1
|
Zhu B, Liu J, Shen Y, Liu L, Liu F. The bidirectional matter transfer in adsorption-promoted photocatalytic ozonation system derived by triazine nanosheets-heptazine nanotubes homojunction composite biochar. WATER RESEARCH 2025; 279:123444. [PMID: 40068287 DOI: 10.1016/j.watres.2025.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 05/06/2025]
Abstract
Heterogeneous catalytic ozonation (HCO) process is an efficiency and eco-friendly solution to the growing challenge of water purification, yet is challenging by O3 utilization, pollutants selectivity, and matter transfer resistance. Herein, adsorption-promoted photocatalytic ozonation (HCO/POAP) system was constructed derived by triazine nanosheets-heptazine nanotubes homojunction carbon nitride composite Enteromorpha prolifera derived biochar (CNTh-St/EpC) to provide a targeted solution for the refractory organic pollutants treatment. In the HCO/POAP system, the adsorption sites predominantly reside on EpC, while the catalytic sites are primarily located on CN. The construction of efficient transport channels is facilitated by the induction of triazine structures from amorphous C, N compounds along the edges of heptazine. This leads to the independent yet closely interconnected process of inward transfer of pollutants and outward transfer of active species, confining reactions to a bidirectional transfer channel. This strategic confinement significantly amplifies the performance of HCO/POAP system. Specifically, the removal rates are 80 % for TC and 94 % for PNP in 30 min with almost entirely harmless or non-toxic degradation products, and mark a 56 % and 77 % enhancement over O3 system, respectively. Moreover, the HCO/POAP system demonstrates exceptional efficacy in treating dissolved organic matter, chemical oxygen demand (COD), and ultraviolet absorbance at 254 nm (UV254) in diverse actual wastewater. This study highlights the potential of HCO/POAP process in efficient water purification, and provides mechanistic insights into the bidirectional matter transfer during the contaminants remove.
Collapse
Affiliation(s)
- Benjie Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Jialiang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yuxiang Shen
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Lingyu Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China.
| |
Collapse
|
2
|
Meng S, Li J, Wang S, Zhan S, Hu W, Li Y. Homo-Hetero Double Junction Coupling Weakens Exciton Effects to Enhance Selective Photocatalytic O 2 Activation on Carbon Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420080. [PMID: 39988833 DOI: 10.1002/adma.202420080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Exciton effects caused by the inherent dielectric confinement in the 2D material carbon nitride (CN) severely limit the transfer of photogenerated carriers and the selective generation of free radicals. Herein, a homo-hetero double junction coupling strategy is reported to address these challenges. Ternary homojunction carbon nitride (HCCN) functionalized with cyano and cyanamide groups is constructed with a built-in electric field that efficiently separates the electron-hole into different structural units, thereby reducing reverse charge recombination and weakening exciton effects. The introduction of α-Fe2O3 (FO) subsequently constructs the homo-hetero double junction catalyst FO/HCCN with a built-in electric field 127 times stronger than HCCN, which promotes the directional migration of carriers after exciton dissociation and achieves ≈100% selective generation of ·O2 - from O2. These results suggest that FO/HCCN achieves 99.6% removal of tetracycline within 20 min, with a degradation rate 12 and 46 times higher than FO/CN and HCCN, respectively. In addition, the system shows excellent stability and cyclability in real-life light experiments and trace organic contaminant removal. This homo-hetero double junction coupling strategy opens up new avenues in weakening exciton effects and precisely controlling the generation of free radicals.
Collapse
Affiliation(s)
- Suhang Meng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jialu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300072, China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
3
|
Zhu X, Zhou E, Tai X, Zong H, Yi J, Yuan Z, Zhao X, Huang P, Xu H, Jiang Z. g-C 3N 4 S-Scheme Homojunction through Van der Waals Interface Regulation by Intrinsic Polymerization Tailoring for Enhanced Photocatalytic H 2 Evolution and CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202425439. [PMID: 39780747 DOI: 10.1002/anie.202425439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces. The homojunction catalyst, composed of g-C3N4 nanodots and ultra-thin g-C3N4 nanoflakes, exhibited a significant S-scheme carrier separation mechanism, which enhances the utilization of electrons and holes. Consequently, under AM 1.5 light irradiation (~100 mW/cm2), the g-C3N4 homojunction photocatalyst achieved a remarkable hydrogen evolution rate of 580 μmol h-1. Furthermore, a reversed CH4 selectivity in CO2 reduction was observed, yielding 80.30 μmol g-1 h-1 with a selectivity of 96.86 %, in contrast to the performance of bulk g-C3N4, which produced only 2.22 μmol g-1 h-1 with the 15.69 % CH4 selectivity. These findings not only highlight the significant potential of the g-C3N4 homojunction photocatalyst for hydrogen production and CO2 reduction but also propose a superior and effective strategy for optimizing the structural properties of g-C3N4, which are crucial for the design of photocatalytic reactions.
Collapse
Affiliation(s)
- Xianglin Zhu
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Enlong Zhou
- College of Chemistry and Materials Science, Shandong Agricultural University, Taian, 271018, P.R. China
| | - Xishi Tai
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Huibin Zong
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Xingling Zhao
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Peng Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R. China
| | - Hui Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| |
Collapse
|
4
|
Yuan J, Li S, Dang Z, Liu S, Yang F, Wang D, Tao H, Gao S, Ang EH. Harnessing Janus structures: enhanced internal electric fields in C 3N 5 for improved H 2 photocatalysis. MATERIALS HORIZONS 2025; 12:1346-1354. [PMID: 39625708 DOI: 10.1039/d4mh01316f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Homojunction engineering holds promise for creating high-performance photocatalysts, yet significant challenges persist in establishing and modulating an effective junction interface. To tackle this, we designed and constructed a novel Janus homojunction photocatalyst by integrating two different forms of triazole-based carbon nitride (C3N5). In this design, super-sized, ultrathin nanosheets of carbon-rich C3N5 grow epitaxially on a nitrogen-rich honeycomb network of C3N5, creating a tightly bound and extensive interfacial contact area. This arrangement enhances the built-in internal electric field (IEF) between the two forms of C3N5, facilitating faster directional transfer of photogenerated electrons and improved visible-light harvesting. Consequently, Janus-C3N5 achieves a remarkable H2 evolution rate of 1712.4 μmol h-1 g-1 under simulated sunlight, which is approximately 5.58 times higher than that of bulk C3N5 (306.8 μmol h-1 g-1) and 14.1 times higher than another form of bulk C3N5 (121.2 μmol h-1 g-1). This work offers a new approach to design efficient homojunction-based photocatalysts.
