1
|
Zhang N, Gong W, Xiong Y. Modern organic transformations: heterogeneous thermocatalysis or photocatalysis? Chem Soc Rev 2025. [PMID: 40326700 DOI: 10.1039/d2cs00097k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Organic transformation driven by heterogeneous catalysis is of crucial significance in both fundamental research and modern industrial production of fine chemicals. Thermocatalysis offers excellent applications due to its high activity and excellent scalability, yet still faces significant challenges toward the goals of high efficiency, energy-saving and sustainability. Recently, photocatalysis has emerged as a promising alternative for addressing these issues in a green and economical manner. In practice, the selection of an appropriate catalytic system is a critical factor that can influence the chemical process on multiple levels significantly. In this review, we aim to present a tutorial demonstration about the critical comparison between thermo- and photocatalytic terms for organic transformation. We begin by outlining the basic principles in thermo- and photocatalytic fundamentals, together with summarizing the general advantages and disadvantages of each. Subsequently, given the high sustainability and potentiality exhibited by the photocatalytic process, we present its representative applications including oxidation, reduction, coupling, and cleavage series. The general reaction conditions and activities observed in thermocatalysis for similar reactions are also introduced for comparison. The understanding of reaction mechanisms and the resulting regulations toward activity and selectivity are specifically discussed. Finally, future perspectives of heterogeneous photocatalytic terms for practical applications are elucidated.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Environmental Science and Engineering, School of Chemistry and Materials Science, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Wanbing Gong
- Department of Environmental Science and Engineering, School of Chemistry and Materials Science, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Department of Environmental Science and Engineering, School of Chemistry and Materials Science, and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
2
|
He Y, Xiong C, Lv L, Li D, Shi S, Xue C, Ji H. Advancing Propylene Epoxidation: the Role of Ethyl Acetate Autoxidation via Cobalt-Nickel Catalyzed C(acyl)─O Bond Scission. Angew Chem Int Ed Engl 2025; 64:e202500384. [PMID: 40034004 DOI: 10.1002/anie.202500384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The selective autoxidation for the synthesis of valuable oxygenates has provoked keen interest from both academic and industrial sectors. Although the generation of reactive oxygen species via oxygen attack on C─H bonds near ester linkages is well-established, research into aliphatic ester oxidation has primarily focused on combustion, neglecting their potential utility in oxidation processes. Herein, a protocol for producing propylene oxide through the autoxidation of ethyl acetate in tandem with propylene epoxidation is demonstrated. The ethoxy radical, generated by ester C(acyl)─O bond cleavage in situ, subsequently underwent proton-coupled electron transfer with the Co(OAc)(μ-H2O)2Ni, followed by the formation of the peracetic acid optimally suited for the epoxidation reaction. The research not only eliminates the need for co-substrates in the epoxidation process but also fills the application gap in bulk-ester autoxidation, offering insights into the effective utilization of oxy-intermediates in autoxidation reactions.
Collapse
Affiliation(s)
- Yaorong He
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luotian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongpo Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sixuan Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Li F, Shen C, He Y, Lu H, Gu R, Yao J, Zhang Z, Mei F, Zhao T, Guo X, Xue N, Ding W. Proper aggregation of Pt is beneficial for the epoxidation of styrene by O 2 over Pt x/γ-Al 2O 3 catalysts. NANOSCALE 2025; 17:7474-7481. [PMID: 40008971 DOI: 10.1039/d4nr05256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The dispersion of metal catalysts has multiple effects on catalytic performance, and higher dispersions do not necessarily imply better performance. Herein, we report the epoxidation reaction of styrene over supported platinum catalysts as an example. Compared with the Pt1/γ-Al2O3 catalyst, the Ptn/γ-Al2O3 catalyst with a larger Pt cluster size showed a much better performance. Combining the results of various characterizations and density functional theory calculations, Ptn/γ-Al2O3 was found to be more favorable for oxygen adsorption and activation to generate singlet oxygen species, further promoting the styrene oxidation reaction to styrene oxide in terms of kinetics. In contrast the metallic center of Pt1 in Pt1/γ-Al2O3 was too small to efficiently activate the diatomic oxygen molecule. These insights provide valuable guidance for designing high-performance metal catalysts.
