1
|
Das A, Chotia M, Maji B. Ligand-Enabled Palladium-Catalyzed β-C(sp 3)-H Biarylation of Native Amides with Cyclic Diaryliodonium Salts. Org Lett 2025; 27:4997-5002. [PMID: 40314414 DOI: 10.1021/acs.orglett.5c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Herein, we report a Pd-catalyzed β-C(sp3)-H biarylation of native amides using diaryliodonium salts. A pyridine-3-sulfonic acid ligand that might stabilize the substrate-bound palladium species was found to be essential for high catalytic activity. The reaction displayed a broad scope and showed excellent compatibility with diverse cyclic diaryliodonium salts and amide substrates. The retained iodo functionality on the product provides a versatile handle for further increasing molecular complexity.
Collapse
Affiliation(s)
- Animesh Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Mohit Chotia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Dutta A, Jeganmohan M. Synthesis of γ-Lactams via Palladium-Catalyzed C(sp 3)-H Bond Activation of Alkyl Sulfonamides with Substituted Alkenes. Org Lett 2025; 27:2116-2122. [PMID: 39978361 DOI: 10.1021/acs.orglett.5c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A methodology for the γ-butyrolactam scaffolds via ligand-enabled C(sp3)-H bond functionalization of sulfonamides with olefins has been demonstrated. The protocol has been found to be compatible with several activated and unactivated olefins, and the desired lactams were formed in excellent yields. A plausible mechanism has been described to account for the desired lactamization reaction as well as supported by mechanistic investigation including a 1H NMR study and isolation of a palladacycle intermediate.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
3
|
Hirata Y, Kimura S, Higashida K, Yoshino T, Matsunaga S. Site-Selective C(sp 3)-H and Switchable C(sp 3)-H/C(sp 2)-H Functionalization Enabled by Electron-Deficient Cp* CF3Ir(III) Catalyst and Photosensitizer. Angew Chem Int Ed Engl 2025; 64:e202421026. [PMID: 39681515 DOI: 10.1002/anie.202421026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
A site-selective functionalization of a C(sp3)-H bond was achieved in the presence of an intrinsically more reactive C(sp2)-H bond by controlling the orientation of a directing group via a photo-induced E/Z isomerization of an oxime ether. By combining E/Z isomerization and an electron deficient Cp*CF3Ir(III) catalyst, the scope of oxime ethers in C(sp3)-H functionalization was successfully expanded. Based on this strategy, the order of C-H activation was switchable and successive C(sp3)-H/C(sp2)-H and C(sp2)-H/C(sp3)-H double functionalizations were accomplished to construct densely functionalized structures.
Collapse
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Shunsuke Kimura
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Kosuke Higashida
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Tatsuhiko Yoshino
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Qian CW, Li X, Gu MQ. Visible-Light-Induced Multi-Component Nitrooxylation Reactions of α-Diazoesters, Cyclic Ethers, and Tert-Butyl Nitrite Leading to Organic Nitrate Esters. Chemistry 2024; 30:e202402304. [PMID: 39044322 DOI: 10.1002/chem.202402304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
Collapse
Affiliation(s)
- Cun-Wei Qian
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xian Li
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Meng-Qing Gu
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| |
Collapse
|
5
|
Fernandes AJ, Valsamidou V, Katayev D. Overcoming Challenges in O-Nitration: Selective Alcohol Nitration Deploying N,6-Dinitrosaccharin and Lewis Acid Catalysis. Angew Chem Int Ed Engl 2024; 63:e202411073. [PMID: 38984498 DOI: 10.1002/anie.202411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Nitrate esters hold pivotal roles in pharmaceuticals, energetic materials, and atmospheric processes, motivating the development of efficient synthesis routes. Here, we present a novel catalytic method for the synthesis of nitrates via the direct O-nitration of alcohols, addressing limitations of current traditional methods. Leveraging bench-stable and recoverable N,6-dinitrosaccharin reagent, our catalytic strategy employs magnesium triflate to achieve mild and selective O-nitration of alcohols, offering broad substrate scope and unprecedentedly large functional group tolerance (e.g. alkenes, alkynes, carbonyls). DFT mechanistic studies reveal a dual role of the magnesium catalyst in the activation of both the nitrating reagent and the alcohol substrate. They also unveil a barrierless proton transfer upon formation of a widely-accepted - yet elusive in solution - nitrooxonium ion intermediate. Overall, our work contributes to the development of mild, selective, and sustainable approaches to nitrates synthesis, with potential applications in drug discovery, materials science, and environmental chemistry.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Vasiliki Valsamidou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
6
|
Lv Y, Hao J, Huang J, Song L, Yue H, Wei W, Yi D. Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO. Chem Commun (Camb) 2024; 60:9801-9804. [PMID: 39162090 DOI: 10.1039/d4cc03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A metal-free and sustainable visible-light-mediated method for the preparation of organic nitrate esters has been developed through the aerobic nitrooxylation reaction of α-diazoesters and cyclic ethers with t-BuONO in the presence of dioxygen. This protocol provides an efficient approach to access nitrate esters with the advantages of clean energy, broad substrate scope, green oxidants, operational simplicity, and mild conditions.
