
|
Guo QH, Zhang GL, Wu Y, Liang X, Li L, Yang JJ. Theoretical Study on the Electrocatalytic CO 2 Reduction Mechanism of Single-Atom Co Complexed Carbon-Based (Co-N χ@C) Catalysts Supported on Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46270-46279. [PMID: 39171457 DOI: 10.1021/acsami.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Electrocatalytic CO2 reduction serves as an effective strategy to tackle energy crises and mitigate greenhouse gas effects. The development of efficient and cost-effective electrocatalysts has been a research hotspot in the field. In this study, we designed four Co-doped single-atom catalysts (Co-Nχ@C) using carbon nanotubes as carriers, these catalysts included tri- and dicoordinated N-doped carbon nanoribbons, as well as tri- and dicoordinated N-doped graphene, respectively denoted as H3(H2)-Co/CNT and 3(2)-Co/CNT. The stable configurations of these Co-Nχ@C catalysts were optimized using the PBE+D3 method. Additionally, we explored the reaction mechanisms of these catalysts for the electrocatalytic reduction of CO2 into four C1 products, including CO, HCOOH, CH3OH and CH4, in detail. Upon comparing the limiting potentials (UL) across the Co-Nχ@C catalysts, the activity sequence for the electrocatalytic reduction of CO2 was H2-Co/CNT > 3-Co/CNT > H3-Co/CNT > 2-Co/CNT. Meanwhile, our investigation of the hydrogen evolution reaction (HER) with four catalysts elucidated the influence of acidic conditions on the electrocatalytic CO2 reduction process. Specifically, controlling the acidity of the solution was crucial when using the H3-Co/CNT and H2-Co/CNT catalysts, while the 3-Co/CNT and 2-Co/CNT catalysts were almost unaffected by the solution's acidity. We hope that our research will provide a theoretical foundation for designing more effective CO2 reduction electrocatalysts.
Collapse
Affiliation(s)
- Qian-Hong Guo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gui-Lin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoqin Liang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
17
|
Lin Z, Blake N, Pang X, He Z, Mirshekari G, Romiluyi O, Son YJ, Kabra S, Esposito DV. Oxide-Encapsulated Silver Electrocatalysts for Selective and Stable Syngas Production from Reactive Carbon Capture Solutions. Angew Chem Int Ed Engl 2024; 63:e202404758. [PMID: 38818571 DOI: 10.1002/anie.202404758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Electrolysis of bicarbonate-containing CO2 capture solutions is a promising approach towards achieving low-cost carbon-neutral chemicals production. However, the parasitic bicarbonate-mediated hydrogen evolution reaction (HER) and electrode instability in the presence of trace impurities remain major obstacles to overcome. This work demonstrates that the combined use of titanium dioxide (TiO2) overlayers with the chelating agent ethylene diamine tetra-acetic acid (EDTA) significantly enhances the selectivity and stability of Ag-based electrocatalysts for bicarbonate electrolysis. The amorphous TiO2 overlayers suppress the HER by over 50 % at potentials more negative than -0.7 V vs. RHE, increasing the CO faradaic efficiency (FE) by 33 % (relative). In situ surface-enhanced Raman spectroscopy (SERS) measurements reveal the absence of near-surface bicarbonate species and an abundance of CO2 reduction intermediates at the Ag|TiO2 buried interface, suggesting that the overlayers suppress HER by blocking bicarbonate ions from reaching the buried active sites. In accelerated degradation tests with 5 ppm of Fe(III) impurity, the addition of EDTA allows stable CO production with >47 % FE, while the electrodes rapidly deactivate in the absence of EDTA. This work highlights the use of TiO2 overlayers for enhancing the CO : H2 ratio while simultaneously protecting electrocatalysts from impurities likely to be present in "open" carbon capture systems.
Collapse
Affiliation(s)
- Zhexi Lin
- Department of Chemical Engineering, Columbia University in the City of New York, Columbia Electrochemical Energy Center, Lenfest Center for Sustainable Energy, 500 West 120th Street, 10027, New York, NY, USA
| | - Nathaniel Blake
- Department of Chemical Engineering, Columbia University in the City of New York, Columbia Electrochemical Energy Center, Lenfest Center for Sustainable Energy, 500 West 120th Street, 10027, New York, NY, USA
| | - Xueqi Pang
- Department of Chemical Engineering, Columbia University in the City of New York, Columbia Electrochemical Energy Center, Lenfest Center for Sustainable Energy, 500 West 120th Street, 10027, New York, NY, USA
| | - Zhirui He
- Department of Chemical Engineering, Columbia University in the City of New York, Columbia Electrochemical Energy Center, Lenfest Center for Sustainable Energy, 500 West 120th Street, 10027, New York, NY, USA
| | - Gholamreza Mirshekari
- Shell International Exploration & Production, Inc., 3333 Highway 6 South, 77082, Houston, TX, USA
| | - Oyinkansola Romiluyi
- Shell International Exploration & Production, Inc., 3333 Highway 6 South, 77082, Houston, TX, USA
| | - Yoon Jun Son
- Shell International Exploration & Production, Inc., 3333 Highway 6 South, 77082, Houston, TX, USA
| | - Suryansh Kabra
- Department of Chemical Engineering, Columbia University in the City of New York, Columbia Electrochemical Energy Center, Lenfest Center for Sustainable Energy, 500 West 120th Street, 10027, New York, NY, USA
| | - Daniel V Esposito
- Department of Chemical Engineering, Columbia University in the City of New York, Columbia Electrochemical Energy Center, Lenfest Center for Sustainable Energy, 500 West 120th Street, 10027, New York, NY, USA
| |
Collapse
|
18
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
19
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
20
|
Ma M, Seger B. Rational Design of Local Reaction Environment for Electrocatalytic Conversion of CO 2 into Multicarbon Products. Angew Chem Int Ed Engl 2024; 63:e202401185. [PMID: 38576259 DOI: 10.1002/anie.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The electrocatalytic conversion of CO2 into multi-carbon (C2+) products provides an attractive route for storing intermittent renewable electricity as fuels and feedstocks with high energy densities. Although substantial progress has been made in selective electrosynthesis of C2+ products via engineering the catalyst, rational design of the local reaction environment in the vicinity of catalyst surface also acts as an effective approach for further enhancing the performance. Here, we discuss recent advances and pertinent challenges in the modulation of local reaction environment, encompassing local pH, the choice of the species and concentrations of cations and anions as well as local reactant/intermediate concentrations, for achieving high C2+ selectivity. In addition, mechanistic understanding in the effects of the local reaction environment is also discussed. Particularly, the important progress extracted from in situ and operando spectroscopy techniques provides insights into how local reaction environment affects C-C coupling and key intermediates formation that lead to reaction pathways toward a desired C2+ product. The possible future direction in understanding and engineering the local reaction environment is also provided.