Collapse
Affiliation(s)
- Fengfeng Li
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chenyang Shen
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yu He
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Haoyu Lu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Rongtian Gu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jun Yao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhewei Zhang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Feifei Mei
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Taotao Zhao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiangke Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Thomas A, Narayanan A, Pillai SM, Bhar R, Lastovich M, Gwalani B, Arora HS. High-Performance Electrocatalysts for Anion-Exchange Membrane Electrolyzers through Acoustic Cavitation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16812-16824. [PMID: 40063779 DOI: 10.1021/acsami.4c21071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Electrochemical water splitting is a promising technology for the sustainable production of green hydrogen. Large-scale hydrogen production demands efficient electrocatalysts to continuously operate at large current densities. Catalyst deterioration and its peel-off are major concerns at large current densities, resulting in subpar performance. Herein, we utilized acoustic cavitation-assisted electrodeposition to synthesize highly efficient and robust NiFe and NiMn oxyhydroxide catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. The acoustic cavitation process led to the development of a uniform nanoscale structure, partial amorphization, and the formation of oxygen vacancies, likely as a result of high-strain deformation. The synthesized catalysts demonstrated excellent performance, with very low overpotentials of 285 and 189 mV at 1000 mA/cm2, for OER and HER respectively. The cell configuration required 1.76 V only for achieving 1 A/cm2 and demonstrated negligible deterioration after 24 h of continuous operation. The commercial viability of the developed catalysts was obtained by testing in a 2.5 × 2.5 cm2 anion-exchange membrane (AEM) stack up to a 1.2 A/cm2 current density. The potentials required to reach industry-relevant high current densities of 500 and 1000 mA/cm2 were 2.1 and 2.6 V, respectively. The electrode stability at the electrolyzer scale was investigated by running the stack at current densities from 100 to 1000 mA/cm2 for a total of 100 h, wherein the electrode demonstrated high durability and robustness.
Collapse
Affiliation(s)
- Arpit Thomas
- Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, Uttar Pradesh 201310, India
- Centre for Inter-Disciplinary Research and Innovation, University of Petroleum and Energy Studies, Bidholi Via-Prem Nagar, Dehradun 248007, India
| | - Aakash Narayanan
- Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, Uttar Pradesh 201310, India
| | - Sriram Madhavan Pillai
- Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, Uttar Pradesh 201310, India
| | - Rekha Bhar
- Anton-Paar India Pvt. Ltd., Gurugram, Haryana 122016, India
| | - Michael Lastovich
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bharat Gwalani
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Harpreet Singh Arora
- Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, Uttar Pradesh 201310, India
| |
Collapse
|
5
|
Aligholivand M, Shaghaghi Z. Sulfonated reduced graphene oxide encapsulated perovskite-type ErCoFe oxide nanoparticles for efficient electrochemical water oxidation. Dalton Trans 2025; 54:2366-2385. [PMID: 39620919 DOI: 10.1039/d4dt02569e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Perovskite oxides play a vital role as electrocatalysts in water oxidation due to their flexible and unique electronic structures. In this work, Er-based perovskites ErCo1-xFexO3-δ (x = 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0) denoted as EC, ECF-0.9, ECF-0.7, ECF-0.5, ECF-0.3, and EF, respectively, are synthesized by the sol-gel method. Then, ECF-0.9 is supported on sulfonated reduced graphene oxide (S-rGO) by a hydrothermal method, with weight ratios of 1 : 1 and 3 : 1 of ECF/0.9 to S-rGO (shown as ECF-0.9/S-rGO(50%) and ECF-0.9/S-rGO(75%), respectively). The structural properties and the morphology of the synthesized materials are studied using a series of different techniques. The prepared perovskites are then used as electrode materials for electrochemical water oxidation. ECF-0.9 reveals better activity than pure EF, EC, and other perovskite oxides in terms of overpotential, Tafel slope, electrochemically active surface area (ECSA), and charge transfer resistance (Rct) values. Interestingly, when the optimized perovskite oxide catalyst ECF-0.9 is decorated on S-rGO sheets, the water oxidation activity is significantly improved. ECF-0.9/S-rGO(75%) exhibits superior activity for water oxidation with an overpotential of 290 mV@10 mA cm-2 and a Tafel slope of 41 mV dec-1. Finally, overall water splitting with ECF-0.9/S-rGO(75%) as the anode electrode shows a low electrolysis voltage of 1.60 V, alongside excellent stability for 20 h.