Collapse
Affiliation(s)
- Jianwei Yuan
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou, 213022, P. R. China
| | - Su Li
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou, 213022, P. R. China
| | - Zhaofei Dang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, 666 Liaohe Road (S), Changzhou, 213022, P. R. China
| | - Sixia Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, P. R. China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Dongguang Wang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, P. R. China.
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, P. R. China.
| | - Shuying Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, P. R. China.
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
5
|
Lin S, Wu B, Xu Y, Gu H, Xiao X, Xie Y, Jiang B. Engineering Planar Crystallinity in Nitrogen-Vacancy-Incorporated Carbon Nitride for Efficient Photoredox Catalysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6357-6365. [PMID: 39831474 DOI: 10.1021/acsami.4c19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers. To address this issue, a template-free, step-by-step assembly strategy has been proposed for the synthesis of planar crystalline carbon nitride (CCN) incorporated with a nitrogen vacancy (Nv). In contrast to the simultaneous assembly method, the sequential assembly process encompasses a progressive crystallization mechanism. This method is conducive to the mitigation of the incidence of structural disarray, thereby precluding the genesis of non-ordered defects throughout the whole bulk phase. The ordered in-plane arrangement facilitates the spatial segregation of electrons and holes, thereby decoupling the redox active sites. This separation minimizes the likelihood of back reactions and suppresses the recombination process, which is advantageous for the efficiency of photocatalytic coupling reactions. Certified by multiscale characterization and theoretical simulations, the incorporation of Nv enhances the energy band structure and provides sites with unsaturated coordination for the adsorption and activation of ethanol molecules. This interfacial synergistic effect of Nv and co-catalyst Pt as the Lewis site achieves efficient activation of both coupling partners. The obtained CCN demonstrates significant bifunctional photocatalytic activity, achieving a yield of benzimidazole at 5.0 mmol g-1 with a conversion and selectivity rate of 99%. Simultaneously, the hydrogen evolution rate of CCN is measured at 9.1 mmol g-1 within 4 h. The template-free, step-by-step assembled strategy utilized in this study provides new perspectives on developing highly efficient photocatalysts at the molecular level.
Collapse
Affiliation(s)
- Siying Lin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Baogang Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yachao Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Huiquan Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
- Postdoctoral Workstation of Zhejiang Fomay Technology Company, Limited, Linhai 317099, People's Republic of China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| |
Collapse
|
6
|
Lin WC, Sun YE, Zhuang YR, Huang TF, Lin KJ, Elsenety MM, Yen JC, Hsu HK, Chen BH, Chang CY, Chang JW, Huang HN, Li BH, Jungsuttiwong S, Haldar T, Wang SH, Lin WC, Wu TL, Chen CW, Yu CH, Su AC, Lin KH, Jeng US, Yang SD, Chou HH. Optimally Miscible Polymer Bulk-Heterojunction-Particles for Nonsurfactant Photocatalytic Hydrogen Evolution. J Am Chem Soc 2025; 147:2537-2548. [PMID: 39705715 PMCID: PMC11760146 DOI: 10.1021/jacs.4c13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor (PS) and acceptor (PSOS) polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the PS/PSOS blend is positioned very close to the binodal curve. Experimental studies and molecular dynamics simulations further revealed that surfactants hinder electron output sites and reduce the concentration of sacrificial agents at the interface, slowing polaron formation. Multiscale experiments verified that these BHJP, approximately 12 nm in diameter, further form cross-linked fractal networks of several hundred nanometers. Transient absorption spectroscopy showed that BHJP facilitates polaron formation and electron transfer. Our BHJP demonstrated a superior hydrogen evolution rate (HER) compared to traditional methods. The most active BHJP achieved an HER of 251.2 mmol h-1 g-1 and an apparent quantum yield of 26.2% at 500 nm. This work not only introduces a practical method for preparing BHJP but also offers a new direction for the development of heterojunction materials.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Yu-En Sun
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Ying-Rang Zhuang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Tse-Fu Huang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kuei-Jhong Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Mohamed M. Elsenety
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- Department
of Chemistry, Faculty of Science, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Jui-Chen Yen
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Kai Hsu
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Han Chen
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chen-Yu Chang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Je-Wei Chang
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Ni Huang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Bing-Heng Li
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Siriporn Jungsuttiwong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Toton Haldar
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 106344, Taiwan
| | - Shin-Huei Wang
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - Wan-Chi Lin
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - Tien-Lin Wu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wen Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 106344, Taiwan
| | - Chi-Hua Yu
- Department
of Engineering Science, National Cheng Kung
University, Tainan 701401, Taiwan
| | - An-Chung Su
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Kun-Han Lin
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Shang-Da Yang
- Institute
of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Center
for Photonics Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Ho-Hsiu Chou
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- Center
for Photonics Research, National Tsing Hua
University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
7
|
Ma C, Xiao Q, Wang Y, Zhou Y, Yang Z, Che H. Efficient photocatalytic in-situ Fenton degradation of 2,4-dichlorophenol via anthraquinone-modified carbon nitride for 2e - oxygen reduction. J Colloid Interface Sci 2025; 678:180-190. [PMID: 39293362 DOI: 10.1016/j.jcis.2024.09.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Constructing a photocatalytic in-situ Fenton system (PISFs) is a promising strategy to address the need for continuous hydrogen peroxide (H2O2) addition and the low efficiency of H2O2 activation for hydroxyl radical generation in the traditional Fenton reaction. In this study, we constructed a photocatalytic in-situ Fenton system using anthraquinone-modified carbon nitride (AQ-C3N4) for efficient pollutant degradation. The resultant AQ-C3N4 not only enhanced the production of H2O2 but also increased the generation of hydroxyl radical (·OH). Experimental results demonstrated that, the apparent rate constant for the degradation of 2,4-Dichlorophenol (2,4-DCP) by AQ-C3N4-PISFs was 0.145 min-1, which is 2.74 times higher than that of C3N4 under visible light. Density functional theory (DFT) calculations indicate that AQ modification promotes electron-hole separation while increasing the adsorption energy of O2. Independent gradient model (IGM) analysis based on Hirshfeld Partition revealed that van der Waals interactions between AQ-C3N4 and 2,4-DCP promoted the degradation process. This work provides new ideas to overcome the problems of continuous addition of H2O2 and low utilization of ·OH that exist in conventional Fenton system.
