1
|
Heberlig GW, La Clair JJ, Burkart MD. Crosslinking intermodular condensation in non-ribosomal peptide biosynthesis. Nature 2025; 638:261-269. [PMID: 39663458 DOI: 10.1038/s41586-024-08306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases are assembly line biosynthetic pathways that are used to produce critical therapeutic drugs and are typically arranged as large multi-domain proteins called megasynthetases1. They synthesize polypeptides using peptidyl carrier proteins that shuttle each amino acid through modular loading, modification and elongation2 steps, and remain challenging to structurally characterize, owing in part to the inherent dynamics of their multi-domain and multi-modular architectures3. Here we have developed site-selective crosslinking probes to conformationally constrain and resolve the interactions between carrier proteins and their partner enzymatic domains4,5. We apply tetrazine click chemistry to trap the condensation of two carrier protein substrates within the active site of the condensation domain that unites the first two modules of tyrocidine biosynthesis and report the high-resolution cryo-EM structure of this complex. Together with the X-ray crystal structure of the first carrier protein crosslinked to its epimerization domain, these structures highlight captured intermodular recognition events and define the processive movement of a carrier protein from one catalytic step to the next. Characterization of these structural relationships remains central to understanding the molecular details of these unique synthetases and critically informs future synthetic biology design of these pathways.
Collapse
Affiliation(s)
- Graham W Heberlig
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Hashimoto T, Suenaga H, Shin-Ya K. Application of Cas9-Based Gene Editing to Engineering of Nonribosomal Peptide Synthetases. Chembiochem 2025; 26:e202400765. [PMID: 39741118 DOI: 10.1002/cbic.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Engineering of nonribosomal peptide synthetases (NRPSs) could transform the production of bioactive natural product derivatives. A number of recent reports have described the engineering of NRPSs without marked reductions in yield. Comparative analysis of evolutionarily related NRPSs can provide insights regarding permissive fusion sites for engineering where recombination may occur during evolutionary processes. Studies involving engineering of NRPSs using these recombination sites showed that they have great potential. Moreover, we highlight recent advances in engineering of NRPSs using CRISPR-associated protein 9 (Cas9)-based gene editing technology. The use of Cas9 facilitates the editing of even larger biosynthetic gene clusters (BGCs) close to or over 100 kb in size by precisely targeting and digesting DNA sequences at specific sites. This technology combined with growing understanding of potential fusion sites from large-scale informatics analyses will accelerate the scalable exploration of engineered NRPS assembly lines to obtain bioactive natural product derivatives in high yields.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hikaru Suenaga
- Department Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- Department Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
3
|
Huang Z, Peng Z, Zhang M, Li X, Qiu X. Structure, Function and Engineering of the Nonribosomal Peptide Synthetase Condensation Domain. Int J Mol Sci 2024; 25:11774. [PMID: 39519324 PMCID: PMC11546977 DOI: 10.3390/ijms252111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer residues during peptide elongation. This review summarizes various aspects of the C domain, including its structural characteristics, catalytic mechanisms, substrate specificity, substrate gating function, and auxiliary functions. Moreover, through case analyses of the NRPS engineering targeting the C domains, the vast potential of the C domain in the combinatorial biosynthesis of peptide natural product derivatives is demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Z.H.); (Z.P.); (M.Z.); (X.L.)
| |
Collapse
|
4
|
Karanth MN, Kirkpatrick JP, Krausze J, Schmelz S, Scrima A, Carlomagno T. The specificity of intermodular recognition in a prototypical nonribosomal peptide synthetase depends on an adaptor domain. SCIENCE ADVANCES 2024; 10:eadm9404. [PMID: 38896613 PMCID: PMC11186497 DOI: 10.1126/sciadv.adm9404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.
