1
|
Yang Z, Hou G, Gao N, Li Y, Li X, Chen Z, Jin H, Zhao M, Wang D, Chen K, Antonietti M, Liu T, Tian Z, Zhang Y. Histidine-Based "Transfer Stations" at Carbon-Immobilized Metal Particles Enable Rapid Hydrogen Transfer for Efficient Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2025:e202501836. [PMID: 40255063 DOI: 10.1002/anie.202501836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 04/22/2025]
Abstract
The interaction of surface metal species with the solution plays a key role in engineering heterogeneous catalytic processes. Herein, we present the facile synthesis of L-histidine-coordinated PdAg nanoparticles (4.03 ± 0.08 nm) anchored on pristine carbon supports (denoted as PdAg-NH2/C) and their use for formic acid dehydrogenation (FAD). Significant acceleration of FAD related to the histidine is observed, and the enhancement mechanism is experimentally and theoretically investigated. The presence of L-histidine at metal sites promotes rapid binding of formic acid molecules due to acid-base interactions. The local enrichment of both protons and formate at the metal-solution interfaces promotes the subsequent formate decomposition and hydride transfer to the metal surface. The as-generated surface H species are more concentrated compared to the previously reported catalyst where the metal is loaded on an amino modified support, this enabling a significantly enhanced H2 production. The optimal Pd1Ag1-NH2/C catalyst exhibits a high turnover frequency (TOF) of 6493.5 h-1 at 333 K based on the total amount of Pd, together with an H2 selectivity of 100%. This study emphasizes the critical role of optimizing local transport pathways near catalytic centers chemically and further provides insights into the rational development of heterogeneous catalysts for FAD technologies.
Collapse
Affiliation(s)
- Zhenyi Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Guoyu Hou
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Nana Gao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P.R. China
| | - Yicheng Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xingqiu Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Zitao Chen
- South China AcademyofAdvancedOptoelectronics, South China Normal University, Guangzhou, 510006, P.R. China
| | - Haibao Jin
- School of Materials and Science Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ming Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Dongyang Wang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, Kaifeng, 475004, P.R. China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, Kaifeng, 475004, P.R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, P.R. China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
2
|
Goo BS, Baek JW, Seo M, Kim HJ, Wi DH, Kwon Y, Yoon DK, Lee YW, Han SW. Freestanding Penta-Twinned Pd-Ag Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60331-60339. [PMID: 39439403 DOI: 10.1021/acsami.4c14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
2D metal nanosheets have attracted significant attention as efficient catalysts for various important chemical reactions. However, the development of metal nanosheets with controlled compositions and morphologies has been slow due to the challenges associated with synthesizing thermodynamically unfavorable 2D structures. Herein, we report a synthesis route of freestanding Pd-Ag penta-twinned nanosheets (Pd-Ag ptNSs) with distinct 5-fold twin boundaries. Through the coreduction of Ag and Pd precursors on presynthesized Pd ptNSs, Ag could be homogeneously alloyed with Pd, leading to the formation of well-defined Pd-Ag ptNSs. The promotional effects of the bimetallic composition, 2D structure, and twin boundaries on catalysis were studied by using Pd-Ag ptNS-catalyzed H2 production from formic acid decomposition as a model reaction. Notably, the catalytic activity of the Pd-Ag ptNSs drastically outperformed those of monometallic, bimetallic, and 3D counterparts, such as Pd ptNSs, Pd-Ag nanosheets without a TB, and Pd-Ag octahedral nanocrystals, demonstrating the promising potential of the integration of twin boundaries and multiple compositions in the development of high-performance 2D nanocatalysts.