Collapse
Affiliation(s)
- Chenwei Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Quanxi Xiao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yufei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yundi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Zihe Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China.
| |
Collapse
|
8
|
Yan T, Jin Y, Fan Q, Liu H, Li X, Zhang T, Wang H, Lin J, Chi H, Zhang S, Ma X. Large-Current CO 2 Electromethanation Through Active Hydrogen Regulation Over Carbon Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408600. [PMID: 39538978 DOI: 10.1002/smll.202408600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Electromethanation of CO2 has received intensive attention due to its high calorific value and convenient storage along with transportation to accommodate industrial demands. However, it is limited by sluggish multi-step proton-coupled electron transfer kinetics and undesired *H coupling under high current density, posing great challenges to its commercialization. Herein, carbon nitride (CN) with superior hydrogen adsorption ability is used as an active-hydrogen adsorption and supply material. Through a facile liquid-assisted exfoliation and electrostatic self-assembly strategy to strengthen its interfacial contacts with Cu2O catalysts, yielding a strengthened CH4 production 52 times higher than that of pristine Cu2O. Flow-cell test ultimately achieved FECH4 and remarkably CH4 partial current density of 61% and 561 mA cm-2, respectively. With in situ ATR-FTIR spectra and DFT calculations, it is established that strengthened interfaces enabled abundant *H tethered by ─C─N═C─ sites in CN nanosheets and oriented to the *CO hydrogenation to *CHO and *CHx on Cu species. This work reveals the profound influence of fine-expanded interfaces with dimensional materials on the product distribution and yield through the active-hydrogen management, which is of reference value for other small-molecule electro-polarization dominated by the proton-coupled electron transfer (PCET) process (e.g., N2, O2, etc.).
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaxin Jin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hai Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xindi Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tianying Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
9
|
Xu J, Zhang X, Wang X, Wu X, Yu H. Charge self-regulation over in-plane two-dimensional/two-dimensional hetero-cocatalyst for robust photocatalytic hydrogen generation. J Colloid Interface Sci 2024; 675:592-601. [PMID: 38986332 DOI: 10.1016/j.jcis.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The rationally designing and constructing atomic-level heterointerface of two-dimensional (2D) chalcogenides is highly desirable to overcome the sluggish H2O-activation process toward efficient solar-driven hydrogen evolution. Herein, a novel in-plane 2D/2D molybdenum disulfide-rhenium disulfide (ReS2-MoS2) heterostructure is well-designed to induce the charge self-regulation of active site by forming electron-enriched Re(4-δ)+ and electron-deficient S(2-δ)- sites, thus collectively facilitating the activation of adsorbed H2O molecules and its subsequent H2 evolution. Furthermore, the obtained in-plane heterogenous ReS2-MoS2 nanosheet can powerfully transfer photoexcited electrons to inhibit photocarrier recombination as observed by advanced Kelvin probe measurement (KPFM), in-situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption spectroscopy (fs-TAS). As expected, the obtained ReS2-MoS2/TiO2 photocatalyst achieves an outperformed H2-generation rate of 6878.3 μmol h-1 g-1 with visualizing H2 bubbles in alkaline/neutral conditions. This work about in-plane 2D/2D heterostructure with strong free-electron interaction provides a promising strategy for designing novel and efficient catalysts for various applications.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China
| | - Xuefei Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinhe Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China.
| |
Collapse
|
10
|
Chen Y, Ge Y, Yan Y, Xu L, Zhu X, Yan P, Ding P, Li H, Li H. Photoinduced Zn-Air Battery-Assisted Self-Powered Sensor Utilizing Cobalt and Sulfur Co-Doped Carbon Nitride for Portable Detection Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408293. [PMID: 39445509 PMCID: PMC11633469 DOI: 10.1002/advs.202408293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Most self-powered electrochemical sensors (SPESs) are limited by low open circuit voltage and power density, leading to a narrow detection range and low sensitivity. Herein, a photoinduced Zn-air battery-assisted SPES (ZAB-SPES) is proposed based on cobalt and sulfur co-doped carbon nitride with the cyano group (Co, S-CN). The cyano functionalization remarkably enhances visible light utilization, and the cyano moiety acts as an electron-withdrawing group to promote electron enrichment. Co and S co-doping can create a p-n homojunction within carbon nitride, enabling the efficient migration and separation of carriers, thereby significantly improving the performance of the oxygen reduction reaction. The synergistic effects endow Co, S-CN photocathode with an open circuit voltage of 1.85 V and the maximum power density of 43.5 µW cm-2 in the photoinduced ZAB. Employing heavy metal copper ions as the target model, the photoinduced ZAB-SPES exhibited dual-mode and sensitive detection. Furthermore, a portable detection device based on the photoinduced ZAB-SPES is designed and exhibits high linearity in the range of 5 ~ 600 nM with a detection limit of 1.7 nM. This work offers a portable detection method based on the photoinduced ZAB-SPES in the aquatic environment.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Yuhang Ge
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Yuting Yan
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Li Xu
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Xingwang Zhu
- School of Environmental Science and EngineeringCollege of Mechanical EngineeringYangzhou UniversityYangzhou225002China
| | - Pengcheng Yan
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Penghui Ding
- Department of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | - Huaming Li
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| | - Henan Li
- School of Chemistry and Chemical EngineeringInstitute for Energy ResearchSchool of Agricultural EngineeringJiangsu UniversityZhenjiang212013China
| |
Collapse
|
11
|
Ullah I, Zhao P, Qin N, Chen S, Li JH, Xu AW. Emerging Trends in CdS-Based Nanoheterostructures: From Type-II and Z-Scheme toward S-Scheme Photocatalytic H 2 Production. CHEM REC 2024; 24:e202400127. [PMID: 39417778 DOI: 10.1002/tcr.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Indexed: 10/19/2024]
Abstract
Cadmium sulfide (CdS) based heterojunctions, including type-II, Z-scheme, and S-scheme systems emerged as promising materials for augmenting photocatalytic hydrogen (H2) generation from water splitting. This review offers an exclusive highlight of their fundamental principles, synthesis routes, charge transfer mechanisms, and performance properties in improving H2 production. We overview the crucial roles of Type-II heterojunctions in enhancing charge separation, Z-scheme heterojunctions in promoting redox potentials to reduce electron-hole (e-/h+) pairs recombination, and S-scheme heterojunctions in combining the merits of both type-II and Z-scheme frameworks to obtain highly efficient H2 production. The importance of this review is demonstrated by its thorough comparison of these three configurations, presenting valuable insights into their special contributions and capability for augmenting photocatalytic H2 activity. Additionally, key challenges and prospects in the practical applications of CdS-based heterojunctions are addressed, which provides a comprehensive route for emerging research in achieving sustainable energy goals.
