1
|
Re RN, La Clair JJ, Noel JP, Burkart MD. Elucidating the Iterative Elongation Mechanism in a Type III Polyketide Synthase. J Am Chem Soc 2025; 147:16705-16714. [PMID: 40312803 DOI: 10.1021/jacs.5c05635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Type III polyketide synthases (PKSs) have a much simpler three-dimensional architecture compared with their type I and type II counterparts, yet they catalyze iterative polyketide elongation to generate a myriad of products in plants, fungi, and eubacteria. Despite this mechanistic complexity occurring within a single active site, the mechanism by which type III PKSs stabilize and direct their highly reactive keto and enolate intermediates has yet to be fully understood. Here, we report the synthesis and deployment of stable polyketone CoA analogues for each putative intermediate involved in the biphenyl synthase (BIS) mechanism together with three high-resolution crystal structures of each in complex with BIS from Malus domestica. This set of structures reveals key mechanistic features that control the number of iterative elongation steps and that shape the static architectural features responsible for organization of a water-mediated hydrogen bonding network necessary for termination of the elongation reaction by an intramolecular aldol cyclization and production of the 3,5-dihydroxybiphenyl BIS product. Elucidating these protein-substrate interactions provides a foundation for using polyketone CoA analogues to further unravel the control mechanisms of PKS catalysis and gain the insight necessary for predictive engineering of these enzymes.
Collapse
Affiliation(s)
- Rebecca N Re
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Kim M, Kim J, Lee GS, Olinares PDB, Airan Y, Chow JL, Park J, Jeong Y, Park J, Chait BT, Herzon SB, Kim CS, Kang JY. Structural study on human microbiome-derived polyketide synthases that assemble genotoxic colibactin. Structure 2025:S0969-2126(25)00173-X. [PMID: 40381618 DOI: 10.1016/j.str.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Colibactin, a human microbiome-derived genotoxin, promotes colorectal cancer by damaging the host gut epithelial genomes. While colibactin is synthesized via a hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway, known as pks or clb, the structural details of its biosynthetic enzymes remain limited, hindering our understanding of its biosynthesis and clinical application. In this study, we report the cryo-EM structures of two colibactin-producing PKS enzymes, ClbC and ClbI, captured in different reaction states using a substrate-mimic crosslinker. Our structural analysis revealed the binding sites of carrier protein (CP) domains of the ClbC and ClbI on their ketosynthase (KS) domains. Further, we identified a novel NRPS-PKS docking interaction between ClbI and its upstream enzyme, ClbH, mediated by the C-terminal peptide ClbH and the dimeric interface of ClbI, establishing a 1:2 stoichiometry. These findings advance our understanding of colibactin assembly line and provide broader insights into NRPS-PKS natural product biosynthesis mechanisms.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Yougant Airan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Jasmine L Chow
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Jongseok Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yujin Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Department of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Zhao Y, Zhang W, Liu W, Tang Z. Noncanonical Functions of Ketosynthase Domains in Type I Polyketide Synthases. Chembiochem 2025; 26:e202400751. [PMID: 39429091 DOI: 10.1002/cbic.202400751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Modular type I polyketide synthases (PKSs) are remarkable molecular machines that can synthesize structurally complex polyketide natural products with a wide range of biological activities. In these molecular machines, ketosynthase (KS) domains play a central role, typically by catalyzing decarboxylative Claisen condensation for polyketide chain extension. Noncanonical KS domains with catalytic functions rather than Claisen condensation have increasingly been evidenced, further demonstrating the capability of type I PKSs for structural diversity. This review provides an overview of the reactions involving unusual KS activities, including PKS priming, acyl transfer, Dieckmann condensation, Michael addition, aldol-lactonization bicyclization, C-N bond formation and decarbonylation. Insights into these reactions can deepen the understanding of PKS-based assembly line chemistry and guide the efforts for rational engineering of polyketide-related molecules.