Collapse
Affiliation(s)
- Mehri Aligholivand
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 5375171379, Tabriz, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, 5375171379, Tabriz, Iran.
| |
Collapse
|
6
|
Hong Y, Liu S, Jing Z, Xu H, Zhang X, Ma P, Niu J, Wang J. Visible-Light-Induced Oxidation of Styrene by a Polyoxovanadate-Based Carboxylate Derivative. Inorg Chem 2025; 64:1124-1131. [PMID: 39763083 DOI: 10.1021/acs.inorgchem.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Revealing the design and synthesis of precisely tailored crystalline catalysts for achieving efficient photocatalytic conversion of styrene into high-value-added products remains a challenging task. In this work, a highly stable crystalline polyoxovanadate functionalized by the dl-tartaric acid ligand H2[V4O4(H2O)6(tart)2]·H2O [1, tart = C4H2O6] was successfully synthesized by conventional aqueous solution methods. The photocatalytic performance was evaluated for the photosynthesis of styrene oxide by employing an oxygen source as the oxidant in the visible light (>420 nm) conditions at room temperature with compound 1 as a heterogeneous catalyst. Furthermore, compound 1 manifested accomplished stability and reusability, maintaining a high reaction activity even after three consecutive reaction cycles. This paper not only contributes to broadening the structural diversity of polyoxovanadate but also sheds new light on green catalytic conversion.
Collapse
Affiliation(s)
- Yumei Hong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhen Jing
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Haojie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaodong Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
7
|
Zhang Q, Peng D, Su ZA, Li A, Sun C, Wang L, Cui S, Yang S, Zheng X, Mo L, Zhang N, Gu F, Liu Y. Selective Oxidation of p-Cymene over Mesoporous LaCoO 3 by Introducing Oxygen Vacancies. Inorg Chem 2024; 63:21499-21506. [PMID: 39472106 DOI: 10.1021/acs.inorgchem.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
The liquid-phase catalytic oxidation of p-cymene to 4-methylacetophenone is an industrially significant reaction. However, the targeted oxidation of a specific C-H bond of p-cymene is extremely difficult due to there being many branched chains in p-cymene. In here, we designed a simple method to synthesize mesoporous LaCoO3 catalysts with rich oxygen vacancy (Oov) sites. The as-prepared mesoporous LaCoO3 after 550 °C calcination (mLaCoO3) exhibits remarkable catalytic activity for solvent-free oxidation of the p-cymene reaction, with a selectivity of over 80.1% selectivity for 4-methylacetophenone and a conversion of 50.2% for p-cymene (120 °C, 3 MPa). Besides, recycling studies have demonstrated that the mLaCoO3 catalysts can be reused ten times in the aerobic oxidation of the p-cymene reaction without significant catalytic activity reduce. The experimental and characterization results indicated that the mesoporous structure of the catalyst is conducive to the generation of surface Oov, which can properly facilitate ion spread during the catalytic process and afford enough O2 for intermediate species, thus is beneficial for the generation of 4-methylacetophenone. This work demonstrates that the selectivity oxide p-cymene with an O2 employing mLaCoO3 catalyst is highly promising for chemical industrial applications.