Collapse
Affiliation(s)
- Megha N. Karanth
- Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
| | - John P. Kirkpatrick
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
- Laboratory of Integrative Structural Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Joern Krausze
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Andrea Scrima
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Teresa Carlomagno
- Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
- Laboratory of Integrative Structural Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| |
Collapse
|
5
|
Folger IB, Frota NF, Pistofidis A, Niquille DL, Hansen DA, Schmeing TM, Hilvert D. High-throughput reprogramming of an NRPS condensation domain. Nat Chem Biol 2024; 20:761-769. [PMID: 38308044 PMCID: PMC11142918 DOI: 10.1038/s41589-023-01532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Engineered biosynthetic assembly lines could revolutionize the sustainable production of bioactive natural product analogs. Although yeast display is a proven, powerful tool for altering the substrate specificity of gatekeeper adenylation domains in nonribosomal peptide synthetases (NRPSs), comparable strategies for other components of these megaenzymes have not been described. Here we report a high-throughput approach for engineering condensation (C) domains responsible for peptide elongation. We show that a 120-kDa NRPS module, displayed in functional form on yeast, can productively interact with an upstream module, provided in solution, to produce amide products tethered to the yeast surface. Using this system to screen a large C-domain library, we reprogrammed a surfactin synthetase module to accept a fatty acid donor, increasing catalytic efficiency for this noncanonical substrate >40-fold. Because C domains can function as selectivity filters in NRPSs, this methodology should facilitate the precision engineering of these molecular assembly lines.
Collapse
Affiliation(s)
- Ines B Folger
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Natália F Frota
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - David L Niquille
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Douglas A Hansen
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Ishikawa F, Nakamura S, Nakanishi I, Tanabe G. Recent progress in the reprogramming of nonribosomal peptide synthetases. J Pept Sci 2024; 30:e3545. [PMID: 37721208 DOI: 10.1002/psc.3545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) biosynthesize nonribosomal peptide (NRP) natural products, which belong to the most promising resources for drug discovery and development because of their wide range of therapeutic applications. The results of genetic, biochemical, and bioinformatics analyses have enhanced our understanding of the mechanisms of the NRPS machinery. A major goal in NRP biosynthesis is to reprogram the NRPS machinery to enable the biosynthetic production of designed peptides. Reprogramming strategies for the NRPS machinery have progressed considerably in recent years, thereby increasing the yields and generating modified peptides. Here, the recent progress in NRPS reprogramming and its application in peptide synthesis are described.
Collapse
Affiliation(s)
| | | | | | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
7
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
8
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Diecker J, Dörner W, Rüschenbaum J, Mootz HD. Unraveling Structural Information of Multi-Domain Nonribosomal Peptide Synthetases by Using Photo-Cross-Linking Analysis with Genetic Code Expansion. Methods Mol Biol 2023; 2670:165-185. [PMID: 37184704 DOI: 10.1007/978-1-0716-3214-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large, multifunctional enzymes that facilitate the stepwise synthesis of modified peptides, many of which serve as important pharmaceutical products. Typically, NRPSs contain one module for the incorporation of one amino acid into the growing peptide chain. A module consists of the domains required for activation, covalent binding, condensation, termination, and optionally modification of the aminoacyl or peptidyl moiety. We here describe a protocol using genetically encoded photo-cross-linking amino acids to probe the 3D architecture of NRPSs by determining spatial proximity constraints. p-benzoyl-L-phenylalanine (BpF) is incorporated at positions of presumed contact interfaces between domains. The covalent cross-link products are visualized by SDS-PAGE-based methods and precisely mapped by tandem mass spectrometry. Originally intended to study the communication (COM) domains, a special pair of docking domains of unknown structure between two interacting subunits of one NRPS system, this cross-linking approach was also found to be useful to interrogate the spatial proximity of domains that are not connected on the level of the primary structure. The presented photo-cross-linking technique thus provides structural insights complementary to those obtained by protein crystallography and reports on the protein in solution.
Collapse
Affiliation(s)
- Julia Diecker
- University of Münster, Institute of Biochemistry, Münster, Germany
| | - Wolfgang Dörner
- University of Münster, Institute of Biochemistry, Münster, Germany
| | | | - Henning D Mootz
- University of Münster, Institute of Biochemistry, Münster, Germany.
| |
Collapse
|
10
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
11
|
Translocation of subunit PPSE in plipastatin synthase and synthesis of novel lipopeptides. Synth Syst Biotechnol 2022; 7:1173-1180. [PMID: 36204332 PMCID: PMC9519435 DOI: 10.1016/j.synbio.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
|
12
|
Lv Z, Ma W, Zhang P, Lu Z, Zhou L, Meng F, Wang Z, Bie X. Deletion of COM donor and acceptor domains and the interaction between modules in bacillomycin D produced by Bacillus amyloliquefaciens. Synth Syst Biotechnol 2022; 7:989-1001. [PMID: 35782484 PMCID: PMC9213223 DOI: 10.1016/j.synbio.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Xiaomei Bie
- Corresponding author. Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing, 210095, PR China.