Collapse
Affiliation(s)
- Ming Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Brian Seger
- Surface Physics and Catalysis (Surfcat) Section, Department of Physics, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Hsu YS, Rathnayake ST, Waegele MM. Cation effects in hydrogen evolution and CO2-to-CO conversion: A critical perspective. J Chem Phys 2024; 160:160901. [PMID: 38651806 DOI: 10.1063/5.0201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The rates of many electrocatalytic reactions can be strongly affected by the structure and dynamics of the electrochemical double layer, which in turn can be tuned by the concentration and identity of the supporting electrolyte's cation. The effect of cations on an electrocatalytic process depends on a complex interplay between electrolyte components, electrode material and surface structure, applied electrode potential, and reaction intermediates. Although cation effects remain insufficiently understood, the principal mechanisms underlying cation-dependent reactivity and selectivity are beginning to emerge. In this Perspective, we summarize and critically examine recent advances in this area in the context of the hydrogen evolution reaction (HER) and CO2-to-CO conversion, which are among the most intensively studied and promising electrocatalytic reactions for the sustainable production of commodity chemicals and fuels. Improving the kinetics of the HER in base and enabling energetically efficient and selective CO2 reduction at low pH are key challenges in electrocatalysis. The physical insights from the recent literature illustrate how cation effects can be utilized to help achieve these goals and to steer other electrocatalytic processes of technological relevance.
Collapse
Affiliation(s)
- Yu-Shen Hsu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sachinthya T Rathnayake
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Matthias M Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
22
|
Ligthart NEG, Prats Vergel G, Padding JT, Vermaas DA. Practical potential of suspension electrodes for enhanced limiting currents in electrochemical CO 2 reduction. ENERGY ADVANCES 2024; 3:841-853. [PMID: 38645976 PMCID: PMC11025499 DOI: 10.1039/d3ya00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
CO2 conversion is an important part of the transition towards clean fuels and chemicals. However, low solubility of CO2 in water and its slow diffusion cause mass transfer limitations in aqueous electrochemical CO2 reduction. This significantly limits the partial current densities towards any desired CO2-reduction product. We propose using flowable suspension electrodes to spread the current over a larger volume and alleviate mass transfer limitations, which could allow high partial current densities for CO2 conversion even in aqueous environments. To identify the requirements for a well-performing suspension electrode, we use a transmission line model to simulate the local electric and ionic current distributions throughout a channel and show that the electrocatalysis is best distributed over the catholyte volume when the electric, ionic and charge transfer resistances are balanced. In addition, we used electrochemical impedance spectroscopy to measure the different resistance contributions and correlated the results with rheology measurements to show that particle size and shape impact the ever-present trade-off between conductivity and flowability. We combine the modelling and experimental results to evaluate which carbon type is most suitable for use in a suspension electrode for CO2 reduction, and predict a good reaction distribution throughout activated carbon and carbon black suspensions. Finally, we tested several suspension electrodes in a CO2 electrolyzer. Even though mass transport limitations should be reduced, the CO partial current densities are capped at 2.8 mA cm-2, which may be due to engineering limitations. We conclude that using suspension electrodes is challenging for sensitive reactions like CO2 reduction, and may be more suitable for use in other electrochemical conversion reactions suffering from mass transfer limitations that are less affected by competing reactions and contaminations.
Collapse
Affiliation(s)
- Nathalie E G Ligthart
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Gerard Prats Vergel
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Johan T Padding
- Department of Process and Energy, Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - David A Vermaas
- Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
| |
Collapse
|
23
|
Shen L, Goyal A, Chen X, Koper MTM. Cation Effects on Hydrogen Oxidation Reaction on Pt Single-Crystal Electrodes in Alkaline Media. J Phys Chem Lett 2024; 15:2911-2915. [PMID: 38451074 PMCID: PMC10945570 DOI: 10.1021/acs.jpclett.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The exact mechanism behind the cation-assisted hydrogen oxidation reaction (HOR) on platinum electrodes in alkaline media remains disputed. We show that the cation effects at platinum display a remarkable structure sensitivity: not only the H adsorption but also the HOR activity on (111) terrace sites are independent of the nature of cation and cation concentration. On (110) step sites, at low cation concentration and mildly alkaline media, cations promote the HOR, whereas at more alkaline pH and consequently higher near-surface cation concentrations, the HOR is inhibition by the cations. Moreover, the role of the cation on terrace-OHad is different from that on step-OHad, as can also be observed from the inhibition of the HOR current by terrace-OHad at higher potentials. These results suggest that near the onset potential, HOR mainly takes place on steps, but under diffusion-limited conditions at higher overpotential, HOR mainly takes place on terraces.