Collapse
Affiliation(s)
- Qingxia Zhang
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Dong Peng
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhong-An Su
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ao Li
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chao Sun
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Luhui Wang
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Sha Cui
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuqing Yang
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianmin Zheng
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liuye Mo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nannan Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Fengyun Gu
- Jilin Province Product Quality Supervision and Inspection Institute, 2699 Yiju Street, Changchun 130103, China
| | - Yali Liu
- Department of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
8
|
Wang J, Zhang Q, Li Y, Xu T, Sun Y, Bai J. A novel Ag-loaded 4 Å zeolite as an efficient catalyst for epoxidation of styrene. RSC Adv 2024; 14:19735-19743. [PMID: 38903667 PMCID: PMC11188665 DOI: 10.1039/d4ra00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
In this study, a novel Ag-loaded 4 Å zeolite was synthesized through the combined action of strong ultrasound and a high-voltage electrostatic field (the Z-Ag-UE) and its catalytic activity was evaluated in the epoxidation of styrene. The prepared catalysts were characterized using XRD, SEM, XPS, BET, TG, ICP-OES. The results showed that the silver evenly dispersed inside the octahedral 4 Å zeolite structure rather than being attached to the surface of the material like in the impregnation method, and this Ag-loaded 4 Å zeolite had a high surface area, uniform particle size distribution, and excellent high temperature thermal stability. The catalytic performance of the Ag-loaded 4 Å zeolite was investigated by varying the reaction conditions such as the amount of catalyst, temperature, and reaction time. Under optimized conditions, the Ag-loaded 4 Å zeolite showed high selectivity and conversion for the epoxidation of styrene, achieving a conversion rate of up to 98% and a selectivity of 94%. In particular, the catalyst had excellent recyclability and was reused more than fifteen times with the catalytic performance remaining unchanged. This method of loading metal prepared under external field conditions provides a new method and idea for future research in related fields.
Collapse
Affiliation(s)
- Junzhong Wang
- College of Chemical Engineering, Inner Mongolia University of Technology Hohhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Qiancheng Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology Hohhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Ying Li
- College of Chemical Engineering, Inner Mongolia University of Technology Hohhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology Hohhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Yinghui Sun
- College of Chemical Engineering, Inner Mongolia University of Technology Hohhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology Hohhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| |
Collapse
|
9
|
Ke Q, Zhang Y, Wan C, Tang J, Li S, Guo X, Han M, Hamada T, Osman SM, Kang Y, Yamauchi Y. Sunlight-driven and gram-scale vanillin production via Mn-defected γ-MnO 2 catalyst in aqueous environment. Chem Sci 2024; 15:5368-5375. [PMID: 38577364 PMCID: PMC10988585 DOI: 10.1039/d3sc05654f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
The production of vanillin from biomass offers a sustainable route for synthesizing daily-use chemicals. However, achieving sunlight-driven vanillin synthesis through H2O activation in an aqueous environment poses challenges due to the high barrier of H2O dissociation. In this study, we have successfully developed an efficient approach for gram-scale vanillin synthesis in an aqueous reaction, employing Mn-defected γ-MnO2 as a photocatalyst at room temperature. Density functional theory calculations reveal that the presence of defective Mn species (Mn3+) significantly enhances the adsorption of vanillyl alcohol and H2O onto the surface of the γ-MnO2 catalyst. Hydroxyl radical (˙OH) species are formed through H2O activation with the assistance of sunlight, playing a pivotal role as oxygen-reactive species in the oxidation of vanillyl alcohol into vanillin. The Mn-defected γ-MnO2 catalyst exhibits exceptional performance, achieving up to 93.4% conversion of vanillyl alcohol and 95.7% selectivity of vanillin under sunlight. Notably, even in a laboratory setting during the daytime, the Mn-defected γ-MnO2 catalyst demonstrates significantly higher catalytic performance compared to the dark environment. This work presents a highly effective and promising strategy for low-cost and environmentally benign vanillin synthesis.