Collapse
Affiliation(s)
- Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Lianhui Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 81000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China.
| |
Collapse
|
7
|
Cheng X, Yin Q, Cheng YF, Wu SH, Sun XC, Kong DY, Deng QH. Practical and regioselective halonitrooxylation of olefins to access β-halonitrates. Nat Commun 2024; 15:7131. [PMID: 39164277 PMCID: PMC11335742 DOI: 10.1038/s41467-024-51655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Organic nitrates, as effective donors of the signaling molecule nitric oxide, are widely applied in the pharmaceutical industry. However, practical and efficient methods for accessing organic nitrates are still scarce, and achieving high regiocontrol in unactivated alkene difunctionalization remains challenging. Here we present a simple and practical method for highly regioselective halonitrooxylation of unactivated alkenes. The approach utilizes TMSX (X: Cl, Br, or I) and oxybis(aryl-λ3-iodanediyl) dinitrates (OAIDN) as sources of halogen and nitrooxy groups, with 0.5 mol % FeCl3 as the catalyst. Remarkably, high regioselectivity in the halonitrooxylation of aromatic alkenes can be achieved even without any catalyst. This protocol features easy scalability and excellent functional group compatibility, providing a range of β-halonitrates (127 examples, up to 99% yield, up to >20:1 rr). Notably, 2-iodoethyl nitrate, a potent synthon derived from ethylene, reacts smoothly with a variety of functional units to incorporate the nitrooxy group into the desired molecules.
Collapse
Affiliation(s)
- Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Quan Yin
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Xin-Chang Sun
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
8
|
Yu Q, Zhou D, Yu P, Song C, Ze Tan, Li J. Silver-Catalyzed Decarboxylative Nitrooxylation of Aliphatic Carboxylic Acids. Org Lett 2024; 26:5856-5861. [PMID: 38950381 DOI: 10.1021/acs.orglett.4c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Here, we present a silver-catalyzed decarboxylative nitrooxylation via a radical-based approach. The substrate scope of this reaction prototype extends to nonactivated primary and secondary carboxylic acids. This protocol provides a practical method for the synthesis of an unprecedented family of organic nitrates and exhibits wide functional group compatibility. Preliminary mechanistic studies reveal that a high-valent silver(II) nitrate complex is a versatile NO3 resource pool, allowing for facile C-O bond formation.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Pingping Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Ze Tan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Jiakun Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Keerthana MS, Jeganmohan M. Palladium-catalyzed site-selective functionalization of unactivated alkenes with vinylcyclopropanes aided by weakly coordinating native amides. Chem Commun (Camb) 2024; 60:7347-7350. [PMID: 38916280 DOI: 10.1039/d4cc01034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Herein, we have demonstrated a palladium-catalyzed regioselective allylation of unactivated alkenes with vinylcyclopropanes assisted by weak-coordinating native amides. The reaction exhibits wide substrate scope and excellent β-selectivity. Substrate diversification was performed to demonstrate the synthetic utility of the reaction. Mechanistic investigations were carried out to provide an insight into the reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
10
|
Liu X, Gao FF, Xue Y, Luo J, Jiang C. Palladium-Catalyzed C(sp 3)-H Nitrooxylation of Aliphatic Carboxamides with Practical Oxidants. J Org Chem 2024; 89:1417-1424. [PMID: 38235669 DOI: 10.1021/acs.joc.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Here we report the palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic carboxamides using a modified quinoline auxiliary. Notably, Al(NO3)3·9H2O was used as a nitrate source as well as a practical oxidant. The 5-chloro-8-aminoquinoline auxiliary was nitrated in situ during the reaction, which may enhance its directing ability and help its removal. The reaction has a broad substrate scope with a variety of aliphatic carboxamides. The multiple substituted auxiliary can be easily removed and recovered. Two C-H-insertion palladacycle intermediates were isolated and characterized to elucidate the mechanism.