Collapse
Affiliation(s)
- Linfan Shen
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Akansha Goyal
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, P. R. China
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
24
|
Serva A, Pezzotti S. S.O.S: Shape, orientation, and size tune solvation in electrocatalysis. J Chem Phys 2024; 160:094707. [PMID: 38426524 DOI: 10.1063/5.0186925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Current models to understand the reactivity of metal/aqueous interfaces in electrochemistry, e.g., volcano plots, are based on the adsorption free energies of reactants and products, which are often small hydrophobic molecules (such as in CO2 and N2 reduction). Calculations played a major role in the quantification and comprehension of these free energies in terms of the interactions that the reactive species form with the surface. However, solvation free energies also come into play in two ways: (i) by modulating the adsorption free energy together with solute-surface interactions, as the solute has to penetrate the water adlayer in contact with the surface and get partially desolvated (which costs free energy); (ii) by regulating transport across the interface, i.e., the free energy profile from the bulk to the interface, which is strongly non-monotonic due to the unique nature of metal/aqueous interfaces. Here, we use constant potential molecular dynamics to study the solvation contributions, and we uncover huge effects of the shape and orientation (on top of the already known size effect) of small hydrophobic and amphiphilic solutes on their adsorption free energy. We propose a minimal theoretical model, the S.O.S. model, that accounts for size, orientation, and shape effects. These novel aspects are rationalized by recasting the concepts at the base of the Lum-Chandler-Weeks theory of hydrophobic solvation (for small solutes in the so-called volume-dominated regime) into a layer-by-layer form, where the properties of each interfacial region close to the metal are explicitly taken into account.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
25
|
Liu X, Koper MTM. Tuning the Interfacial Reaction Environment for CO 2 Electroreduction to CO in Mildly Acidic Media. J Am Chem Soc 2024; 146:5242-5251. [PMID: 38350099 PMCID: PMC10910518 DOI: 10.1021/jacs.3c11706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
A considerable carbon loss of CO2 electroreduction in neutral and alkaline media severely limits its industrial viability as a result of the homogeneous reaction of CO2 and OH- under interfacial alkalinity. Here, to mitigate homogeneous reactions, we conducted CO2 electroreduction in mildly acidic media. By modulating the interfacial reaction environment via multiple electrolyte effects, the parasitic hydrogen evolution reaction is suppressed, leading to a faradaic efficiency of over 80% for CO on the planar Au electrode. Using the rotating ring-disk electrode technique, the Au ring constitutes an in situ CO collector and pH sensor, enabling the recording of the Faradaic efficiency and monitoring of interfacial reaction environment while CO2 reduction takes place on the Au disk. The dominant branch of hydrogen evolution reaction switches from the proton reduction to the water reduction as the interfacial environment changes from acidic to alkaline. By comparison, CO2 reduction starts within the proton reduction region as the interfacial environment approaches near-neutral conditions. Thereafter, proton reduction decays, while CO2 reduction takes place, as the protons are increasingly consumed by the OH- electrogenerated from CO2 reduction. CO2 reduction reaches its maximum Faradaic efficiency just before water reduction initiates. Slowing the mass transport lowers the proton reduction current, while CO2 reduction is hardly influenced. In contrast, appropriate protic anion, e.g., HSO4- in our case, and weakly hydrated cations, e.g., K+, accelerate CO2 reduction, with the former providing extra proton flux but higher local pH, and the latter stabilizing the *CO2- intermediate.
Collapse
Affiliation(s)
- Xuan Liu
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
26
|
Nilles CK, Borkowski AK, Bartlett ER, Stalcup MA, Lee HJ, Leonard KC, Subramaniam B, Thompson WH, Blakemore JD. Mechanistic Basis of Conductivity in Carbon Dioxide-Expanded Electrolytes: A Joint Experimental-Theoretical Study. J Am Chem Soc 2024; 146:2398-2410. [PMID: 38252883 DOI: 10.1021/jacs.3c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Electrolyte conductivity contributes to the efficiency of devices for electrochemical conversion of carbon dioxide (CO2) into useful chemicals, but the effect of the dissolution of CO2 gas on conductivity has received little attention. Here, we report a joint experimental-theoretical study of the properties of acetonitrile-based CO2-expanded electrolytes (CXEs) that contain high concentrations of CO2 (up to 12 M), achieved by CO2 pressurization. Cyclic voltammetry data and paired simulations show that high concentrations of dissolved CO2 do not impede the kinetics of outer-sphere electron transfer but decrease the solution conductivity at higher pressures. In contrast with conventional behaviors, Jones reactor-based measurements of conductivity show a nonmonotonic dependence on CO2 pressure: a plateau region of constant conductivity up to ca. 4 M CO2 and a region showing reduced conductivity at higher [CO2]. Molecular dynamics simulations reveal that while the intrinsic ionic strength decreases as [CO2] increases, there is a concomitant increase in ionic mobility upon CO2 addition that contributes to stable solution conductivities up to 4 M CO2. Taken together, these results shed light on the mechanisms underpinning electrolyte conductivity in the presence of CO2 and reveal that the dissolution of CO2, although nonpolar by nature, can be leveraged to improve mass transport rates, a result of fundamental and practical significance that could impact the design of next-generation systems for CO2 conversion. Additionally, these results show that conditions in which ample CO2 is available at the electrode surface are achievable without sacrificing the conductivity needed to reach high electrocatalytic currents.
Collapse
Affiliation(s)
- Christian K Nilles
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ashley K Borkowski
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Elizabeth R Bartlett
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Matthew A Stalcup
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Hyun-Jin Lee
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
27
|
Sedano Varo E, Egeberg Tankard R, Kryger-Baggesen J, Jinschek J, Helveg S, Chorkendorff I, Damsgaard CD, Kibsgaard J. Gold Nanoparticles for CO 2 Electroreduction: An Optimum Defined by Size and Shape. J Am Chem Soc 2024; 146:2015-2023. [PMID: 38196113 PMCID: PMC10811675 DOI: 10.1021/jacs.3c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Understanding the size-dependent behavior of nanoparticles is crucial for optimizing catalytic performance. We investigate the differences in selectivity of size-selected gold nanoparticles for CO2 electroreduction with sizes ranging from 1.5 to 6.5 nm. Our findings reveal an optimal size of approximately 3 nm that maximizes selectivity toward CO, exhibiting up to 60% Faradaic efficiency at low potentials. High-resolution transmission electron microscopy reveals different shapes for the particles and suggests that multiply twinned nanoparticles are favorable for CO2 reduction to CO. Our analysis shows that twin boundaries pin 8-fold coordinated surface sites and in turn suggests that a variation of size and shape to optimize the abundance of 8-fold coordinated sites is a viable path for optimizing the CO2 electrocatalytic reduction to CO. This work contributes to the advancement of nanocatalyst design for achieving tunable selectivity for CO2 conversion into valuable products.
