1
|
Sanchez Merlinsky L, Hemmeter D, Baraldo LM, Maier F, Steinrück HP, Williams FJ. Unlocking the Fluorine-Free Buoy Effect: Surface-Enriched Ruthenium Polypyridine Complexes in Ionic Liquids. ChemistryOpen 2024; 13:e202400092. [PMID: 38687137 PMCID: PMC11230926 DOI: 10.1002/open.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Controlling the local concentration of metal complexes at the surface of ionic liquids (ILs) is a highly sought-after objective due to its pivotal implications in supported ionic liquid phase (SILP) catalysis. Equally important is to avoid per- and polyfluorinated substances due to environmental concerns. Herein, we investigate the surface enrichment of Ru polypyridyl complexes with fluorine-free alkylic side groups of varying lengths and shapes, using the hydrophilic IL [C2C1Im][OAc] as solvent. Additional charged carboxylate groups are included into the polypyridyl ligands to increase the solubility of the complex in the IL. When the ligand system is functionalized with long and hydrophobic alkyl side chains, the complex predominantly localizes at the IL/vacuum interface, as deduced from angle-resolved X-ray photoelectron spectroscopy. Conversely, in the presence of short or more bulky substituents, no surface enrichment is observed. This buoy-like behaviour with fluorine-free side groups is explored for 0.05 %mol to 1 %mol solutions. Intriguingly, surface saturation occurs at approximately 0.5 %mol, which is beneficial to the efficient operation of catalytic systems featuring high surface areas, such as SILP catalysts.
Collapse
Affiliation(s)
- Luciano Sanchez Merlinsky
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Hemmeter
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, Germany
| | - Luis M Baraldo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, Germany
| | - Federico J Williams
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Mayer S, Bergen A, Zhai Z, Trzeciak S, Chu J, Zahn D, Koller TM, Meyer K, Vogel N. Evolution of Surface Tension and Hansen Parameters of a Homologous Series of Imidazolium-Based Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9529-9542. [PMID: 38648374 DOI: 10.1021/acs.langmuir.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this study, we systematically analyze the surface tension and Hansen solubility parameters (HSPs) of imidazolium-based ionic liquids (ILs) with different anions ([NTf2]-, [PF6]-, [I]-, and [Br]-). These anions are combined with the classical 1-alkyl-3-methyl-substituted imidazolium cations ([CnC1Im]+) and a group of oligoether-functionalized imidazolium cations ([(mPEGn)2Im]+) based on methylated polyethylene glycol (mPEGn). In detail, the influences of the length of the alkyl- and the mPEGn-chain, the anion size, and the water content are investigated experimentally. For [CnC1Im]+-based ILs, the surface tension decreases with increasing alkyl chain length in all cases, but the magnitude of this decrease depends on the size of the anion ([NTf2]- < [PF6]- < [Br]- ≤ [I]-). Molecular dynamics (MD) simulations on [CnC1Im]+-based ILs indicate that these differences are caused by the interplay of charged and uncharged domains, in particular in the different anions, which affects the ability of the alkyl chains of the cation to orient toward the liquid-gas interface. An increase in the mPEGn-chain length of the [(mPEGn)2Im][A] ILs does not significantly influence the surface tension. These changes upon variation of the cation/anion combination do not correlate with the evolution of the HSPs for the two sets of ILs. Finally, our data suggest that significant water contents up to water mole fractions of x(H2O) = 0.25 do not significantly affect the surface tension of the studied binary IL-water mixtures.
Collapse
Affiliation(s)
- Sophie Mayer
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany
| | - Alexander Bergen
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr.1, 91058 Erlangen, Germany
| | - Ziwen Zhai
- Institute of Advanced Optical Technologies─Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering and Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 8, 91052 Erlangen, Germany
| | - Simon Trzeciak
- Computer Chemistry Center/Theoretical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Junyu Chu
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr.1, 91058 Erlangen, Germany
| | - Dirk Zahn
- Computer Chemistry Center/Theoretical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Thomas M Koller
- Institute of Advanced Optical Technologies─Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering and Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 8, 91052 Erlangen, Germany
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr.1, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 4, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Mikšovsky P, Rauchenwald K, Naghdi S, Rabl H, Eder D, Konegger T, Bica-Schröder K. Silicon Oxycarbide (SiOC)-Supported Ionic Liquids: Heterogeneous Catalysts for Cyclic Carbonate Formation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1455-1467. [PMID: 38303909 PMCID: PMC10829049 DOI: 10.1021/acssuschemeng.3c05569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Silicon oxycarbides (SiOCs) impregnated with tetrabutylammonium halides (TBAX) were investigated as an alternative to silica-based supported ionic liquid phases for the production of bio-based cyclic carbonates derived from limonene and linseed oil. The support materials and the supported ionic liquid phases (SILPs) were characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray photoelectron spectroscopy, microscopy, and solvent adsorption. The silicon oxycarbide supports were pyrolyzed at 300-900 °C prior to being coated with different tetrabutylammonium halides and further used as heterogeneous catalysts for the formation of cyclic carbonates in batch mode. Excellent selectivities of 97-100% and yields of 53-62% were obtained with tetrabutylammonium chloride supported on the silicon oxycarbides. For comparison, the catalytic performance of commonly employed silica-supported ionic liquids was investigated under the same conditions. The silica-supported species triggered the formation of a diol as a byproduct, leading to a lower selectivity of 87% and a lower yield of 48%. Ultimately, macroporous monolithic SiOC-SILPs with suitable permeability characteristics (k1 = 10-11 m2) were produced via photopolymerization-assisted solidification templating and applied for the selective and continuous production of limonene carbonate with supercritical carbon dioxide as the reagent and sole solvent. Constant product output over 48 h without concurrent catalyst leaching was achieved.
Collapse
Affiliation(s)
- Philipp Mikšovsky
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Katharina Rauchenwald
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Shaghayegh Naghdi
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Hannah Rabl
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Dominik Eder
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Thomas Konegger
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | | |
Collapse
|