Collapse
Affiliation(s)
- Xing Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Fang-Fang Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
11
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
12
|
Fang C, Li L, Yang H, Kong C, Zhang J, Xie M, Wu J. Rh(III)-catalyzed selective C2 C-H acyloxylation of indoles. Chem Commun (Camb) 2023; 60:216-219. [PMID: 38050725 DOI: 10.1039/d3cc05799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we present the first highly regio- and chemoselective C2 C-H acyloxylation of indole under rhodium catalysis and an N-quinolinyl auxiliary. This strategy accommodates a wide range of indoles and structurally diverse carboxylic acids with good reaction efficiencies to yield functionalized indoles. The utility of this logic was demonstrated by the concise synthesis of the functionalized 2-oxindole derivatives. Preliminary mechanistic studies indicate that catalyst turnover of RhIII-RhIV/V-RhII/III-RhIII might be involved in this catalytic C-H transformation.
Collapse
Affiliation(s)
- Chaoying Fang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Li Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Caiyang Kong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
13
|
Liu SC, Fang DC. DFT Studies on the Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates. J Org Chem 2023; 88:14540-14549. [PMID: 37773964 DOI: 10.1021/acs.joc.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Density functional theory (DFT) calculations have been employed to investigate the mechanism of carboamination and diamination of unactivated alkenes mediated by Pd(IV) intermediates. Both reactions share a common Pd(IV) intermediate, serving as the starting point for either the carboamination or the diamination pathway. The formation of this Pd(IV) intermediate encompasses a transition state that substantially impacts the turnover frequency (TOF) of catalytic cycles, with an apparent activation free-energy barrier of 26.1 kcal mol-1. Carboamination of unactivated alkenes proceeds through the coordination of a toluene molecule, C-H activation, inner reductive elimination, and the separation of the carboamination product from this intermediate, while diamination of unactivated alkenes involves the formation of the ion nucleophile, SN2 attack, and the separation of the diamination product. A comparison of the free-energy profiles for carboamination and diamination of unactivated alkenes can elucidate the origin of the chemoselectivity, and Bader's atoms in molecules (AIM) wave function analyses have been performed to analyze the contributions of the outer C-N bonding in the diamination process.
Collapse
Affiliation(s)
- Si-Cong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
He J, Cook SP. Metal-free, photoinduced remote C(sp 3)-H borylation. Chem Sci 2023; 14:9476-9481. [PMID: 37712044 PMCID: PMC10498503 DOI: 10.1039/d3sc03048b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Here, we describe a protocol for the metal-free, photo-induced borylation of unactivated C(sp3)-H bonds distal to an O-oxalate hydroxamic ester functionality. The methodology requires only substrate and bis(catecholato)diboron under light irradiation to effect the desired transformation. A range of linear and cyclic tertiary and secondary borylation products are obtained in good yields and high site-selectivity enabling the late-stage C(sp3)-H borylation of natural product derivatives and drug-like compounds.