Collapse
Affiliation(s)
- Esperanza Sedano Varo
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rikke Egeberg Tankard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Joakim Kryger-Baggesen
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Joerg Jinschek
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National
Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Stig Helveg
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christian Danvad Damsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National
Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Yang JH, Hwang SY, Maeng JY, Park GE, Yang SY, Rhee CK, Sohn Y. Opening Direct Electrochemical Fischer-Tropsch Synthesis Path by Interfacial Engineering of Cu Electrode with P-Block Elements. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3368-3387. [PMID: 38214573 DOI: 10.1021/acsami.3c15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The electrochemical synthesis of syngas (CO and H2) has garnered considerable attention in the context of Fischer-Tropsch (FT) synthesis employing thermal catalysts. Nonetheless, the need for a novel, cost-effective technique persists. In this investigation, we introduce a direct electrochemical (dEC) approach for FT synthesis that functions under ambient conditions by utilizing a p-block element (Sn and In) overlaid Cu electrode. Surface *CO and H* species were obtained in an electrolytic medium through the CO2 + H+ + e- → HOOCad → *CO (or direct CO adsorption) and H+ + e- → H* reactions, respectively. We have observed C2-7 long-chain hydrocarbons with a CnH2n+2/CnH2n ratio of 1-3, and this observation can be explained through the process of C-C coupling chain growth of the conventional FT synthesis, based on the linearity of the Anderson-Schulz-Flory equation plots. Thick Sn and In overlayers resulted in the dominant production of formate, while CO and C2H4 production were found to be proportional and inversely correlated to H2, C2H6, and C3-7 hydrocarbon production. The EC CO2/CO reduction used in dEC FT synthesis offers valuable insights into the mechanism of C2+ production and holds promise as an eco-friendly approach to producing long-chain hydrocarbons for energy and environmental purposes.
Collapse
Affiliation(s)
- Ju Hyun Yang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon Young Hwang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju Young Maeng
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Go Eun Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seo Young Yang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
29
|
Li K, Kuwahara Y, Yamashita H. Hollow carbon-based materials for electrocatalytic and thermocatalytic CO 2 conversion. Chem Sci 2024; 15:854-878. [PMID: 38239694 PMCID: PMC10793651 DOI: 10.1039/d3sc05026b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Electrocatalytic and thermocatalytic CO2 conversions provide promising routes to realize global carbon neutrality, and the development of corresponding advanced catalysts is important but challenging. Hollow-structured carbon (HSC) materials with striking features, including unique cavity structure, good permeability, large surface area, and readily functionalizable surface, are flexible platforms for designing high-performance catalysts. In this review, the topics range from the accurate design of HSC materials to specific electrocatalytic and thermocatalytic CO2 conversion applications, aiming to address the drawbacks of conventional catalysts, such as sluggish reaction kinetics, inadequate selectivity, and poor stability. Firstly, the synthetic methods of HSC, including the hard template route, soft template approach, and self-template strategy are summarized, with an evaluation of their characteristics and applicability. Subsequently, the functionalization strategies (nonmetal doping, metal single-atom anchoring, and metal nanoparticle modification) for HSC are comprehensively discussed. Lastly, the recent achievements of intriguing HSC-based materials in electrocatalytic and thermocatalytic CO2 conversion applications are presented, with a particular focus on revealing the relationship between catalyst structure and activity. We anticipate that the review can provide some ideas for designing highly active and durable catalytic systems for CO2 valorization and beyond.
Collapse
Affiliation(s)
- Kaining Li
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka, Suita Osaka 565-0871 Japan
| |
Collapse
|
30
|
Zhang G, Kucernak A. Time-Resolved Product Observation for CO 2 Electroreduction Using Synchronised Electrochemistry-Mass Spectrometry with Soft Ionisation (sEC-MS-SI). Angew Chem Int Ed Engl 2023; 62:e202312607. [PMID: 37801612 PMCID: PMC10952920 DOI: 10.1002/anie.202312607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
The mechanistic understanding of electrochemical CO2 reduction reaction (CO2 RR) requires a rapid and accurate characterisation of product distribution to unravel the activity and selectivity, which is yet hampered by the lack of advanced correlative approaches. Here, we present the time-resolved identification of CO2 RR products by using the synchronised electrochemistry-mass spectrometry (sEC-MS). Transients in product formation can be readily captured in relation to electrochemical conditions. Moreover, a soft ionisation (SI) strategy is developed in MS for the direct observation of CO, immune to the interference of CO2 fragments. With the sEC-MS-SI, the kinetic information, such as Tafel slopes and onset potentials, for a myriad of CO2 RR products are revealed and we show the hysteresis seen for the evolution of some species may originate from the potential-driven changes in surface coverage of intermediates. This work provides a real-time picture of the dynamic formation of CO2 RR products.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUnited Kingdom
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Anthony Kucernak
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUnited Kingdom
| |
Collapse
|
31
|
Xue L, Gao Z, Ning T, Li W, Li J, Yin J, Xiao L, Wang G, Zhuang L. Dual-Role of Polyelectrolyte-Tethered Benzimidazolium Cation in Promoting CO 2 /Pure Water Co-Electrolysis to Ethylene. Angew Chem Int Ed Engl 2023; 62:e202309519. [PMID: 37750552 DOI: 10.1002/anie.202309519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR), as a promising route to realize negative carbon emissions, is known to be strongly affected by electrolyte cations (i.e., cation effect). In contrast to the widely-studied alkali cations in liquid electrolytes, the effect of organic cations grafted on alkaline polyelectrolytes (APE) remains unexplored, although APE has already become an essential component of CO2 electrolyzers. Herein, by studying the organic cation effect on CO2 RR, we find that benzimidazolium cation (Beim+ ) significantly outperforms other commonly-used nitrogenous cations (R4 N+ ) in promoting C2+ (mainly C2 H4 ) production over copper electrode. Cyclic voltammetry and in situ spectroscopy studies reveal that the Beim+ can synergistically boost the CO2 to *CO conversion and reduce the proton supply at the electrocatalytic interface, thus facilitating the *CO dimerization toward C2+ formation. By utilizing the homemade APE ionomer, we further realize efficient C2 H4 production at an industrial-scale current density of 331 mA cm-2 from CO2 /pure water co-electrolysis, thanks to the dual-role of Beim+ in synergistic catalysis and ionic conduction. This study provides a new avenue to boost CO2 RR through the structural design of polyelectrolytes.
Collapse
Affiliation(s)
- Liwei Xue
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Zeyu Gao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Wenzheng Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Jinmeng Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
- Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
32
|
Li P, Jiao Y, Huang J, Chen S. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS AU 2023; 3:2640-2659. [PMID: 37885580 PMCID: PMC10598835 DOI: 10.1021/jacsau.3c00410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics. Understanding the EDL effects in electrocatalysis has attracted substantial research interest in recent years. However, the intrinsic relationships between the specific EDL structures and electrocatalytic kinetics remain poorly understood, especially on the atomic scale. In this Perspective, we briefly review the recent advances in deciphering the EDL effects mainly in hydrogen and oxygen electrocatalysis through a multiscale approach, spanning from the atomistic scale simulated by ab initio methods to the macroscale by a hierarchical approach. We highlight the importance of resolving the local reaction environment, especially the local hydrogen bond network, in understanding EDL effects. Finally, some of the remaining challenges are outlined, and an outlook for future developments in these exciting frontiers is provided.