Collapse
Affiliation(s)
- Yuqiong Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wenyu Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhijun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Huang Y, Wang Y, Cai C, Zhang L, Ye F, Zhang L. The β-Ketoacyl-ACP Synthase FabF Catalyzes Carbon-Carbon Bond Formation in a Bimodal Pattern for Fatty Acid Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202407921. [PMID: 39175097 DOI: 10.1002/anie.202407921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Fatty acids produced by the type-II fatty acid biosynthetic pathway (FAS-II) are essential biomaterials for bacterial membrane construction and numerous metabolic routes. The β-ketoacyl-ACP synthase FabF catalyzes the key C-C bond formation step for fatty acid elongation in FAS-II. Here, we revealed the substrate recognition and catalytic mechanisms of FabF by determining FabF-ACP complexes. FabF displays a distinctive bimodal catalytic pattern specifically on C6 and C10 acyl-ACP substrates. It utilizes positively charged residues located on the η3-helix and loop1 regions near the catalytic tunnel entrance to bind ACP, and two hydrophobic cavities as well as "front", "middle", and "back" door residues to specifically stabilize C6 and C10 acyl substrates for preferential catalysis. Further quantum chemistry calculations suggest that the FabF catalytic residues Lys336 and His304 facilitate proton transfer during condensation catalysis and C-C bond formation. Our results provide key mechanistic insights into the biosynthesis of molecular carbon skeletons based on ketosynthases that are highly conserved through the FAS and polyketide synthase (PKS) analogous biosynthetic routes, broaden the understanding of the tricarboxylic acid cycle that utilizes lipoic acid derived from C8-ACP accumulated due to the FabF distinctive catalytic pattern for oxidative decarboxylations, and may facilitate the development of narrow-spectrum antibacterial drugs.
Collapse
Affiliation(s)
- Yuzhou Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Yiran Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Chang Cai
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Liang Zhang
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
5
|
Miyada MG, Choi Y, Stepanauskas R, Woyke T, La Clair JJ, Burkart MD. Fluorometric Analysis of Carrier-Protein-Dependent Biosynthesis through a Conformationally Sensitive Solvatochromic Pantetheinamide Probe. ACS Chem Biol 2024; 19:1416-1425. [PMID: 38909314 PMCID: PMC11622929 DOI: 10.1021/acschembio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.
Collapse
Affiliation(s)
- Matthew G. Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
6
|
Kalaj BN, La Clair JJ, Shen Y, Schwieters CD, Deshmukh L, Burkart MD. Quantitative Characterization of Chain-Flipping of Acyl Carrier Protein of Escherichia coli Using Chemical Exchange NMR. J Am Chem Soc 2024; 146:18650-18660. [PMID: 38875499 PMCID: PMC11299499 DOI: 10.1021/jacs.4c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The acyl carrier protein of Escherichia coli, termed AcpP, is a prototypical example of type II fatty acid synthase systems found in many bacteria. It serves as a central hub by accepting diverse acyl moieties (4-18 carbons) and shuttling them between its multiple enzymatic partners to generate fatty acids. Prior structures of acyl-AcpPs established that thioester-linked acyl cargos are sequestered within AcpP's hydrophobic lumen. In contrast, structures of enzyme-bound acyl-AcpPs showed translocation of AcpP-tethered acyl chains into the active sites of enzymes. The mechanistic underpinnings of this conformational interplay, termed chain-flipping, are unclear. Here, using heteronuclear NMR spectroscopy, we reveal that AcpP-tethered acyl chains (6-10 carbons) spontaneously adopt lowly populated solvent-exposed conformations. To this end, we devised a new strategy to replace AcpP's thioester linkages with 15N-labeled amide bonds, which facilitated direct "visualization" of these excited states using NMR chemical exchange saturation transfer and relaxation dispersion measurements. Global fitting of the corresponding data yielded kinetic rate constants of the underlying equilibrium and populations and lifetimes of solvent-exposed states. The latter were influenced by acyl chain composition and ranged from milliseconds to submilliseconds for chains containing six, eight, and ten carbons, owing to their variable interactions with AcpP's hydrophobic core. Although transient, the exposure of AcpP-tethered acyl chains to the solvent may allow relevant enzymes to gain access to its active thioester, and the enzyme-induced selection of this conformation will culminate in the production of fatty acids.