Collapse
Affiliation(s)
- Qingping Ke
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan 243002 China
| | - Yurong Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan 243002 China
| | - Chao Wan
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan 243002 China
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310058 China
| | - Jun Tang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan 243002 China
| | - Shenglai Li
- Department of Materials Science and Chemical Engineering, Stony Brook University New York 11794 USA
| | - Xu Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan 243002 China
| | - Minsu Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| | - Takashi Hamada
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yunqing Kang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University Seoul 03722 South Korea
| |
Collapse
|
10
|
Wu D, Chen Y, Bai Y, Zhu C, Zhang M. One-Dimensional La 0.2Sr 0.8Cu 0.4Co 0.6O 3-δ Nanostructures for Efficient Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:64. [PMID: 38202520 PMCID: PMC10781154 DOI: 10.3390/nano14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Producing oxygen and hydrogen via the electrolysis of water has the advantages of a simple operation, high efficiency, and environmental friendliness, making it the most promising hydrogen production method. In this study, La0.2Sr0.8Cu0.4Co0.6O3-δ (LSCC) nanofibers were prepared by electrospinning to utilize non-noble perovskite oxides instead of noble metal catalysts for the oxygen evolution reaction, and the performance and electrochemical properties of LSCC nanofibers synthesized at different firing temperatures were evaluated. In an alkaline environment (pH = 14, 6 M KOH), the nanofibers calcined at 650 °C showed an overpotential of 209 mV at a current density of 10 mA cm-2 as well as good long-term stability. Therefore, the prepared LSCC-650 NF catalyst shows excellent potential for electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Dongshuang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yidan Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuelei Bai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Chuncheng Zhu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
11
|
Tang J, Chen J, Zhang Z, Ma Q, Hu X, Li P, Liu Z, Cui P, Wan C, Ke Q, Fu L, Kim J, Hamada T, Kang Y, Yamauchi Y. Spontaneous generation of singlet oxygen on microemulsion-derived manganese oxides with rich oxygen vacancies for efficient aerobic oxidation. Chem Sci 2023; 14:13402-13409. [PMID: 38033900 PMCID: PMC10685315 DOI: 10.1039/d3sc04418a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023] Open
Abstract
Developing innovative catalysts for efficiently activating O2 into singlet oxygen (1O2) is a cutting-edge field with the potential to revolutionize green chemical synthesis. Despite its potential, practical implementation remains a significant challenge. In this study, we design a series of nitrogen (N)-doped manganese oxides (Ny-MnO2, where y represents the molar amount of the N precursor used) nanocatalysts using compartmentalized-microemulsion crystallization followed by post-calcination. These nanocatalysts demonstrate the remarkable ability to directly produce 1O2 at room temperature without the external fields. By strategically incorporating defect engineering and interstitial N, the concentration of surface oxygen atoms (Os) in the vicinity of oxygen vacancy (Ov) reaches 51.1% for the N55-MnO2 nanocatalyst. This feature allows the nanocatalyst to expose a substantial number of Ov and interstitial N sites on the surface of N55-MnO2, facilitating effective chemisorption and activation of O2. Verified through electron paramagnetic resonance spectroscopy and reactive oxygen species trapping experiments, the spontaneous generation of 1O2, even in the absence of light, underscores its crucial role in aerobic oxidation. Density functional theory calculations reveal that an increased Ov content and N doping significantly reduce the adsorption energy, thereby promoting chemisorption and excitation of O2. Consequently, the optimized N55-MnO2 nanocatalyst enables room-temperature aerobic oxidation of alcohols with a yield surpassing 99%, representing a 6.7-fold activity enhancement compared to ε-MnO2 without N-doping. Furthermore, N55-MnO2 demonstrates exceptional recyclability for the aerobic oxidative conversion of benzyl alcohol over ten cycles. This study introduces an approach to spontaneously activate O2 for the green synthesis of fine chemicals.
Collapse
Affiliation(s)
- Jun Tang
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 P. R. China
| | - Junbao Chen
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Zhanyu Zhang
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Qincheng Ma
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Xiaolong Hu
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Zhiqiang Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Chao Wan
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310058 P. R. China
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Qingping Ke
- College of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 Anhui P. R. China
| | - Lei Fu
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
| | - Takashi Hamada
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Yunqing Kang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
12
|
Liu H, Liu W, Xue G, Tan T, Yang C, An P, Chen W, Zhao W, Fan T, Cui C, Tang Z, Li G. Modulating Charges of Dual Sites in Multivariate Metal-Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. J Am Chem Soc 2023; 145:11085-11096. [PMID: 37162302 DOI: 10.1021/jacs.3c00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective aerobic epoxidation of alkenes without any additives is of great industrial importance but still challenging because the competitive side reactions including C═C bond cleavage and isomerization are difficult to avoid. Here, we show fabricating Cu(I) single sites in pristine multivariate metal-organic frameworks (known as CuCo-MOF-74) via partial reduction of Cu(II) to Cu(I) ions during solvothermal reaction. Impressively, CuCo-MOF-74 is characteristic with single Cu(I), Cu(II), and Co(II) sites, and they exhibit the substantially enhanced selectivity of styrene oxide up to 87.6% using air as an oxidant at almost complete conversion of styrene, ∼25.8% selectivity increased over Co-MOF-74, as well as good catalytic stability. Contrast experiments and theoretical calculation indicate that Cu(I) sites contribute to the substantially enhanced selectivity of epoxides catalyzed by Co(II) sites. The adsorption of two O2 molecules on dual Co(II) and Cu(I) sites is favorable, and the projected density of state of the Co-3d orbital is closer to the Fermi level by modulating with Cu(I) sites for promoting the activation of O2 compared with dual-site Cu(II) and Co(II) and Co(II) and Co(II), thus contributing to the epoxidation of the C═C bond. When other kinds of alkenes are used as substrates, the excellent selectivity of various epoxides is also achieved over CuCo-MOF-74. We also prove the universality of fabricating Cu(I) sites in other MOF-74 with various divalent metal nodes.