Collapse
Affiliation(s)
- Peng Li
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuzhou Jiao
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Shengli Chen
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Miličić T, Sivasankaran M, Blümner C, Sorrentino A, Vidaković-Koch T. Pulsed electrolysis - explained. Faraday Discuss 2023; 246:179-197. [PMID: 37415493 DOI: 10.1039/d3fd00030c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Lately, there has been high interest in electrolysis under dynamic conditions, the so-called pulsed electrolysis. Different studies have shown that in pulsed electrolysis, selectivity towards certain products can be improved compared to steady-state operation. Many groups also demonstrated that the selectivity can be tuned by selection of pulsing profile, potential limits, as well as frequency of the change. To explain the origin of this improvement, some modeling studies have been performed. However, it seems that a theoretical framework to study this effect is still missing. In the present contribution, we suggest a theoretical framework of nonlinear frequency response analysis for the evaluation of the process improvement under pulsed electrolysis conditions. Of special interest is the DC component, which determines how much the mean output value under dynamic conditions will be different from the value under steady-state conditions. Therefore, the DC component can be considered as a measure of process improvement under dynamic conditions compared to the steady-state operation. We show that the DC component is directly dependent on nonlinearities of the electrochemical process and demonstrate how this DC component can be calculated theoretically as well as how it can be obtained from measurements.
Collapse
Affiliation(s)
- T Miličić
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - M Sivasankaran
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - C Blümner
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
- Otto-von-Guiericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - A Sorrentino
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - T Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| |
Collapse
|
34
|
Sinha S, Jiang JJ. Main group elements in electrochemical hydrogen evolution and carbon dioxide reduction. Chem Commun (Camb) 2023; 59:11767-11779. [PMID: 37695110 DOI: 10.1039/d3cc03606e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Main-group elements are renowned for their versatile reactivities in organometallic chemistry, including CO2 insertion and H2 activation. However, electrocatalysts comprising a main-group element active site have not yet been widely developed for activating CO2 or producing H2. Recently, research has focused on main-group element-based electrocatalysts that are active in redox systems related to fuel-forming reactions. These studies have determined that the catalytic performances of heavier main-group element-based electrocatalysts are often similar to those of transition-metal-based electrocatalysts. Our group has recently reported the scope of including the main-group elements in the design of molecular catalysts and explored their applications in redox catalysis, such as the generation of H2 upon coupling of two protons (H+) and two electrons (e-). This feature article summarizes our research efforts in developing molecular electrocatalysts comprising main-group elements at their active sites. Furthermore, we highlight their influence on the rate-determining step, thereby enhancing the reaction rate and product selectivity for multi-H+/multi-e- transfer catalysis. Particularly, we focus on the performance of our recently reported molecular Sn- or Sb-centered macrocycles for electrocatalytic H2 evolution reaction (HER) and on how their mechanisms resemble those of transition-metal-based electrocatalysts. Moreover, we discuss the CO2 reduction reaction (CO2RR), another promising fuel-forming reaction, and emphasize the recent progress in including the main-group elements in the CO2RR. Although the main-group elements are found at the active sites of the molecular catalysts and are embedded in the electrode materials for studying the HER, molecular catalysts bearing main-group elements are not commonly used for CO2RR. However, the main-group elements assist the CO2RR by acting as co-catalysts. For example, alkali and alkaline earth metal ions (e.g., Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, and Ba2+) are known for their Lewis acidities, which influence the thermodynamic landscape of the CO2RR and product selectivity. In contrast, the elements in groups 13, 14, and 15 are primarily used as dopants in the preparation of catalytic materials. Overall, this article identifies main-group element-based molecular electrocatalysts and materials for HER and CO2RR.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, USA.
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
35
|
Hwang SY, Maeng JY, Park GE, Yang SY, Kim SY, Rhee CK, Sohn Y. New reaction path for long-chain hydrocarbons by electrochemical CO 2 and CO reduction over Au/stainless steel. CHEMOSPHERE 2023; 338:139616. [PMID: 37482308 DOI: 10.1016/j.chemosphere.2023.139616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The Fischer-Tropsch (F-T) synthesis is recognized for its ability to produce long-chain hydrocarbons. In this study, we aimed to replicate F-T synthesis using electrochemical CO2 reduction and CO reduction reactions on a stainless steel (SS) support with a gold (Au) overlayer. Under CO2-saturated conditions, the presence of Au on the SS surface led to the formation of CH4 and a range of hydrocarbons (CnH2n and CnH2n+2, n = 2-7), while bare SS primarily produced hydrogen. The Au(10 nm)/SS exhibited the highest hydrocarbon production in CO2-saturated phosphate, indicating a synergistic effect at the Au-SS interface. In CO-saturated conditions, bare SS also produced long-chain hydrocarbons, but increasing Au thickness resulted in decreased production due to poor CO adsorption. Hydrocarbons were formed through both direct and indirect CO adsorption pathways. Anderson-Schulz-Flory analysis confirmed surface CO hydrogenation and C-C coupling polymerization following conventional F-T synthesis. The C2 hydrocarbons exhibited distinct behavior compared to C3-5 hydrocarbons, suggesting different reaction pathways. Despite low reduction product levels, our EC method successfully replicated F-T synthesis using the Au/SS electrode, providing valuable insights into C-C coupling mechanisms and electrochemical production of long-chain hydrocarbons. Depth-profiling X-ray photoelectron spectroscopy revealed significant changes in surface elemental compositions before and after EC reduction.