Collapse
Affiliation(s)
- Brianna N. Kalaj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Winter AJ, Khanizeman RN, Barker‐Mountford AMC, Devine AJ, Wang L, Song Z, Davies JA, Race PR, Williams C, Simpson TJ, Willis CL, Crump MP. Structure and Function of the α-Hydroxylation Bimodule of the Mupirocin Polyketide Synthase. Angew Chem Int Ed Engl 2023; 62:e202312514. [PMID: 37768840 PMCID: PMC10953402 DOI: 10.1002/anie.202312514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.
Collapse
Affiliation(s)
| | | | | | | | - Luoyi Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
- current addressSchool of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | | | | | | |
Collapse
|
8
|
Winter AJ, Khanizeman RN, Barker‐Mountford AMC, Devine AJ, Wang L, Song Z, Davies JA, Race PR, Williams C, Simpson TJ, Willis CL, Crump MP. Structure and Function of the α-Hydroxylation Bimodule of the Mupirocin Polyketide Synthase. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202312514. [PMID: 38515435 PMCID: PMC10952193 DOI: 10.1002/ange.202312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 03/23/2024]
Abstract
Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.
Collapse
Affiliation(s)
| | | | | | | | - Luoyi Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
- current addressSchool of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | | | | | | | |
Collapse
|
9
|
Jiang Z, Chen A, Chen J, Sekhon A, Louie GV, Noel JP, La Clair JJ, Burkart MD. Masked cerulenin enables a dual-site selective protein crosslink. Chem Sci 2023; 14:10925-10933. [PMID: 37829009 PMCID: PMC10566503 DOI: 10.1039/d3sc02864j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023] Open
Abstract
Protein-reactive natural products such as the fungal metabolite cerulenin are recognized for their value as therapeutic candidates, due to their ability to selectively react with catalytic residues within a protein active site or a complex of protein domains. Here, we explore the development of fatty-acid and polyketide-synthase probes by synthetically modulating cerulenin's functional moieties. Using a mechanism-based approach, we reveal unique reactivity within cerulenin and adapt it for fluorescent labeling and crosslinking of fatty-acid and iterative type-I polyketide synthases. We also describe two new classes of silylcyanohydrin and silylhemiaminal masked crosslinking probes that serve as new tools for activity and structure studies of these biosynthetic pathways.
Collapse
Affiliation(s)
- Ziran Jiang
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Jeffrey Chen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Arman Sekhon
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Gordon V Louie
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics La Jolla CA 92037 USA
| | - Joseph P Noel
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics La Jolla CA 92037 USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| |
Collapse
|
10
|
Zhang Y, Liu Z, Xiao G, Shi J, Liu B, Xiao N, Sun Z. Simultaneous DHA and organic selenium production by Schizochytrium sp.: a theoretical basis. Sci Rep 2023; 13:15607. [PMID: 37731016 PMCID: PMC10511486 DOI: 10.1038/s41598-023-42900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Docosahexaenoic acid (DHA) and selenium (Se) are nutrients that confer several health benefits to both humans and animals. Widespread use of DHA in milk powder and health products requires large-scale mass production via Schizochytrium sp., while Se intended for human consumption is produced as organic Se via yeast. However, producing these nutrients on an industrial scale is constrained by various factors. We found that supplementing Schizochytrium sp. with Na2SeO3 (0.5 mg/L) improves its biomass and DHA production and also provides organic Se. De novo assembled transcriptome and biochemical indicators showed that Na2SeO3 promotes forming acetyl coenzyme A and L-cysteine via the glycerol kinase and cysteine synthase pathways, promoting DHA synthesis through the polyketide synthase pathway. However, high doses of Na2SeO3 (5 mg/L) limited the biomass of Schizochytrium sp. and DHA content. This study provided a theoretical basis for the simultaneous production of organic Se and DHA via Schizochytrium sp.