Collapse
Affiliation(s)
- Bon Seung Goo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jin Wook Baek
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Minji Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | | | - Dae Han Wi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Yongmin Kwon
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Dong Ki Yoon
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Young Wook Lee
- Department of Chemistry Education and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Sang Woo Han
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
3
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
4
|
Zhang Q, Wang Y, Jin X, Liu X. Selective and controlled H 2 generation upon additive-free HCOOH dehydrogenation over a Pd/NCS nanocatalyst. NANOSCALE 2023; 15:15975-15981. [PMID: 37782093 DOI: 10.1039/d3nr03797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Although sodium formate is widely used as a conventional additive to enhance selective H2 evolution from HCOOH dehydrogenation, this leads to a waste of resources and an increase in the cost of H2 production. For this reason, N-doped carbon nanospheres with abundant graphitic C/N have been designed to enrich the electron cloud density of the Pd atom for improving its catalytic activity in H2 generation upon additive-free HCOOH dehydrogenation. Herein, we have synthesized N-doped carbon nanosphere-stabilized Pd nanoparticles (Pd/NCSs) as high-efficiency nano-catalysts, via fixation of Pd nanoparticles onto N-doped carbon nanospheres (NCSs), for selective and controlled H2 generation upon additive-free HCOOH dehydrogenation. Pd/NCS-800 (1640 h-1) provided a 12 times larger TOF than commercial Pd/C (134 h-1) in H2 generation upon additive-free HCOOH dehydrogenation. It seemed that graphitic N/C of NCS-800 enriched the electron cloud density of the Pd atom, which was favorable for the cleavage of C-H bonds in HCOOH dehydrogenation. In addition, the selective H2 evolution from additive-free HCOOH dehydrogenation over Pd/NCS-800 is successfully controlled by adjusting the pH.
Collapse
Affiliation(s)
- Qing Zhang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Yanlan Wang
- Department of chemistry and chemical engineering, Liaocheng University, 252059 Liaocheng, China
| | - Xiaotao Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
5
|
Zhao Y, Shao J, Jin Z, Zheng W, Yao J, Ma W. Plasmon-enhanced electroreduction activity of Au-AgPd Janus nanoparticles for ochratoxin a detection. Food Chem 2023; 412:135526. [PMID: 36731235 DOI: 10.1016/j.foodchem.2023.135526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Ochratoxin A (OTA) was a dangerous biological toxin, and would easily contaminate food and induced food safety problems. The development of electrochemical aptasensors by designing strong and anti-interfere electroactive labels could improve the sensitivity and accuracy of OTA detection. In this contribution, novel electroactive Au-AgPd Janus NPs were firstly synthesized and exhibited electroreduction signal at -0.4 V, owing to the reduction process of Pd2+. The electroreduction signal was amplified 1.5 times under local surface plasmon resonance (LSPR) excitation, which could improve the sensitivity of OTA detection. Plasmon-enhanced electroreduction principle of Au-AgPd Janus NPs was verified, which endowed electrochemical aptasensor with high accuracy and anti-interference ability for OTA detection. Au-AgPd Janus NPs served as electrochemical beacon achieved sensitive and accurate OTA detection with the limit of detection (LOD) of 0.98 pM. This work opens up new directions for the construction of electroactive heterostructures for the sensitive and accurate biotoxins electroanalytical applications.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, Hebei 061100, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wangwang Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Sun X, Ding Y, Feng G, Yao Q, Zhu J, Xia J, Lu ZH. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction. J Colloid Interface Sci 2023; 645:676-684. [PMID: 37167916 DOI: 10.1016/j.jcis.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Formic acid (FA), a high-value product of CO2 hydrogenation and biomass conversion, is considered a promising liquid organic hydrogen carrier for its high hydrogen content, easy accessibility, and relative stability. The development of an efficient heterogeneous catalyst toward FA dehydrogenation and Cr(VI) reduction by FA is needed to boost its sluggish kinetics but still remains a challenge. Herein, uniformly dispersed subnanometric PdAu alloy clusters (i.e., 0.9 nm) were successfully prepared and confined by amine-functionalized carbon bowls (ACB). By virtue of the tiny size and abundant active sites of PdAu clusters, the promotional effect of surface amine groups, and electronic interaction between subnanometric PdAu clusters and support, this as-prepared PdAu/ACB catalyst exhibits superior catalytic property for additive-free FA dehydrogenation (turnover frequency, 10597 h-1 at 323 K) and Cr(VI) reduction (rate constant, 0.47 min-1 at 298 K) under mild conditions, higher than most of the catalysts reported so far. This study offers insight into the design of efficient and durable catalysts for various catalytic applications in energy and environment.