Collapse
Affiliation(s)
- Jiachen He
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Silas P Cook
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| |
Collapse
|
15
|
Dutta A, Jeganmohan M. Palladium-Catalyzed Aerobic Oxidative Spirocyclization of Alkyl Amides with Maleimides via β-C(sp 3)-H Activation. Org Lett 2023; 25:6305-6310. [PMID: 37606577 DOI: 10.1021/acs.orglett.3c02182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An efficient method for the synthesis of bicyclic spirodiamine molecules via β-C(sp3)-H bond activation of aliphatic amides, followed by cyclization with maleimides, has been developed. The reaction proceeds through an amide-directed β-C(sp3)-H bond activation of alkyl amides and subsequent cyclization with maleimides. The methodology is highly compatible with a wide variety of maleimides. Amides derived from biologically active aliphatic and fatty acids were also found to be highly compatible with the protocol. A palladacycle was synthesized and found to be the active intermediate in this reaction. A plausible reaction mechanism was also proposed to account for this spirocyclization.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
16
|
Qi L, Dong M, Qian J, Yu S, Tong X. Pd 0 -Catalyzed Asymmetric Carbonitratation Reaction Featuring an H-Bonding-Driven Alkyl-Pd II -ONO 2 Reductive Elimination. Angew Chem Int Ed Engl 2023; 62:e202215397. [PMID: 36420824 DOI: 10.1002/anie.202215397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Reductive elimination of alkyl-PdII -O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4 ] and AgNO3 additive under toluene/H2 O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0 -catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I- and NO3 - , alkene insertion and SN 2-type alkyl-PdII -ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2 NO- ligand from the alkyl-PdII -ONO2 species, thus enabling the challenging alkyl-PdII -ONO2 reductive elimination to be feasible.
Collapse
Affiliation(s)
- Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
17
|
Wakikawa T, Sekine D, Murata Y, Bunno Y, Kojima M, Nagashima Y, Tanaka K, Yoshino T, Matsunaga S. Native Amide-Directed C(sp 3 )-H Amidation Enabled by Electron-Deficient Rh III Catalyst and Electron-Deficient 2-Pyridone Ligand. Angew Chem Int Ed Engl 2022; 61:e202213659. [PMID: 36305194 DOI: 10.1002/anie.202213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Trivalent group-9 metal catalysts with a cyclopentadienyl-type ligand (CpMIII ; M=Co, Rh, Ir, Cp=cyclopentadienyl) have been widely used for directed C-H functionalizations, albeit that their application to challenging C(sp3 )-H functionalizations suffers from the limitations of the available directing groups. In this report, we describe directed C(sp3 )-H amidation reactions of simple amide substrates with a variety of substituents. The combination of an electron-deficient CpE Rh catalyst (CpE =1,3-bis(ethoxycarbonyl)-substituted Cp) and an electron-deficient 2-pyridone ligand is essential for high reactivity.
Collapse
Affiliation(s)
- Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuta Murata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Youka Bunno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
18
|
Xue Y, Zhou RB, Luo J, Hu BC, Liu ZQ, Jiang C. Palladium-catalyzed C(sp 3)-H nitrooxylation of masked alcohols. Org Biomol Chem 2022; 21:75-79. [PMID: 36448655 DOI: 10.1039/d2ob01919a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic alcohols with AgNO2 is reported. An 8-formylquinoline-derived oxime is installed as an exo-type directing group for sp3 C-H activation and selectfluor acts as the oxidant. The reaction tolerates a variety of functional groups and shows good selectivity for β-C-H nitrooxylation of alcohols.
Collapse
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Ruo-Bing Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bing-Cheng Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
19
|
Wang Y, Xu X, Pang B, Hao L, Wu G, Ji Y. Ligand-Enabled Sequential C(sp 3)-H and C(sp 2)-H Diolefination Reaction via Palladium Catalyst. Org Lett 2022; 24:6734-6739. [PMID: 36073970 DOI: 10.1021/acs.orglett.2c02502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Palladium-catalyzed sequential C(sp3)-H and C(sp2)-H bond diolefination reaction of o-toluidine has been realized for the first time using acetyl-protected aminoethyl phenyl thioether ligands. This novel reaction allows for preparation of the conjugated diene structure via an immediate second olefination on the basis of the first C(sp3)-H olefination in one pot. Various triflyl-protected anilines and acrylates were used as coupling partners elegantly. Furthermore, the unpurified diolefination products can be easily converted to tetrahydroquinoline derivatives.
Collapse
Affiliation(s)
- Yangyang Wang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xiaobo Xu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Binghan Pang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Liqiang Hao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Gaorong Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Yafei Ji
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
20
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|