Collapse
Affiliation(s)
- Seon Young Hwang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ju Young Maeng
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Go Eun Park
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seo Young Yang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Young Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
36
|
Fernández-Climent R, Redondo J, García-Tecedor M, Spadaro MC, Li J, Chartrand D, Schiller F, Pazos J, Hurtado MF, de la Peña O’Shea V, Kornienko N, Arbiol J, Barja S, Mesa CA, Giménez S. Highly Durable Nanoporous Cu 2-xS Films for Efficient Hydrogen Evolution Electrocatalysis under Mild pH Conditions. ACS Catal 2023; 13:10457-10467. [PMID: 37564127 PMCID: PMC10411506 DOI: 10.1021/acscatal.3c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Copper-based hydrogen evolution electrocatalysts are promising materials to scale-up hydrogen production due to their reported high current densities; however, electrode durability remains a challenge. Here, we report a facile, cost-effective, and scalable synthetic route to produce Cu2-xS electrocatalysts, exhibiting hydrogen evolution rates that increase for ∼1 month of operation. Our Cu2-xS electrodes reach a state-of-the-art performance of ∼400 mA cm-2 at -1 V vs RHE under mild conditions (pH 8.6), with almost 100% Faradaic efficiency for hydrogen evolution. The rise in current density was found to scale with the electrode electrochemically active surface area. The increased performance of our Cu2-xS electrodes correlates with a decrease in the Tafel slope, while analyses by X-ray photoemission spectroscopy, operando X-ray diffraction, and in situ spectroelectrochemistry cooperatively revealed the Cu-centered nature of the catalytically active species. These results allowed us to increase fundamental understanding of heterogeneous electrocatalyst transformation and consequent structure-activity relationship. This facile synthesis of highly durable and efficient Cu2-xS electrocatalysts enables the development of competitive electrodes for hydrogen evolution under mild pH conditions.
Collapse
Affiliation(s)
- Roser Fernández-Climent
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
| | - Jesús Redondo
- Department
of Polymers and Advanced Materials, Centro de Física de Materiales, University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic
| | - Miguel García-Tecedor
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
- Photoactivated
Processes Unit, IMDEA Energy Institute,
Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Maria Chiara Spadaro
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2) and BIST Campus
UAB, Bellaterra 08193, Barcelona, Catalonia, Spain
| | - Junnan Li
- Department
of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Daniel Chartrand
- Department
of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Frederik Schiller
- Centro
de Física de Materiales and Material Physics Center CSIC/UPV-EHU, Manuel Lardizabal 5, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Jhon Pazos
- Research
Cluster on Converging Sciences and Technologies (NBIC), Departamento
de Ingeniería Electrónica, Universidad Central, Calle 5 No 21-38, Bogotá 110311, Colombia
| | - Mikel F. Hurtado
- Research
Cluster on Converging Sciences and Technologies (NBIC), Departamento
de Ingeniería Electrónica, Universidad Central, Calle 5 No 21-38, Bogotá 110311, Colombia
- Materials
Chemistry Area, Civil Engineering Department, Corporación Universitaria
Minuto de Dios, Calle 80, Main Sede Bogotá, Colombia. −
Nanotechnology Applications Area, Environmental Engineering Department, Universidad Militar Nueva Granada, Km 2 via Cajicá, Zipaquirá 110311, Colombia
| | - Victor de la Peña O’Shea
- Photoactivated
Processes Unit, IMDEA Energy Institute,
Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Nikolay Kornienko
- Department
of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2) and BIST Campus
UAB, Bellaterra 08193, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Sara Barja
- Department
of Polymers and Advanced Materials, Centro de Física de Materiales, University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Camilo A. Mesa
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
- Research
Cluster on Converging Sciences and Technologies (NBIC), Departamento
de Ingeniería Electrónica, Universidad Central, Calle 5 No 21-38, Bogotá 110311, Colombia
| | - Sixto Giménez
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Av. de Vicente Sos Baynat, s/n, 12006 Castelló, Spain
| |
Collapse
|
37
|
Deacon-Price C, da Silva AHM, Santana CS, Koper MTM, Garcia AC. Solvent Effect on Electrochemical CO 2 Reduction Reaction on Nanostructured Copper Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14518-14527. [PMID: 37529666 PMCID: PMC10388345 DOI: 10.1021/acs.jpcc.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Indexed: 08/03/2023]
Abstract
The electrochemical reduction of CO2 (CO2RR) is a sustainable alternative for producing fuels and chemicals, although the production of highly desired hydrocarbons is still a challenge due to the higher overpotential requirement in combination with the competitive hydrogen evolution reaction (HER). Tailoring the electrolyte composition is a possible strategy to favor the CO2RR over the HER. In this work we studied the solvent effect on the CO2RR on a nanostructured Cu electrode in acetonitrile solvent with different amounts of water. Similar to what has been observed for aqueous media, our online gas chromatography results showed that CO2RR in acetonitrile solvent is also structure-dependent, since nanocube-covered copper (CuNC) was the only surface (in comparison to polycrystalline Cu) capable of producing a detectable amount of ethylene (10% FE), provided there is enough water present in the electrolyte (>500 mM). In situ Fourier Transform Infrared (FTIR) spectroscopy showed that in acetonitrile solvent the presence of CO2 strongly inhibits HER by driving away water from the interface. CO is by far the main product of CO2RR in acetonitrile (>85% Faradaic efficiency), but adsorbed CO is not detected. This suggests that in acetonitrile media CO adsorption is inhibited compared to aqueous media. Remarkably, the addition of water to acetonitrile has little quantitative and almost no qualitative effect on the activity and selectivity of the CO2RR. This indicates that water is not strongly involved in the rate-determining step of the CO2RR in acetonitrile. Only at the highest water concentrations and at the CuNC surface, the CO coverage becomes high enough that a small amount of C2+ product is formed.
Collapse
Affiliation(s)
- Connor Deacon-Price
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alisson H. M. da Silva
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cássia S. Santana
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Weng S, Toh WL, Surendranath Y. Weakly Coordinating Organic Cations Are Intrinsically Capable of Supporting CO 2 Reduction Catalysis. J Am Chem Soc 2023. [PMID: 37486158 DOI: 10.1021/jacs.3c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The rates and selectivity of electrochemical CO2 reduction are known to be strongly influenced by the identity of alkali metal cations in the medium. However, experimentally, it remains unclear whether cation effects arise predominantly from coordinative stabilization of surface intermediates or from changes in the mean-field electrostatic environment at the interface. Herein, we show that Au- and Ag-catalyzed CO2 reduction can occur in the presence of weakly coordinating (poly)tetraalkylammonium cations. Through competition experiments in which the catalytic activity of Au was monitored as a function of the ratio of the organic to metal cation, we identify regimes in which the organic cation exclusively controls CO2 reduction selectivity and activity. We observe substantial CO production in this regime, suggesting that CO2 reduction catalysis can occur in the absence of Lewis acidic cations, and thus, coordinative interactions between the electrolyte cations and surface-bound intermediates are not required for CO2 activation. For both Au and Ag, we find that tetraalkylammonium cations support catalytic activity for CO2 reduction on par with alkali metal cations but with distinct cation activity trends between Au and Ag. These findings support a revision in electrolyte design rules to include water-soluble organic cation salts as potential supporting electrolytes for CO2 electrolysis.
