1
|
Li W, Ye L, Tu C, Xie K. Porous Single-Crystalline Rare Earth Phosphates Monolith to Enhance Catalytic Activity and Durability. Molecules 2025; 30:331. [PMID: 39860202 PMCID: PMC11767269 DOI: 10.3390/molecules30020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Rare earth phosphate (XPO4) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO4 and SmPO4 with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals. Herein, we present a study in which centimeter-scale PSC PrPO4 and SmPO4 monoliths were developed and oxygen defects in the crystal lattice were stabilized using single-crystal nature to synergistically improve catalytic activity in the oxidative dehydrogenation of ethane (ODE). The surface structure of the oxygen vacancies with unsaturated coordination is favorable for the adsorption and activation of ethane. The PSC PrPO4 and SmPO4 monoliths showed favorable performance with ~51% conversion of C2H6 and ~19% yield of C2H4 at 600 °C, while also exhibiting superior long-term stability during the catalytic process over a period of 115 h. In the presented work, we investigate a practical method for development and application in single-crystalline porous rare earth phosphate materials.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lingting Ye
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chaoyang Tu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Kui Xie
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Lyu X, Wu G, Zheng Z, Xia S, Xie J, Xia Y, Fan P, Zhu R, Wang Y, Yang D, Li T, Dong A. Molecularly Confined Topochemical Transformation of MXene Enables Ultrathin Amorphous Metal-Oxide Nanosheets. ACS NANO 2024; 18:2219-2230. [PMID: 38190507 DOI: 10.1021/acsnano.3c09741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional (2D) amorphous nanosheets with ultrathin thicknesses have properties that differ from their crystalline counterparts. However, conventional methods for growing 2D materials often produce either crystalline flakes or amorphous nanosheets with an uncontrollable thickness. Here, we report that ultrathin amorphous metal-oxide nanosheets featuring superior flatness can be realized through the molecularly confined topochemical transformation of MXene. Using MXene Ti2CTx as an example, we show that surface modification of Ti2CTx nanosheets with molecular ligands, such as oleylamine (OAm) and oleic acid (OA), not only imparts notable colloidal dispersity to Ti2CTx nanosheets in nonpolar organic solvents but also confines their subsequent oxidation to in-plane configurations. We demonstrate that unlike the drastic oxidation conventionally observed for pristine MXene, hydrophobizing MXene with OAm and OA ligands enables individual Ti2CTx nanosheets to undergo independent oxidation in a nondestructive manner, resulting in amorphous titanium oxide (am-TiO2) nanosheets that faithfully retain the dimension and flatness of pristine MXene. These am-TiO2 nanosheets exhibit exceptional activity as substrates for surface-enhanced Raman scattering. Importantly, this molecular confinement strategy can be extended to other MXene materials, providing a versatile approach for synthesizing ultrathin amorphous metal-oxide nanosheets with tailored compositions and functionalities.
Collapse
Affiliation(s)
- Xuanyu Lyu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Guanhong Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Ziyue Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Shenxin Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Jiaoying Xie
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Yan Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Pengshuo Fan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Run Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Yajun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, People's Republic of China
| | - Tongtao Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
3
|
Li X, Chang J, Zhang H, Feng J, Ma J, Bai C, Ren Y. Enhanced photocarrier separation in Br substitution-induced [W (VI)O 6-x] units for highly efficient photocatalytic nitrate reduction under alkaline conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132683. [PMID: 37832434 DOI: 10.1016/j.jhazmat.2023.132683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Photocatalytic nitrate (NO3-) reduction is considered a promising green and non-polluting technology to solve the nitrate pollution of groundwater and surface water. Herein, a novel Br-substituted Bi2WO6-x ultrathin nanosheets were prepared by a simple hydrothermal method in a strong acid environment containing sixteen alkyl three methyl bromide (CTAB). The catalytic system solves the problems of low carrier separation efficiency, poor performance under alkaline conditions, and a hard-to-activate N = O bond, achieving efficient NO3- removal under alkaline conditions along with high N2 selectivity. It was confirmed that Br-substituted Bi2WO6-x produced the [W(VI)O6-x] units with a strong electron-withdrawing property by changing the polarity of the O-W-O bond. As a result, the effective space charge separation caused by the change of the W valence state and the spontaneous fracture behavior of the N = O bond improved the carriers utilization efficiency and distinctly reduced the reaction energy consumption, synergistically achieving excellent performance.