| |
Collapse
|
13
|
Hansen MH, Stegmann E, Cryle MJ. Beyond vancomycin: recent advances in the modification, reengineering, production and discovery of improved glycopeptide antibiotics to tackle multidrug-resistant bacteria. Curr Opin Biotechnol 2022; 77:102767. [PMID: 35933924 DOI: 10.1016/j.copbio.2022.102767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin, are important last-resort antibiotics used to treat multidrug-resistant Gram-positive bacterial infections. Whilst second-generation GPAs - generated through chemical modification of natural GPAs - have proven successful, the emergence of GPA resistance has underlined the need to develop new members of this compound class. Significant recent advances have been made in GPA research, including gaining an in-depth understanding of their biosynthesis, improving titre in production strains, developing new derivatives via novel chemical modifications and identifying a new mode of action for structurally diverse type-V GPAs. Taken together, these advances demonstrate significant untapped potential for the further development of GPAs to tackle the growing threat of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|
14
|
Machell DL, Hansen MH, Cryle MJ. Replacing Commercial 6-Phosphofructokinase in an Online Pyrophosphate Detection Assay. Chembiochem 2022; 23:e202200325. [PMID: 35876398 DOI: 10.1002/cbic.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Detection of pyrophosphate is important in quantifying enzyme activity, particularly adenylation domain activity during non-ribosomal peptide synthesis. The previous development of an enzyme coupled PPi /NADH assay allowed the measurement of such activity in an online fashion using commercially available components. Now, with a key enzyme - 6-phosphofructokinase - no longer available, we have screened and identified viable replacement enzymes that can be expressed in high yield and that are far superior in activity to the now discontinued commercial product. This will support the ability of groups to continue to use this established online assay for pyrophosphate detection.
Collapse
Affiliation(s)
- Daniel L Machell
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, Victoria 3800, Australia
| | - Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, Victoria 3800, Australia
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Kim WE, Ishikawa F, Re RN, Suzuki T, Dohmae N, Kakeya H, Tanabe G, Burkart MD. Developing crosslinkers specific for epimerization domain in NRPS initiation modules to evaluate mechanism. RSC Chem Biol 2022; 3:312-319. [PMID: 35359491 PMCID: PMC8905534 DOI: 10.1039/d2cb00005a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are complex multi-modular enzymes containing catalytic domains responsible for the loading and incorporation of amino acids into natural products. These unique molecular factories can produce peptides with nonproteinogenic d-amino acids in which the epimerization (E) domain catalyzes the conversion of l-amino acids to d-amino acids, but its mechanism remains not fully understood. Here, we describe the development of pantetheine crosslinking probes that mimic the natural substrate l-Phe of the initiation module of tyrocidine synthetase, TycA, to elucidate and study the catalytic residues of the E domain. Mechanism-based crosslinking assays and MALDI-TOF MS were used to identify both H743 and E882 as the crosslinking site residues, demonstrating their roles as catalytic bases. Mutagenesis studies further validated these results and allowed the comparison of reactivity between the catalytic residues, concluding that glutamate acts as the dominant nucleophile in the crosslinking reaction, resembling the deprotonation of the Cα-H of amino acids in the epimerization reaction. The crosslinking probes employed in these studies provide new tools for studying the molecular details of E domains, as well as the potential to study C domains. In particular, they would elucidate key information for how these domains function and interact with their substrates in nature, further enhancing the knowledge needed to assist combinatorial biosynthetic efforts of NRPS systems to produce novel compounds.
Collapse
Affiliation(s)
- Woojoo E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
16
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
17
|
Franks WT, Tatman BP, Trenouth J, Lewandowski JR. Dipolar Order Parameters in Large Systems With Fast Spinning. Front Mol Biosci 2021; 8:791026. [PMID: 34957221 PMCID: PMC8699854 DOI: 10.3389/fmolb.2021.791026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
Order parameters are a useful tool for quantifying amplitudes of molecular motions. Here we measure dipolar order parameters by recoupling heteronuclear dipole-dipole couplings under fast spinning. We apply symmetry based recoupling methods to samples spinning under magic angle at 60 kHz by employing a variable flip angle compound inversion pulse. We validate the methods by measuring site-specific 15N-1H order parameters of a microcrystalline protein over a small temperature range and the same protein in a large, precipitated complex with antibody. The measurements of the order parameters in the complex are consistent with the observed protein undergoing overall motion within the assembly.
Collapse
Affiliation(s)
- W Trent Franks
- Department of Physics, University of Warwick, Coventry, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Ben P Tatman
- Department of Physics, University of Warwick, Coventry, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Jonah Trenouth
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|