Collapse
Affiliation(s)
- Sophia Weng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wei Lun Toh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Zou J, Liang G, Zhang F, Zhang S, Davey K, Guo Z. Revisiting the Role of Discharge Products in Li-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210671. [PMID: 37171977 DOI: 10.1002/adma.202210671] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Indexed: 05/14/2023]
Abstract
Rechargeable lithium-carbon dioxide (Li-CO2 ) batteries are promising devices for CO2 recycling and energy storage. However, thermodynamically stable and electrically insulating discharge products (DPs) (e.g., Li2 CO3 ) deposited at cathodes require rigorous conditions for completed decomposition, resulting in large recharge polarization and poor battery reversibility. Although progress has been achieved in cathode design and electrolyte optimization, the significance of DPs is generally underestimated. Therefore, it is necessary to revisit the role of DPs in Li-CO2 batteries to boost overall battery performance. Here, a critical and systematic review of DPs in Li-CO2 batteries is reported for the first time. Fundamentals of reactions for formation and decomposition of DPs are appraised; impacts on battery performance including overpotential, capacity, and stability are demonstrated; and the necessity of discharge product management is highlighted. Practical in situ/operando technologies are assessed to characterize reaction intermediates and the corresponding DPs for mechanism investigation. Additionally, achievable control measures to boost the decomposition of DPs are evidenced to provide battery design principles and improve the battery performance. Findings from this work will deepen the understanding of electrochemistry of Li-CO2 batteries and promote practical applications.
Collapse
Affiliation(s)
- Jinshuo Zou
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gemeng Liang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fangli Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shilin Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
40
|
Deng GH, Zhu Q, Rebstock J, Neves-Garcia T, Baker LR. Direct observation of bicarbonate and water reduction on gold: understanding the potential dependent proton source during hydrogen evolution. Chem Sci 2023; 14:4523-4531. [PMID: 37152268 PMCID: PMC10155912 DOI: 10.1039/d3sc00897e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
The electrochemical conversion of CO2 represents a promising way to simultaneously reduce CO2 emissions and store chemical energy. However, the competition between CO2 reduction (CO2R) and the H2 evolution reaction (HER) hinders the efficient conversion of CO2 in aqueous solution. In water, CO2 is in dynamic equilibrium with H2CO3, HCO3 -, and CO3 2-. While CO2 and its associated carbonate species represent carbon sources for CO2R, recent studies by Koper and co-workers indicate that H2CO3 and HCO3 - also act as proton sources during HER (J. Am. Chem. Soc. 2020, 142, 4154-4161, ACS Catal. 2021, 11, 4936-4945, J. Catal. 2022, 405, 346-354), which can favorably compete with water at certain potentials. However, accurately distinguishing between competing reaction mechanisms as a function of potential requires direct observation of the non-equilibrium product distribution present at the electrode/electrolyte interface. In this study, we employ vibrational sum frequency generation (VSFG) spectroscopy to directly probe the interfacial species produced during competing HER/CO2R on Au electrodes. The vibrational spectra at the Ar-purged Na2SO4 solution/Au interface, where only HER occurs, show a strong peak around 3650 cm-1, which appears at the HER onset potential and is assigned to OH-. Notably, this species is absent for the CO2-purged Na2SO4 solution/gold interface; instead, a peak around 3400 cm-1 appears at catalytic potential, which is assigned to CO3 2- in the electrochemical double layer. These spectral reporters allow us to differentiate between HER mechanisms based on water reduction (OH- product) and HCO3 - reduction (CO3 2- product). Monitoring the relative intensities of these features as a function of potential in NaHCO3 electrolyte reveals that the proton donor switches from HCO3 - at low overpotential to H2O at higher overpotential. This work represents the first direct detection of OH- on a metal electrode produced during HER and provides important insights into the surface reactions that mediate selectivity between HER and CO2R in aqueous solution.
Collapse
Affiliation(s)
- Gang-Hua Deng
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT) Beijing 100876 P. R. China
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jaclyn Rebstock
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Tomaz Neves-Garcia
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
41
|
Zhu X, Huang J, Eikerling M. pH Effects in a Model Electrocatalytic Reaction Disentangled. JACS AU 2023; 3:1052-1064. [PMID: 37124300 PMCID: PMC10131201 DOI: 10.1021/jacsau.2c00662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Varying the solution pH not only changes the reactant concentrations in bulk solution but also the local reaction environment (LRE) that is shaped furthermore by macroscopic mass transport and microscopic electric double layer (EDL) effects. Understanding ubiquitous pH effects in electrocatalysis requires disentangling these interwoven factors, which is a difficult, if not impossible, task without physical modeling. Herein, we demonstrate how a hierarchical model that integrates microkinetics, double-layer charging, and macroscopic mass transport can help understand pH effects of the formic acid oxidation reaction (FAOR). In terms of the relation between the peak activity and the solution pH, intrinsic pH effects without consideration of changes in the LRE would lead to a bell-shaped curve with a peak at pH = 6. Adding only macroscopic mass transport, we can already reproduce qualitatively the experimentally observed trapezoidal shape with a plateau between pH 5 and 10 in perchlorate and sulfate solutions. A quantitative agreement with experimental data requires consideration of EDL effects beyond Frumkin correlations. Specifically, the peculiar nonmonotonic surface charging relation affects the free energies of adsorbed intermediates. We further discuss pH effects of FAOR in phosphate and chloride-containing solutions, for which anion adsorption becomes important. This study underpins the importance of a full consideration of multiple interrelated factors for the interpretation of pH effects in electrocatalysis.