Collapse
Affiliation(s)
- Yunqiang Zhang
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Zikui Liu
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Gang Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Jiawei Shi
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Baili Liu
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, Changsha City, 410000, Hunan, China
| | - Ning Xiao
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China
| | - Zhiliang Sun
- Hunan Agricultural University Veterinary Faculty, No.1 Nongda Road, Furong District, Changsha City, 410000, Hunan, China.
| |
Collapse
|
11
|
Mains K, Fox JM. Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli. Metab Eng 2023; 77:118-127. [PMID: 36963462 DOI: 10.1016/j.ymben.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Cells build fatty acids in tightly regulated assembly lines, or fatty acid synthases (FASs), in which β-ketoacyl-acyl carrier protein (ACP) synthases (KSs) catalyze sequential carbon-carbon bond forming reactions that generate acyl-ACPs of varying lengths-precursors for a diverse set of lipids and oleochemicals. To date, most efforts to control fatty acid synthesis in engineered microbes have focused on modifying termination enzymes such as acyl-ACP thioesterases, which release free fatty acids from acyl-ACPs. Changes to the substrate specificity of KSs provide an alternative-and, perhaps, more generalizable-approach that focuses on controlling the acyl-ACPs available for downstream products. This study combines mutants of FabF and FabB, the two elongating KSs of the E. coli FAS, with in vitro and in vivo analyses to explore the use of KS mutants to control fatty acid synthesis. In vitro, single amino acid substitutions in the gating loop and acyl binding pocket of FabF shifted the product profiles of reconstituted FASs toward short chains and showed that KS mutants, alone, can cause large shifts in average length (i.e., 6.5-13.5). FabB, which is essential for unsaturated fatty acid synthesis, blunted this effect in vivo, but exogenously added cis-vaccenic acid (C18:1) enabled sufficient transcriptional repression of FabB to restore it. Strikingly, a single mutant of FabB afforded titers of octanoic acid as high as those generated by an engineered thioesterase. Findings indicate that fatty acid synthesis must be decoupled from microbial growth to resolve the influence of KS mutants on fatty acid profiles but show that these mutants offer a versatile approach for tuning FAS outputs.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
12
|
Chen A, Mindrebo JT, Davis TD, Kim WE, Katsuyama Y, Jiang Z, Ohnishi Y, Noel JP, Burkart MD. Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states. Acta Crystallogr D Struct Biol 2022; 78:1171-1179. [PMID: 36048156 PMCID: PMC9435599 DOI: 10.1107/s2059798322007434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ketosynthases (KSs) catalyse essential carbon-carbon bond-forming reactions in fatty-acid biosynthesis using a two-step, ping-pong reaction mechanism. In Escherichia coli, there are two homodimeric elongating KSs, FabB and FabF, which possess overlapping substrate selectivity. However, FabB is essential for the biosynthesis of the unsaturated fatty acids (UFAs) required for cell survival in the absence of exogenous UFAs. Additionally, FabB has reduced activity towards substrates longer than 12 C atoms, whereas FabF efficiently catalyses the elongation of saturated C14 and unsaturated C16:1 acyl-acyl carrier protein (ACP) complexes. In this study, two cross-linked crystal structures of FabB in complex with ACPs functionalized with long-chain fatty-acid cross-linking probes that approximate catalytic steps were solved. Both homodimeric structures possess asymmetric substrate-binding pockets suggestive of cooperative relationships between the two FabB monomers when engaged with C14 and C16 acyl chains. In addition, these structures capture an unusual rotamer of the active-site gating residue, Phe392, which is potentially representative of the catalytic state prior to substrate release. These structures demonstrate the utility of mechanism-based cross-linking methods to capture and elucidate conformational transitions accompanying KS-mediated catalysis at near-atomic resolution.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Chen A, Jiang Z, Burkart MD. Enzymology of standalone elongating ketosynthases. Chem Sci 2022; 13:4225-4238. [PMID: 35509474 PMCID: PMC9006962 DOI: 10.1039/d1sc07256k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon-carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS-ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