Collapse
Affiliation(s)
- Ikram Ullah
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, Shandong, P. R. China
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Pei Zhao
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, Shandong, P. R. China
| | - Ning Qin
- School of Energy and Power Engineering, Shandong University, Jinan, 250061, Shandong, P. R. China
| | - Shuai Chen
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Jing-Han Li
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| |
Collapse
|
12
|
Yang R, Shi X, Ye Q, Li Q, Zhang Q, Li D, Jiang D. Molybdenum diselenide/polymeric carbon nitride dual-homojunction photocatalyst with multi-step charge transfer for efficient catalytic carbon dioxide reduction. J Colloid Interface Sci 2024; 673:985-996. [PMID: 38959699 DOI: 10.1016/j.jcis.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Due to the high dissociation energy of carbon dioxide (CO2) and sluggish charge transfer dynamics, photocatalytic CO2 reduction with high performance remains a huge challenge. Herein, we report a novel dual-homojunction photocatalyst comprising of cyano/cyanamide groups co-modified carbon nitride (CN-TH) intramolecular homojunction and 1 T/2H-MoSe2 homojunction (denoted as 1 T/2H-MoSe2/CN-TH) for enhanced photocatalytic CO2 reduction. In this dual-homojunction photocatalyst, the intramolecular CN-TH homojunction could promote the intralayer charge separation and transfer owing to the strong electron-withdrawing capabilities of the two-type cyanamide, while the 1 T/2H-MoSe2 homojunction mainly contributes to a promote interlayer charge transport of CN-TH. This could consequently induce a tandem multi-step charge transfer and accelerate the charge transfer dynamics, resulting in enhanced CO2 reduction activities. Thanks to this tandem multi-step charge transfer, the optimized 1 T/2H-MoSe2/CN-TH dual-homojunction photocatalyst presented a high CO yield of 27.36 μmol·g-1·h-1, which is 3.58 and 2.87 times higher than those of 1 T/2H-MoSe2/CN and 2H-MoSe2/CN-TH single homojunctions, respectively. This work provides a novel strategy for efficient CO2 reduction via achieving a tandem multi-step charge transfer through designing dual-homojunction photocatalyst.
Collapse
Affiliation(s)
- Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Zhong T, Huang W, Yao Z, Long X, Qu W, Zhao H, Tian S, Shu D, He C. Engineering of Graphitic Carbon Nitride (g-C 3N 4) Based Photocatalysts for Atmospheric Protection: Modification Strategies, Recent Progress, and Application Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404696. [PMID: 39155427 DOI: 10.1002/smll.202404696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Indexed: 08/20/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a prominent photocatalyst that has attracted substantial interest in the field of photocatalytic environmental remediation due to the low cost of fabrication, robust chemical structure, adaptable and tunable energy bandgaps, superior photoelectrochemical properties, cost-effective feedstocks, and distinctive framework. Nonetheless, the practical application of bulk g-C3N4 in the photocatalysis field is limited by the fast recombination of photogenerated e--h+ pairs, insufficient surface-active sites, and restricted redox capacity. Consequently, a great deal of research has been devoted to solving these scientific challenges for large-scale applications. This review concisely presents the latest advancements in g-C3N4-based photocatalyst modification strategies, and offers a comprehensive analysis of the benefits and preparation techniques for each strategy. It aims to articulate the complex relationship between theory, microstructure, and activities of g-C3N4-based photocatalysts for atmospheric protection. Finally, both the challenges and opportunities for the development of g-C3N4-based photocatalysts are highlighted. It is highly believed that this special review will provide new insight into the synthesis, modification, and broadening of g-C3N4-based photocatalysts for atmospheric protection.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xianhu Long
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Qu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Li D, Li Q, Zhang Q, Yang R, Ye Q, Tian D, Jiang D. Integrating bimetallic borides with g-C 3N 4 containing cyanamide defects for efficient photocatalytic nitrogen fixation. J Colloid Interface Sci 2024; 672:631-641. [PMID: 38865877 DOI: 10.1016/j.jcis.2024.05.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
The sustainable generation of ammonia by photocatalytic nitrogen fixation under mild conditions is fascinating compared to conventional industrial processes. Nevertheless, owing to the low charge transfer efficiency, the insufficient light absorption capacity and limited active sites of the photocatalyst cause the difficult adsorption and activation of N2 molecules, thereby resulting in a low photocatalytic conversion efficiency. Herein, a novel bimetallic CoMoB nanosheets (CoMoB) co-catalyst modified carbon nitride with dual moiety defects (CN-TH3/3) Schottky junction photocatalyst is designed for photocatalytic nitrogen reduction reaction (NRR). The photocatalytic nitrogen reduction rate of the optimized CoMoB/CN-TH3/3 photocatalyst is 4.81 mM·g-1·h-1, which is 6.2 and 2.2 times higher than carbon nitride (CN) (0.78 mM·g-1·h-1) and CN-TH3/3 (2.21 mM·g-1·h-1), respectively. The excellent photocatalytic NRR performance is ascribed not only to the introduction of dual moiety defects (cyano and cyanamide groups) that extends the visible light absorption range and promotes exciton polarization dissociation, but also to the formation of interfacial electric field between CoMoB and CN-TH3/3, which effectively facilitates the interfacial charge transfer. Thus, the synergistic interaction between CN-TH3/3 and CoMoB further increases the electron numble of CoMoB active sites, which effectively strengthens the adsorption and activation of N2 and weakens the NN triple bond, thereby enhancing the photocatalytic NRR activity. This work highlights the introduced dual moiety defects and bimetallic CoMoB co-catalyst to synergistically enhance the photocatalytic nitrogen reduction performance.
Collapse
Affiliation(s)
- Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Wang Z, Yue X, Liao Y, Xiang Q. Indium Oxide Layer Dual Functional Modified Bismuth Vanadate Photoanode Promotes Photoelectrochemical Oxidation of Water to Hydrogen Peroxide. CHEMSUSCHEM 2024:e202401810. [PMID: 39347590 DOI: 10.1002/cssc.202401810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/01/2024]
Abstract
The photoelectrochemical (PEC) dual-electron pathway for water oxidation to produce hydrogen peroxide (H2O2) shows promising prospects. However, the dominance of the four-electron pathway leading to O2 evolution competes with this reaction, severely limiting the efficiency of H2O2 production. Here, we report a In2O3 passivator-coated BiVO4 (BVO) photoanode, which effectively enhances the selectivity and yield of H2O2 production via PEC water oxidation. Based on XPS spectra and DFT calculations, a heterojunction is formed between In2O3 and BVO, promoting the effective separation of interface and surface charges. More importantly, Mott-Schottky analysis and open-circuit potential measurements demonstrate that the In2O3 passivation layer on the BVO photoanode shifts the hole quasi-Fermi level towards the anodic direction, enhancing the oxidation level of holes. Additionally, the widening of the depletion layer and the flattening of the band bending on the In2O3-coated BVO photoanode favor the generation of H2O2 while suppressing the competitive O2 evolution reaction. In addition, the coating of In2O3 can also inhibit the decomposition of H2O2 and improve the stability of the photoanode. This work provides new perspectives on regulating PEC two/four-electron transfer for selective H2O2 production via water oxidation.