Collapse
Affiliation(s)
- Xiao Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jin Chang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hexin Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Feng
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chengying Bai
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Yueming Ren
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
4
|
Guo H, Yang P, Yang Y, Wu H, Zhang F, Huang ZF, Yang G, Zhou Y. Vacancy-Mediated Control of Local Electronic Structure for High-Efficiency Electrocatalytic Conversion of N 2 to NH 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309007. [PMID: 38037488 DOI: 10.1002/smll.202309007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Ambient electrocatalytic nitrogen (N2 ) reduction has gained significant recognition as a potential substitute for producing ammonia (NH3 ). However, N2 adsorption and *NN protonation for N2 activation reaction with the competing hydrogen evolution reaction remain a daunting challenge. Herein, a defect-rich TiO2 nanosheet electrocatalyst with PdCu alloy nanoparticles (PdCu/TiO2-x ) is designed to elucidate the reactivity and selectivity trends of N2 cleavage path for N2 -to-NH3 catalytic conversion. The introduction of oxygen vacancy (OV) not only acts as active sites but also effectively promotes the electron transfer from Pd-Cu sites to high-concentration Ti3+ sites, and thus lends to the N2 activation via electron donation of PdCu. OVs-mediated control effectively lowers the reaction barrier of *N2 H and *H adsorption and facilitates the first hydrogenation process of N2 activation. Consequently, PdCu/TiO2-x catalyst attains a high rate of NH3 evolution, reaching 5.0 mmol gcat. -1 h-1 . This work paves a pathway of defect-engineering metal-supported electrocatalysts for high-efficient ammonia electrosynthesis.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Peng Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Haoran Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
5
|
Li H, Song Q, Wan S, Tung CW, Liu C, Pan Y, Luo G, Chen HM, Cao S, Yu J, Zhang L. Atomic Interface Engineering of Single-Atom Pt/TiO 2 -Ti 3 C 2 for Boosting Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301711. [PMID: 37093181 DOI: 10.1002/smll.202301711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Solar-driven CO2 conversion into valuable fuels is a promising strategy to alleviate the energy and environmental issues. However, inefficient charge separation and transfer greatly limits the photocatalytic CO2 reduction efficiency. Herein, single-atom Pt anchored on 3D hierarchical TiO2 -Ti3 C2 with atomic-scale interface engineering is successfully synthesized through an in situ transformation and photoreduction method. The in situ growth of TiO2 on Ti3 C2 nanosheets can not only provide interfacial driving force for the charge transport, but also create an atomic-level charge transfer channel for directional electron migration. Moreover, the single-atom Pt anchored on TiO2 or Ti3 C2 can effectively capture the photogenerated electrons through the atomic interfacial PtO bond with shortened charge migration distance, and simultaneously serve as active sites for CO2 adsorption and activation. Benefiting from the synergistic effect of the atomic interface engineering of single-atom Pt and interfacial TiOTi, the optimized photocatalyst exhibits excellent CO2 -to-CO conversion activity of 20.5 µmol g-1 h-1 with a selectivity of 96%, which is five times that of commercial TiO2 (P25). This work sheds new light on designing ideal atomic-scale interface and single-atom catalysts for efficient solar fuel conversation.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qinjun Song
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - GuoQiang Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - LianMeng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
6
|
Wu Z, Liu S, Hao Z, Liu X. MXene Contact Engineering for Printed Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207174. [PMID: 37096843 PMCID: PMC10323642 DOI: 10.1002/advs.202207174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Indexed: 05/03/2023]
Abstract