Collapse
Affiliation(s)
- Hanlin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ting Tan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chengqian Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Heveling J. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Josef Heveling
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
14
|
Yang M, Wu K, Sun S, Duan J, Liu X, Cui J, Liang S, Ren Y. Unprecedented Relay Catalysis of Curved Fe 1–N 4 Single-Atom Site for Remarkably Efficient 1O 2 Generation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Man Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Keying Wu
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Shaodong Sun
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Jianglin Duan
- Interdisciplinary Research Center of Biology & Catalysis; School of Life Sciences, Northwestern Polytechnical University, Xi’an710072, Shaanxi, People’s Republic of China
| | - Xin Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao066004, Hebei, People’s Republic of China
| | - Jie Cui
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Shuhua Liang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis; School of Life Sciences, Northwestern Polytechnical University, Xi’an710072, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Ultra-efficient and Selective Recovery of Au(III) Using Magnetic Fe3S4/Fe7S8. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Interstitial nitrogen-induced efficiency alcohol oxidation over heterogeneous N–CoMn2O4 catalyst under visible-light. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Advances in Designing Efficient La-Based Perovskites for the NOx Storage and Reduction Process. Catalysts 2022. [DOI: 10.3390/catal12060593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To overcome the inherent challenge of NOx reduction in the net oxidizing environment of diesel engine exhaust, the NOx storage and reduction (NSR) concept was proposed in 1995, soon developed and commercialized as a promising DeNOx technique over the past two decades. Years of practice suggest that it is a tailor-made technique for light-duty diesel vehicles, with the advantage of being space saving, cost effective, and efficient in NOx abatement; however, the over-reliance of NSR catalysts on high loadings of Pt has always been the bottleneck for its wide application. There remains fervent interest in searching for efficient, economical, and durable alternatives. To date, La-based perovskites are the most explored promising candidate, showing prominent structural and thermal stability and redox property. The perovskite-type oxide structure enables the coupling of redox and storage centers with homogeneous distribution, which maximizes the contact area for NOx spillover and contributes to efficient NOx storage and reduction. Moreover, the wide range of possible cationic substitutions in perovskite generates great flexibility, yielding various formulations with interesting features desirable for the NSR process. Herein, this review provides an overview of the features and performances of La-based perovskite in NO oxidation, NOx storage, and NOx reduction, and in this way comprehensively evaluates its potential to substitute Pt and further improve the DeNOx efficiency of the current NSR catalyst. The fundamental structure–property relationships are summarized and highlighted to instruct rational catalyst design. The critical research needs and essential aspects in catalyst design, including poisoner resistance and catalyst sustainability, are finally addressed to inspire the future development of perovskite material for practical application.
Collapse
|
19
|
Zhang X, Dai J, Ding J, Tan KB, Zhan G, Huang J, Li Q. Activation of molecular oxygen over Mn-doped La2CuO4 perovskite for direct epoxidation of propylene. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02185k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synergetic interaction between manganese and copper in LaMn0.5Cu0.5O3 significantly promoted the epoxidation of propylene at lower temperature by converting the active sites from oxygen vacancies to Cu active sites of Cu–O–Mn.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiageng Ding
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- College of Food and Biology Engineering, Jimei University, Xiamen 361021, P. R. China
| |
Collapse
|