Collapse
Affiliation(s)
- Ziming Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaoyang Yue
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yulong Liao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
16
|
Yuan X, Lu Z, Jia X, Yang Z, Wang J, Wang X, Lin J, He S. Utilization of Water-Insoluble Carbon Nitride-Phosphotungstic Acid Hybrids in Composite Proton Exchange Membranes. MEMBRANES 2024; 14:195. [PMID: 39330536 PMCID: PMC11433968 DOI: 10.3390/membranes14090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Phosphotungstic acid (HPW) can retain water in proton exchange membranes to increase proton conductivity; however, its water-soluble nature limits further application. In this work, we combined HPW and graphitic carbon nitride (g-C3N4) via sintering to prepare water-insoluble hybrids (HWN), where HPW was chemically linked to g-C3N4 to fix HPW. Then, HWN fillers were added to a sulfonated polyether ether ketone (SPEEK) matrix to prepare composite membranes. The conductivity of the composite membrane with 10 wt% HWN is up to 0.066 S cm-1 at room temperature, which is 53% higher than that of the SPEEK control membrane (0.043 S cm-1). The composite membrane also showed stable proton conductivity after being immersed in water for 2000 h. Therefore, our study demonstrates that preparing water-insoluble nanofillers containing HPW components through sintering is a promising approach.
Collapse
Affiliation(s)
- Xiancan Yuan
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Zhongrui Lu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Xiaoyang Jia
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Zhuoran Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Jian Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Xiong Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jun Lin
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| | - Shaojian He
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; (X.Y.); (Z.L.); (X.J.); (Z.Y.); (J.W.)
| |
Collapse
|
17
|
Chen F, Bai CW, Duan PJ, Zhang ZQ, Sun YJ, Chen XJ, Yang Q, Yu HQ. Merging semi-crystallization and multispecies iodine intercalation at photo-redox interfaces for dual high-value synthesis. Nat Commun 2024; 15:7783. [PMID: 39237589 PMCID: PMC11377564 DOI: 10.1038/s41467-024-52158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
The artificial photocatalytic synthesis based on graphitic carbon nitride (g-C3N4) for H2O2 production is evolving rapidly. However, the simultaneous production of high-value products at electron and hole sites remains a great challenge. Here, we use transformable potassium iodide to obtain semi-crystalline g-C3N4 integrated with the I-/I3- redox shuttle mediators for efficient generation of H2O2 and benzaldehyde. The system demonstrates a prominent catalytic efficiency, with a benzaldehyde yield of 0.78 mol g-1 h-1 and an H2O2 yield of 62.52 mmol g-1 h-1. Such a constructed system can achieve an impressive 96.25% catalytic selectivity for 2e- oxygen reduction, surpassing previously reported systems. The mechanism study reveals that the strong crystal electric field from iodized salt enhances photo-generated charge carrier separation. The I-/I3- redox mediators significantly boost charge migration and continuous electron and proton supply for dual-channel catalytic synthesis. This groundbreaking work in photocatalytic co-production opens neoteric avenues for high-value synthesis.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qi Yang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
18
|
Shen D, Imbault AL, Balati G, Ouyang J, Li Y. Dissolution of g-C3N4 Using Zinc Chloride Molten Salt Hydrates for Nanobelt Fabrication and Photocatalytic H2O2 Production. Chemistry 2024; 30:e202401847. [PMID: 38924258 DOI: 10.1002/chem.202401847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Graphitic-carbon nitride (g-C3N4), a metal-free two-dimensional layered semiconductor material, holds great potential for energy conversion, environmental remediation, and sensing. However, the limited solubility of g-C3N4 in conventional solvents hinders its widespread application. Improving the dissolution of g-C3N4 in the liquid phase is highly desired but challenging. Herein, we report an innovative approach to dissolve g-C3N4 using ZnCl2 molten salt hydrates. The solubility of g-C3N4 in the solution reaches up to 200 mg mL-1. Density functional theory (DFT) results suggest that ZnCl+H2O is the key species that leads to charge redistribution on g-C3N4 surface and promotes the dissolution of carbon nitride in the solution. Furthermore, through dilution, the dissolved carbon nitride can be effectively recovered while maintaining its intrinsic chemical structure. The resultant regenerated C3N4 (r-C3N4) exhibits nanobelt morphology and demonstrates a substantially improved photocatalytic activity in H2O2 production. The rate of H2O2 production over the r-C3N4 reaches 20,228 μmol g-1 h-1, which is 6.2 times higher than that of pristine g-C3N4. This green and efficient dissolution route of g-C3N4 offers an effective approach for its diverse applications.
Collapse
Affiliation(s)
- Dazhi Shen
- College of Chemistry and Environmental Science, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 36300, China
| | - Alexander Luis Imbault
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S 3E5, Canada
| | - Gulimire Balati
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jie Ouyang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yunhua Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
19
|
Zhong X, Zhu Y, Wang Y, Jia Z, Jiang M, Sun Q, Yao J. Intramolecular Quaternary Carbon Nitride Homojunction for Enhanced Visible Light Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402219. [PMID: 38634337 DOI: 10.1002/smll.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Indexed: 04/19/2024]
Abstract
In this work, an intramolecular carbon nitride (CN)-based quaternary homojunction functionalized with pyridine rings is prepared via an in situ alkali-assisted copolymerization strategy of bulk CN and 2-aminopyridine for efficient visible light hydrogen generation. In the obtained structure, triazine-based CN (TCN), heptazine-based CN (HCN), pyridine unit incorporated TCN, and pyridine ring inserted HCN constitute a special multicomponent system and form a built-in electric field between the crystalline semiconductors by the arrangement of energy band levels. The electron-withdrawing function of the conjugated heterocycle can trigger the skeleton delocalization and edge induction effect. Highly accelerated photoelectron-hole transfer rates via multi-stepwise charge migration pathways are achieved by the synergistic effect of the functional group modification and molecular quaternary homojunction. Under the addition of 5 mg 2-aminopyridine, the resulting homojunction framework exhibits a significantly improved hydrogen evolution rate of 6.64 mmol g-1 h-1 with an apparent quantum efficiency of 12.27% at 420 nm. Further, the catalyst verifies its potential commercial value since it can produce hydrogen from various real water environments. This study provides a reliable way for the rational design and fabrication of intramolecular multi-homojunction to obtain high-efficient photocatalytic reactions.