MXenes emerging as an amazing class of 2D layered materials, have drawn great attention in the past decade. Recent progress suggest that MXene-based materials have been widely explored as conductive electrodes for printed electronics, including electronic and optoelectronic devices, sensors, and energy storage systems. Here, the critical factors impacting device performance are comprehensively interpreted from the viewpoint of contact engineering, thereby giving a deep understanding of surface microstructures, contact defects, and energy level matching as well as their interaction principles. This review also summarizes the existing challenges of MXene inks and the related printing techniques, aiming at inspiring researchers to develop novel large-area and high-resolution printing integration methods. Moreover, to effectually tune the states of contact interface and meet the urgent demands of printed electronics, the significance of MXene contact engineering in reducing defects, matching energy levels, and regulating performance is highlighted. Finally, the printed electronics constructed by the collaborative combination of the printing process and contact engineering are discussed.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuiren Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zijuan Hao
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
- Henan Innovation Center for Functional Polymer Membrane MaterialsXinxiang453000P. R. China
| | - Xuying Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
7
|
Niche Applications of MXene Materials in Photothermal Catalysis. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
MXene materials have found emerging applications as catalysts for chemical reactions due to their intriguing physical and chemical applications. In particular, their broad light response and strong photothermal conversion capabilities are likely to render MXenes promising candidates for photothermal catalysis, which is drawing increasing attention in both academic research and industrial applications. MXenes are likely to satisfy all three criteria of a desirable photothermal catalyst: strong light absorption, effective heat management, and versatile surface reactivity. However, their specific functionalities are largely dependent on their structure and composition, which makes understandings of the structure–function relationship of crucial significance. In this review, we mainly focus on the recent progress of MXene–based photothermal catalysts, emphasizing the functionalities and potential applications of MXene materials in fields of photothermal catalysis, and provide insights on design principles of highly efficient MXene–based photothermal catalysts from the atomic scale. This review provides a relatively thorough understanding of MXene–based materials for photothermal catalysis, as well as an in–depth investigation of emerging high-prospect applications in photothermal catalysis.
Collapse
|
8
|
Lu C, You D, Li J, Wen L, Li B, Guo T, Lou Z. Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration. Nat Commun 2022; 13:6984. [PMID: 36379947 PMCID: PMC9666589 DOI: 10.1038/s41467-022-34738-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmonic hot carriers have the advantage of focusing, amplifying, and manipulating optical signals via electron oscillations which offers a feasible pathway to influence catalytic reactions. However, the contribution of nonmetallic hot carriers and thermal effects on the overall reactions are still unclear, and developing methods to enhance the efficiency of the catalysis is critical. Herein, we proposed a new strategy for flexibly modulating the hot electrons using a nonmetallic plasmonic heterostructure (named W18O49-nanowires/reduced-graphene-oxides) for isopropanol dehydration where the reaction rate was 180-fold greater than the corresponding thermocatalytic pathway. The key detail to this strategy lies in the synergetic utilization of ultraviolet light and visible-near-infrared light to enhance the hot electron generation and promote electron transfer for C-O bond cleavage during isopropanol dehydration reaction. This, in turn, results in a reduced reaction activation barrier down to 0.37 eV (compared to 1.0 eV of thermocatalysis) and a significantly improved conversion efficiency of 100% propylene from isopropanol. This work provides an additional strategy to modulate hot carrier of plasmonic semiconductors and helps guide the design of better catalytic materials and chemistries.
Collapse
Affiliation(s)
- Changhai Lu
- grid.258164.c0000 0004 1790 3548Institute of Nanophotonics, Jinan University, Guangzhou, 511443 China
| | - Daotong You
- grid.258164.c0000 0004 1790 3548Institute of Photonics Technology, Jinan University, Guangzhou, 511443 China
| | - Juan Li
- grid.258164.c0000 0004 1790 3548Institute of Nanophotonics, Jinan University, Guangzhou, 511443 China
| | - Long Wen
- grid.258164.c0000 0004 1790 3548Institute of Nanophotonics, Jinan University, Guangzhou, 511443 China
| | - Baojun Li
- grid.258164.c0000 0004 1790 3548Institute of Nanophotonics, Jinan University, Guangzhou, 511443 China
| | - Tuan Guo
- grid.258164.c0000 0004 1790 3548Institute of Photonics Technology, Jinan University, Guangzhou, 511443 China ,grid.511004.1Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Zaizhu Lou
- grid.258164.c0000 0004 1790 3548Institute of Nanophotonics, Jinan University, Guangzhou, 511443 China
| |
Collapse
|