Collapse
Affiliation(s)
- Xinwei Zhu
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
42
|
Liu X, Monteiro MCO, Koper MTM. Interfacial pH measurements during CO 2 reduction on gold using a rotating ring-disk electrode. Phys Chem Chem Phys 2023; 25:2897-2906. [PMID: 36633182 DOI: 10.1039/d2cp05515e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Insights into how to control the activity and selectivity of the electrochemical CO2 reduction reaction are still limited because of insufficient knowledge of the reaction mechanism and kinetics, which is partially due to the lack of information on the interfacial pH, an important parameter for proton-coupled reactions like CO2 reduction. Here, we used a reliable and sensitive pH sensor combined with the rotating ring-disk electrode technique, in which a functionalized Au ring electrode works as a real-time detector of the OH- generated during the CO2 reduction reaction at a gold disk electrode. Variations of the interfacial pH due to both electrochemical and homogeneous reactions are mapped and the correlation of the interfacial pH with these reactions is inferred. The interfacial pH near the disk electrode increases from 7 to 12 with increasing current density, with a sharp increase at around -0.5 V vs. RHE, which indicates a change of the dominant buffering species. Through scan rate-dependent voltammetry and chronopotentiometry experiments, the homogenous reactions are shown to reach equilibrium within the time scale of the pH measurements, so that the interfacial concentrations of different carbonaceous species can be calculated using equilibrium constants. Furthermore, pH measurements were also performed under different conditions to disentangle the relationship between the interfacial pH and other electrolyte effects. The buffer effect of alkali metal cations is confirmed, showing that weakly hydrated cations lead to less pronounced pH gradients. Finally, we probe to which extent increasing mass transport and the electrolyte buffer capacity can aid in suppressing the increase of the interfacial pH, showing that the buffer capacity is the dominant factor in suppressing interfacial pH variations.
Collapse
Affiliation(s)
- Xuan Liu
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Mariana C O Monteiro
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
43
|
Qin X, Vegge T, Hansen HA. Cation-Coordinated Inner-Sphere CO 2 Electroreduction at Au-Water Interfaces. J Am Chem Soc 2023; 145:1897-1905. [PMID: 36630567 DOI: 10.1021/jacs.2c11643] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a promising technology for the clean energy economy. Numerous efforts have been devoted to enhancing the mechanistic understanding of CO2RR from both experimental and theoretical studies. Electrolyte ions are critical for the CO2RR; however, the role of alkali metal cations is highly controversial, and a complete free energy diagram of CO2RR at Au-water interfaces is still missing. Here, we provide a systematic mechanism study toward CO2RR via ab initio molecular dynamics simulations integrated with the slow-growth sampling (SG-AIMD) method. By using the SG-AIMD approach, we demonstrate that CO2RR is facile at the inner-sphere interface in the presence of K cations, which promote the CO2 activation with the free energy barrier of only 0.66 eV. Furthermore, the competitive hydrogen evolution reaction (HER) is inhibited by the interfacial cations with the induced kinetic blockage effect, where the rate-limiting Volmer step shows a much higher energy barrier (1.27 eV). Eventually, a comprehensive free energy diagram including both kinetics and thermodynamics of the CO2RR to CO and the HER at the electrochemical interface is derived, which illustrates the critical role of cations on the overall performance of CO2 electroreduction by facilitating CO2 adsorption while suppressing the hydrogen evolution at the same time.
Collapse
Affiliation(s)
- Xueping Qin
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| |
Collapse
|
44
|
Peng O, Hu Q, Zhou X, Zhang R, Du Y, Li M, Ma L, Xi S, Fu W, Xu ZX, Cheng C, Chen Z, Loh KP. Swinging Hydrogen Evolution to Nitrate Reduction Activity in Molybdenum Carbide by Ruthenium Doping. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ouwen Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qikun Hu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xin Zhou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rongrong Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou 350207, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, New York 11973, United States
| | - Minzhang Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Lab, Upton, New York 11973, United States
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Wei Fu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China
| | - Zhongxin Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
45
|
Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat Commun 2022; 13:6911. [PMCID: PMC9663515 DOI: 10.1038/s41467-022-34685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPrecise understanding of interfacial metal−hydrogen interactions, especially under in operando conditions, is crucial to advancing the application of metal catalysts in clean energy technologies. To this end, while Pd-based catalysts are widely utilized for electrochemical hydrogen production and hydrogenation, the interaction of Pd with hydrogen during active electrochemical processes is complex, distinct from most other metals, and yet to be clarified. In this report, the hydrogen surface adsorption and sub-surface absorption (phase transition) features of Pd and its alloy nanocatalysts are identified and quantified under operando electrocatalytic conditions via on-chip electrical transport measurements, and the competitive relationship between electrochemical carbon dioxide reduction (CO2RR) and hydrogen sorption kinetics is investigated. Systematic dynamic and steady-state evaluations reveal the key impacts of local electrolyte environment (such as proton donors with different pKa) on the hydrogen sorption kinetics during CO2RR, which offer additional insights into the electrochemical interfaces and optimization of the catalytic systems.
Collapse
|
46
|
Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Ghelichkhah Z, Srinivasan R, Macdonald DD, Ferguson GS. Anion-Catalyzed Active Dissolution Model for the Electrochemical Adsorption of Bisulfate, Sulfate, and Oxygen on Gold in H2SO4 Solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Wang TH, Lin CY, Huang YC, Li CY. Facile electrosynthesis of polyaniline|gold nanoparticle core-shell nanofiber for efficient electrocatalytic CO2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Shan W, Liu R, Zhao H, Liu J. Bicarbonate Rebalances the *COOH/*OCO - Dual Pathways in CO 2 Electrocatalytic Reduction: In Situ Surface-Enhanced Raman Spectroscopic Evidence. J Phys Chem Lett 2022; 13:7296-7305. [PMID: 35916783 DOI: 10.1021/acs.jpclett.2c01372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the reactive site/CO2/electrolyte interfacial behaviors is very crucial for the design of an advantageous CO2 electrocatalytic reduction (CO2ER) system. One important but unrevealed question is how the CO2ER process is influenced by the high concentration of HCO3-, which is deliberately added as electrolyte or from the inevitable reaction between dissolved CO2 and OH-. Here, we provide unambiguous in situ spectroscopic evidence that on Ag-based catalysts, HCO3- is apt to facilitate *OCO- generation and therefore rebalances CO2ER pathways. By employing an alternative acid electrolyte to restrict the exchange between CO2 and HCO3- and eliminating the effect of solution pH, we reveal that HCO3- can decrease the onset potential of *OCO- and promote further formate production. Theoretical calculations indicate HCO3- can stabilize the adsorption of *OCO- instead of *COOH. The renewed understanding of the role of HCO3- could facilitate the judicious selection of electrolytes to regulate the CO2ER pathway and product distribution.
Collapse
Affiliation(s)
- Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Kas R, Yang K, Yewale GP, Crow A, Burdyny T, Smith WA. Modeling the Local Environment within Porous Electrode during Electrochemical Reduction of Bicarbonate. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Recep Kas
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Kailun Yang
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Gaurav P. Yewale
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Allison Crow
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wilson A. Smith
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|