Collapse
Affiliation(s)
- Xiang Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhengtao Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Meng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qiufan Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
20
|
Fang Z, Yue X, Xiang Q. Atomically Contacted Cs 3Bi 2Br 9 QDs@UiO-66 Composite for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401914. [PMID: 38593297 DOI: 10.1002/smll.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Metal halide perovskite quantum dots (QDs) are widely studied in the field of photocatalytic CO2 due to their strong light absorption and long carrier migration length. However, it can not exhibit high catalytic performance because of the radiative recombination and the lack of effective catalytic sites. Metal organic frameworks (MOFs) encapsulated QDs can not only solve the aforementioned problems, but also maintain their own unique characteristics with ultra-high specific surfaces area and abundant metal sites. In this work, lead-free bismuth-based halide perovskite QDs are encapsulated into Zr-based MOF (UiO-66), which combines the advantages with high power conversion efficiency of QDs and the high surface area and porosity of UiO-66. In addition, benefiting from the close contact between the Cs3Bi2Br9 QDs and the UiO-66 enables the photogenerated electrons in the QDs to be rapidly transferred to the MOF. As a result, the Cs3Bi2Br9@UiO-66 composite exhibits a higher yield for photocatalytic CO2 reduction than that of the prepared large-sized composite of Cs3Bi2Br9 and UiO-66.
Collapse
Affiliation(s)
- Zhaohui Fang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
21
|
Xia J, Mark G, Tong Y, Hu T, Volokh M, Han F, Chen H, Shalom M. Enhancing the Activity of a Carbon Nitride Photocatalyst by Constructing a Triazine-Heptazine Homojunction. Inorg Chem 2024; 63:10050-10056. [PMID: 38745389 DOI: 10.1021/acs.inorgchem.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Establishing homojunctions at the molecular level between different but physicochemically similar phases belonging to the same family of materials is an effective approach to promoting the photocatalytic activity of polymeric carbon nitride (CN) materials. Here, we prepared a CN material with a uniform distribution of homojunctions by combining two synthetic strategies: supramolecular assemblies as the precursor and molten salt as the medium. We designed porous CN rods with triazine-heptazine homojunctions (THCNs) using a melem supramolecular aggregate (Me) and melamine as the precursors and a KCl/LiBr salt mixture as the liquid reaction medium. The triazine/heptazine ratio is controlled by varying the relative amounts of the chosen precursors, and the molten salt treatment enhances the structural order of the interplanar packing units for the THCN skeleton, leading to rapid charge migration. The resulting built-in electric field induced by the triazine-heptazine homojunction enhances photogenerated charge separation; the optimal THCN catalyst exhibits an excellent H2 evolution rate via photocatalytic water splitting, which is ∼24 times as high as that of reference bulk CN, with long-term stability.
Collapse
Affiliation(s)
- Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Gabriel Mark
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuxuan Tong
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Ting Hu
- Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Fengyan Han
- College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
22
|
Jiang X, Meng S, Nan Z. Singlet Oxygen Formation Mechanism for the H 2O 2-Based Fenton-like Reaction Catalyzed by the Carbon Nitride Homojunction. Inorg Chem 2024; 63:6701-6713. [PMID: 38563144 DOI: 10.1021/acs.inorgchem.3c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The singlet oxygen (1O2) oxidation process activated by metal-free catalysts has recently attracted considerable attention for organic pollutant degradation; however, the 1O2 formation remains controversial. Simultaneously, the catalytic activity of the metal-free catalyst limits the practical application. In this study, carbon nitride (HCCN) containing an intramolecular homojunction, a kind of metal-free catalyst, exhibits excellent activity compared to g-C3N4 (CN) and crystalline carbon nitride (HCN) for tetracycline hydrochloride degradation through the H2O2-based Fenton-like reaction. The rate constant for HCCN increased about 16.1 and 8.9 times than that of CN and HCN, respectively. The activity of HCCN was enhanced, and the dominant reactive oxygen species (ROS) changed from hydroxyl radicals (•OH) to 1O2 with an increase in pH from 4.5 to 11.5. A novel formation pathway of 1O2 was revealed. This result is different from the normal reference, in which •OH is always the primary ROS in the H2O2-based Fenton-like reaction. This study may provide a possible strategy for the investigation on the nonradical oxidation process in the Fenton-like reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Suhang Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
23
|
Yue W, Xu Z, Tayyab M, Wang L, Ye Z, Zhang J. Schottky junction enhanced H 2 evolution for graphitic carbon nitride-NiS composite photocatalysts. J Colloid Interface Sci 2024; 657:133-141. [PMID: 38035416 DOI: 10.1016/j.jcis.2023.11.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
As one of the most promising photocatalysts for H2 evolution, graphitic carbon nitride (CN) has many appealing attributes. However, the activity of pristine CN remains unsatisfactory due to severe charge carrier recombination and lack of active sites. In this study, we report a two-step approach for the synthesis of CN nanotubes (TCN) loaded with NiS nanoparticles. The resulting composite photocatalysts gave a H2 evolution rate of 752.9 μmol g-1 h-1, which is 42.3 times higher compared to the pristine CN photocatalyst. Experimental and simulation results showed that the Schottky junction which was formed between TCN and NiS was key to achieving high activity. This is because the formation of Schottky junction prevented the backflow of electrons from NiS to TCN, which improved charge separation efficiency. More importantly, it also led to the accumulation of electrons on NiS, which significantly weakened the SH bond, such that the intermediate hydrogen species desorbed more easily from NiS surface to promote H2 evolution activity.
Collapse
Affiliation(s)
- Wenhui Yue
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Muhammad Tayyab
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
24
|
Huang TF, Liu JJ, Lai ZY, Chang JW, Zhuang YR, Jiang ZC, Chang CL, Lin WC, Chen YH, Wu YH, Sun YE, Luo TA, Chen YK, Yen JC, Hsu HK, Chen BH, Ting LY, Lu CY, Lin YT, Hsu LY, Wu TL, Yang SD, Su AC, Jeng US, Chou HH. Performance and Solution Structures of Side-Chain-Bridged Oligo (Ethylene Glycol) Polymer Photocatalysts for Enhanced Hydrogen Evolution under Natural Light Illumination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304743. [PMID: 37803930 DOI: 10.1002/smll.202304743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.