14
|
Cho YI, Armstrong CL, Sulpizio A, Acheampong KK, Banks KN, Bardhan O, Churchill SJ, Connolly-Sporing AE, Crawford CE, Cruz Parrilla PL, Curtis SM, De La Ossa LM, Epstein SC, Farrehi CJ, Hamrick GS, Hillegas WJ, Kang A, Laxton OC, Ling J, Matsumura SM, Merino VM, Mukhtar SH, Shah NJ, Londergan CH, Daly CA, Kokona B, Charkoudian LK. Engineered Chimeras Unveil Swappable Modular Features of Fatty Acid and Polyketide Synthase Acyl Carrier Proteins. Biochemistry 2022; 61:217-227. [PMID: 35073057 PMCID: PMC9357449 DOI: 10.1021/acs.biochem.1c00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.
Collapse
Affiliation(s)
- Yae In Cho
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | - Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | - Oishi Bardhan
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | | | | | - Sarah M. Curtis
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | | | | | | | - Austin Kang
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | - Joie Ling
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | | | | | - Neel J. Shah
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | | | - Clyde A. Daly
- Department of Chemistry, Haverford College, Haverford, PA 19041
| | - Bashkim Kokona
- Department of Chemistry, Haverford College, Haverford, PA 19041
- Spark Therapeutics, Philadelphia PA 19041
| | | |
Collapse
|
15
|
Chisuga T, Nagai A, Miyanaga A, Goto E, Kishikawa K, Kudo F, Eguchi T. Structural Insight into the Reaction Mechanism of Ketosynthase-Like Decarboxylase in a Loading Module of Modular Polyketide Synthases. ACS Chem Biol 2022; 17:198-206. [PMID: 34985877 DOI: 10.1021/acschembio.1c00856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ketosynthase-like decarboxylase (KSQ) domains are widely distributed in the loading modules of modular polyketide synthases (PKSs) and are proposed to catalyze the decarboxylation of a malonyl or methylmalonyl unit for the construction of the PKS starter unit. KSQ domains have high sequence similarity to ketosynthase (KS) domains, which catalyze transacylation and decarboxylative condensation in polyketide and fatty acid biosynthesis, except that the catalytic Cys residue of KS domains is replaced by Gln in KSQ domains. Here, we present biochemical analyses of GfsA KSQ and CmiP4 KSQ, which are involved in the biosynthesis of FD-891 and cremimycin, respectively. In vitro analysis showed that these KSQ domains catalyze the decarboxylation of malonyl and methylmalonyl units. Furthermore, we determined the crystal structure of GfsA KSQ in complex with a malonyl thioester substrate analogue, which enabled identification of key amino acid residues involved in the decarboxylation reaction. The importance of these residues was confirmed by mutational analysis. On the basis of these findings, we propose a mechanism of the decarboxylation reaction catalyzed by GfsA KSQ. GfsA KSQ initiates decarboxylation by fixing the substrate in a suitable conformation for decarboxylation. The formation of enolate upon decarboxylation is assisted by two conserved threonine residues. Comparison of the structure of GfsA KSQ with those of KS domains suggests that the Gln residue in the active site of the KSQ domain mimics the acylated Cys residue in the active site of KS domains.
Collapse
Affiliation(s)
- Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Akira Nagai
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Ena Goto
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| |
Collapse
|