Collapse
Affiliation(s)
- Xiongfei Sun
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yiyue Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Gang Feng
- Key Laboratory for Environment and Energy Catalysis of Jiangxi Province, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qilu Yao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia Zhu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jianhui Xia
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Zhang-Hui Lu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
7
|
Hao Z, Huang Y, Wang Y, Meng X, Wang X, Liu X. Enhanced degradation and mineralization of estriol over ZrO 2/OMS-2 nanocomposite: Kinetics, pathway and mechanism. CHEMOSPHERE 2022; 308:136521. [PMID: 36169050 DOI: 10.1016/j.chemosphere.2022.136521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Although remarkable progresses have been achieved in the exploration of new and efficient catalytic systems for efficient degradation of estriol, there are only very few available reports providing high mineralization of estriol. Hence, it is still a serious challenge to develop the novel and efficient methods for enhanced degradation and mineralization of estriol due to its serious threat to environment and human health. Herein, this study proposes a series of ZrO2 modified manganese oxide octahedral molecular sieve (ZrO2/OMS-2) nanocomposites as efficient catalysts for enhanced degradation and mineralization of estriol via PMS activation at 30 °C. Among them, ZrO2/OMS-2-27% provided the highest degradation efficiency (95%) and mineralization degrees (70.1%), which exceeded most reported catalytic systems, in the catalytic degradation of estriol. These quenching tests and EPR analysis had confirmed that O2•- and 1O2 were primary reactive oxygen species (ROS) in the ZrO2/OMS-2-27%/PMS system, contrary to the OMS-2/PMS system for which SO4•- and OH• are primary ROS. This might be due to the abundant O-containing surface functional groups of ZrO2/OMS-2-27%. This work not only provides a facile and high-efficiency methodology for the construction of Mn-based nanomaterial, but also proposes a new and efficient nano-catalyst for estriol removal.
Collapse
Affiliation(s)
- Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, 252059, Liaocheng, China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiaopei Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
8
|
Effect of Titanium Dioxide Support for Cobalt Nanoparticle Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis. Catal Letters 2022. [DOI: 10.1007/s10562-022-04215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Maji B, Kumar A, Bhattacherya A, Bera JK, Choudhury J. Cyclic Amide-Anchored NHC-Based Cp*Ir Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO 2/HCO 2H Couple. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
10
|
Cao J, Huang W, Wang Y, Zhang Q, Liu X. Dehydrogenation of N2H4·H2O over NiMoO4 Nanorods-Stabilized NiPt Bimetal Nanoparticles for On-demand H2 Evolution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Oxygen promoted hydrogen production from formaldehyde reforming with oxide-derived Cu nanowires at room temperature. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zhang X, Zhang J, Sun Y, Liu X, Li DS. The Effect of Nickel Salt on OMS-2 Nanorods in Oxygen Reduction Reaction. Catal Letters 2022. [DOI: 10.1007/s10562-022-04126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhang M, Lin W, Ma L, Pi Y, Wang T. An in situ derived MOF@In 2S 3 heterojunction stabilizes Co(II)-salicylaldimine for efficient photocatalytic formic acid dehydrogenation. Chem Commun (Camb) 2022; 58:7140-7143. [PMID: 35666225 DOI: 10.1039/d2cc01969h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report here the hierarchical construction of a molecular Co(II)-salicylaldimine catalyst and an in situ derived In2S3 semiconductor in a MOF@In2S3 heterojunction through sequentially controllable in situ etching and post-synthetic modification for photocatalytic hydrogen production from formic acid. The enhanced catalyst stability and facilitated charge carrier mobility between the In2S3 photosensitizers and Co catalyst realize a superior H2 production rate of 18 746 μmol g-1 h-1 (selectivity > 99.9%) with a turnover number (TON) of up to 6146 in 24 h (apparent quantum efficiency of 3.8% at 420 nm), indicating a 165-fold enhancement over that of the pristine MOF. This work highlights a powerful strategy for synergistic Earth-abundant metal-based MOF photocatalysis in promoting H2 production from FA.