Collapse
Affiliation(s)
- Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jia-Jen Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ze-Yu Lai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Je-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Zi-Cheng Jiang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Li Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yan-Heng Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hsiang Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ting-An Luo
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jui-Chen Yen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-Kai Hsu
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Yeh Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Tung Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ling-Yu Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
25
|
Si Z, Pei M, Liu Y, Li B, Kang F. Boosting the photocatalytic activity of β-FeOOH catalyst for toluene oxidation by constructing internal electric field at 0D/1D homojunction interfaces. J Colloid Interface Sci 2024; 654:300-307. [PMID: 37844501 DOI: 10.1016/j.jcis.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Photocatalytic degradation is considered as the most energy-efficient, environmentally benign, and effective method for treating low fraction organic contaminants. However, the photocatalysts still suffer from low utilization efficiency of visible-light and severe carrier recombination. Heterojunctions can resolve these two main problems in some extent but still be restrained by the low quality of hetero-interface. In this study, homojunction was constructed of β-FeOOH quantum dots and nanorods with the same lattice by a two-step precipitation method, to avoid the heterointerface with too many defects and possess good charge separation as a consequence. The catalysts were characterized by activity test, electron spin resonance, Mott-Schottky plots, photocurrent density tests and open-circuit potential measurements, etc. The results revealed that a strong internal electric fields (IEFs) was created at the interface of catalyst. Beneficently, the electron rearrangement leads to a more rational distribution of oxygen vacancies in the catalyst, resulting in more efficient dissociation of oxygen molecules and formation of active radicals, thus facilitating the efficient degradation of toluene. This study proposes a novel strategy to boosting the photocatalytic activity of low dimensional semiconductors via forming homojunction interfaces to improve their charge transfer.
Collapse
Affiliation(s)
- Zhichun Si
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mengxi Pei
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yishui Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Feiyu Kang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
26
|
Wu X, Chen G, Kang J, Zheng Z, Wang G, Zhong W, Yu H. Nanoflower-like graphitic carbon nitride aerogel: Artful cyanuric acid-controlled synthesis and enhanced photocatalytic hydrogen evolution activity. J Colloid Interface Sci 2024; 654:268-278. [PMID: 37844498 DOI: 10.1016/j.jcis.2023.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The previously reported studies on cyanuric acid-assembly strategy usually ignores the promoting function of cyanuric acid in the production of g-C3N4, limiting the development of molecular assembly strategies. In this study, a cyanuric acid-controlled synthesis strategy involving the pre-assembly of cyanuric acid with melamine and subsequent one-step calcination was developed to produce a three-dimensional (3D) nanoflower-like graphitic carbon nitride (g-C3N4) aerogel. Some cyanuric acid molecules underwent a polycondensation reaction with melamine during the pre-assembly process and finally polymerized into the g-C3N4 structure during subsequent calcination. Meanwhile, the remaining cyanuric acid molecules assembled with melamine via hydrogen-bond interactions and underwent incomplete decomposition during subsequent calcination, which not only promoted the production of 3D nanoflower-like aerogel structures, but also introduced the carbonyl (CO) and hydroxyl (-OH) groups onto the g-C3N4 surface, resulting in the successful generation of a 3D nanoflower-like oxygen-modified g-C3N4 aerogel. Moreover, the fabricated g-C3N4 aerogel exhibited a greatly enhanced H2 production rate (1573 μmol h-1 g-1), which is ∼ 6.6 times higher than that of bulk g-C3N4 (239 μmol h-1 g-1) owing to the synergistic promotion function of ultrathin nanoflower-like aerogel and oxygen modification structures. This strategy provides a theoretical basis for the development of highly efficient g-C3N4 photocatalysts via molecular assembly.
Collapse
Affiliation(s)
- Xinhe Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Guoqiang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Jiayue Kang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Zixuan Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guohong Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wei Zhong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
27
|
Jing L, Xu Y, Xie M, Li Z, Wu C, Zhao H, Zhong N, Wang J, Wang H, Yan Y, Li H, Hu J. Cyano-Rich g-C 3 N 4 in Photochemistry: Design, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304404. [PMID: 37670529 DOI: 10.1002/smll.202304404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/07/2023]
Abstract
Cyano-rich g-C3 N4 materials are widely used in various fields of photochemistry due to the very powerful electron-absorbing ability and electron storage function of cyano, as well as its advantages in improving light absorption, adjusting the energy band structure, increasing the polarization rate and electron density in the structure, active site concentration, and promoting oxygen activation ability. Notwithstanding, there is yet a huge knowledge break in the design, preparation, detection, application, and prospect of cyano-rich g-C3 N4 . Accordingly, an overall review is arranged to substantially comprehend the research progress and position of cyano-rich g-C3 N4 materials. An overall overview of the current research position in the synthesis, characterization (determination of their location and quantity), application, and reaction mechanism analysis of cyano-rich g-C3 N4 materials to provide a quantity of novel suggestions for cyano-modified carbon nitride materials' construction is provided. In view of the prevailing challenges and outlooks of cyano-rich g-C3 N4 materials, this paper will purify the growth direction of cyano-rich g-C3 N4 , to achieve a more in-depth exploration and broaden the applications of cyano-rich g-C3 N4 .
Collapse
Affiliation(s)
- Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zheng Li
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Chongchong Wu
- CNOOC Institute of Chemicals & Advanced Materials (CICM), Beijing, 102200, P. R. China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Na Zhong
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Hui Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yubo Yan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, P. R. China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
28
|
Geng L, Li W, Dong M, Ma X, Khan A, Li Y, Li M. Synergistic effect of excellent carriers separation and efficient high level energy electron utilization on Bi 3+-Ce 2Ti 2O 7/ZnIn 2S 4 heterostructure for photocatalytic hydrogen production. J Colloid Interface Sci 2023; 650:2035-2048. [PMID: 37541023 DOI: 10.1016/j.jcis.2023.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
The separation of photogenerated carriers and the efficient utilization of high-level energy electrons (HLEEs) are the key processes for improving the performance of photocatalysts. Herein, Ce2Ti2O7/ZnIn2S4 (CTOZIS) and Bi3+-doped Ce2Ti2O7/ZnIn2S4 (BCTOZIS) photocatalyst were successfully synthesized through hydrothermal method. The photocatalytic hydrogen production of CTOZIS and BCTOZIS was 1233.7 μmol g-1 and 4168.5 μmol g-1 under visible light irradiation (λ ≥ 420 nm) within 5 h, which was 2.3 and 7.6 times than that of pure ZnIn2S4, respectively. X-ray photoelectron spectroscopy, photoluminescence spectroscopy and electrochemical characterization demonstrated that after Bi3+ doping, the electron-hole pairs recombination of BCTOZIS was inhibited, which may be ascribed to the establishment of a Z-scheme heterojunction and the presence of oxygen vacancy and Ce4+/Ce3+ redox center. The doping of Bi3+ resulted in the adjustment of the valence band position of Ce2Ti2O7 from 1.98 V to 1.92 V. This adjustment enabled direct transfer of HLEEs generated in Ce2Ti2O7 to the conduction band of ZnIn2S4 for hydrogen production with a wavelength below 423 nm. The synergistic effect of conventional Z-scheme electron transfer and the unique utilization of HLEEs boosted the photocatalytic performance of BCTOZIS. This study affords an innovative insight for designing visible-light-driven photocatalysts with high photocatalytic activity.