Collapse
Affiliation(s)
- Meijin Zhang
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Wenting Lin
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Liang Ma
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Yunhong Pi
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, and Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
14
|
Cao M, Huang H, Zheng Y, Zhang Q, Wang S, Ge R, Wang J, Zhao Y, Ma X. Enhanced effect of the mesoporous carbon on iron carbide catalyst for hydrogenation of dimethyl oxalate to ethanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Cao
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Huijiang Huang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yuntao Zheng
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Qiaochu Zhang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Shengping Wang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Rile Ge
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Junhu Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Yujun Zhao
- Tianjin University School of Chemistry and Chemical Engineering Weijin Road 92, Nankai District 300072 Tianjin CHINA
| | - Xinbin Ma
- Tianjin University School of Chemical Engineering and Technology CHINA
| |
Collapse
|
15
|
Yan J, Zhou Y, Liu X, Li DS. Mechanistic insights into H 2 evolution via water splitting at the expense of B 2(OH) 4: a theoretical study. Phys Chem Chem Phys 2022; 24:8182-8188. [PMID: 35343980 DOI: 10.1039/d1cp05277b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
H2 has been comprehensively deemed a promising potential candidate to replace traditional fossil fuel-based energy. Typically, the hydrolysis of most hydrogen-rich boron hydrides (e.g. NaBH4, NH3BH3 and Me2NHBH3) catalyzed by nanomaterials generates H2 with only one H atom supplied by water and the other one by a hydrogen-rich boron hydride. Interestingly, both H atoms of produced H2 are provided by water upon hydrolysis of B2(OH)4. Herein, the catalytic mechanisms of H2 evolution upon water splitting at the expense of B2(OH)4 in its hydrolysis reactions catalyzed by acid, base or metal nanoparticles have been investigated by density functional theory (DFT) calculations. By computational studies, the mechanisms of catalysis by base and metal nanoparticles are basically the same as those speculated from our previous experiments. The previously proposed acid catalytic mechanism has been overturned, however. This study not only provides important insights into the catalytic mechanism for water splitting at the expense of B2(OH)4, but also opens up an exciting opportunity to use water to store H2.
Collapse
Affiliation(s)
- Jiaying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yuhang Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
16
|
Xu F, Huang W, Wang Y, Astruc D, Liu X. Efficient and Controlled H2 Release from Sodium Formate. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00774f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium formate (SF) has been used for a long time as a technological additive for H2 release from the dehydrogenation of formic acid . Formic acid is often synthesized from...
Collapse
|
17
|
Shen J, Xu Y, Wang Z, Chen W, Zhao H, Liu X. Facile and green synthesis of carbon nanodots from environmental pollutants for cell imaging and Fe 3+ detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj02236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An economical and green approach has been provided to turn environmental pollutants into carbon nanodots for their potential applications in both bioimaging and Fe3+ detection.
Collapse
Affiliation(s)
- Jialu Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 443002 Yichang, Hubei, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yanyi Xu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Weifeng Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 443002 Yichang, Hubei, China
- Hubei Three Gorges Laboratory, 443007 Yichang, Hubei, China
| |
Collapse
|
18
|
Zhou J, Hou W, Liu X, Astruc D. Pd, Rh and Ru Nanohybrid-catalyzed Tetramethyldisiloxane Hydroysis for H2 Generation, Nitrophenol Reduction and Suzuki-Miyaura Cross-Coupling. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00035k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrolysis of tetramethyldisiloxane, which is a silicone industrial refuse, provides a convenient method to generates H2 on demand. Herein, the highly selective and efficient 2D graphene-like carbon nanosheets (GCN)...
Collapse
|
19
|
Gu B, Sun T, Wang Y, Long Y, Fu J, Fan G. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01629f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-precious metal oxide/carbon hybrid has been identified as a promising platform to stabilized precious metals for ammonia borane (AB) hydrolysis to produce hydrogen, whereas their facile and environmental-friendly synthesis remains...
Collapse
|