Collapse
Affiliation(s)
- Liang Geng
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjun Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Mei Dong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohui Ma
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Ajmal Khan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanyan Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengchao Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Tong S, Zhang X, Yang P. G-C 3N 4 sheet nanoarchitectonics with island-like crystalline/amorphous homojunctions towards efficient H 2 and H 2O 2 evolution. ENVIRONMENTAL RESEARCH 2023; 236:116805. [PMID: 37532211 DOI: 10.1016/j.envres.2023.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Photocatalystic evolution of H2O2 from water and oxygen has attracted significant attention because of environmentally friendly. The absorption in visible and hydrophilic feature of graphitic carbon nitride (g-C3N4) make it a good candidate. In this paper, a rapid post-treatment at high temperature was developed to obtain g-C3N4 nanosheets with abundant crystalline/amorphous interfaces to form homojunctions, which optimized uniplanar carrier mobility dynamics. The conversion from bulk to two-dimensional g-C3N4 resulted from the breakage of interplanar hydrogen bonds and interlayer Van der Waals force. The unique morphology not only rendered photocatalyst with larger specific surface area but also inhibited the robust volume recombination of charge carriers. The accelerated charge carriers flow at the interface, interplane and interlayer together ameliorated the separation and transfer of electrons and holes. A new-emerged n→π* transition ameliorated the poor light utilization efficiency. Beyond the increased photocatalytic H2 evolution property (779.2 μmol g-1 h-1), optimized sample displayed a H2O2 evolution activity as high as 4877.1 μM g-1 h-1 under visible light illumination, which was ∼5.8 times of that of bulk g-C3N4. Detailed photocatalytic mechanism investigation manifested that the two-step single-electron oxygen reduction process occupied the dominant status in H2O2 evolution. This work proposed a novel strategy for obtaining g-C3N4 homojunctions as a promising bi-functional metal-free catalyst to be applied in clean energy production field.
Collapse
Affiliation(s)
- Song Tong
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiao Zhang
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St., 31-155, Krakow, Poland.
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
30
|
Dong S, Han J, Sun XY, Zhang B, Wang W. A novel 2D g-C 3N 4 material applied for Paraquat adsorbing and detoxifying in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115594. [PMID: 37856982 DOI: 10.1016/j.ecoenv.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
In the environmental safety area, the widespread use of the herbicide Paraquat (PQ) poses a great threat to hydrobionts and mammals. Due to the lack of specific antidote, it may lead to irreversible pulmonary fibrosis with a mortality rate of 60%. Therefore, it is necessary to develop an effective and specific PQ antidote. The g-C3N4 (HPCN) with excellent surface physicochemical properties was prepared by a two-step calcination method using urea and dicyandiamide as raw materials, showing a significant photocatalyst against environmental PQ pollution. The SEM results showed that HPCN possesses a porous layered structure. X-ray diffraction and infrared spectroscopy indicated that the conjugated aromatic rings were orderly stacked, forming a 2D layered structure of g-C3N4. The HPCN had a larger specific surface area (56.84 m2 g-1) and pore volume (0.2718 cm3 g-1), which enhanced its adsorption capacity and photocatalytic activity. HPCN exhibited an effective adsorption rate of 38.25% for PQ in water under light. Compared with the PQ group (54.8%), the cell viability of the HPCN group (91.4%) significantly increased by 36.6%, and the SEM observation revealed the restoration of normal cell morphology. The HPCN effectively reduced PQ content in zebrafish and mice in vivo, resulting in an approximately 70% increase in survival rate. The UV-Vis results indicated that the adsorption rate of HPCN for PQ in zebrafish was 43.5%. The enhanced catalytic performance of HPCN provides a promising solution for the detoxification of PQ and of other environmental pollutants.
Collapse
Affiliation(s)
- Shi Dong
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Shandong 257061, PR China; Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China.
| | - Jun Han
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xi-Yin Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Bo Zhang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China.
| | - Wei Wang
- School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Shandong 257061, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
31
|
Xu J, Zhong W, Zhang X, Wang X, Hong X, Yu H. Triggering the Channel-Sulfur Sites in 1T'-ReS 2 Cocatalyst toward Splendid Photocatalytic Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303960. [PMID: 37415532 DOI: 10.1002/smll.202303960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Electron density manipulation of active sites in cocatalysts is of great essential to realize the optimal hydrogen adsorption/desorption behavior for constructing high-efficient H2 -evolution photocatalyst. Herein, a strategy about weakening metal-metal bond strength to directionally optimize the electron density of channel-sulfur(S) sites in 1T' Re1- x Mox S2 cocatalyst is clarified to improve their hydrogen adsorption strength (S─H bond) for rapid H2 -production reaction. In this case, the ultrathin Re1- x Mox S2 nanosheet is in situ anchored on the TiO2 surface to form Re1- x Mox S2 /TiO2 photocatalyst by a facial molten salt method. Remarkably, numerous visual H2 bubbles are constantly generated on the optimal Re0.92 Mo0.08 S2 /TiO2 sample with a 10.56 mmol g-1 h-1 rate (apparent quantum efficiency is about 50.6%), which is 2.6 times higher than that of traditional ReS2 /TiO2 sample. Density functional theory and in situ/ex situ X-ray photoelectron spectroscopy results collectively demonstrate that the weakened Re─Re bond strength via Mo introduction can induce the formation of unique electron-deficient channel-S sites with suitable electron density, which yield thermoneutral S─H bonds to realize superior interfacial H2 -generation performance. This work provides fundamental guidance on purposely optimizing the electronic state of active sites by manipulating the intrinsic bonding structure, which opens an avenue for designing efficacious photocatalytic materials.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xidong Zhang
- China Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Xuefei Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuekun Hong
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- China Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
32
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
33
|
He F, Hu Y, Zhong H, Wang Z, Peng S, Li Y. Effect of molten-salt modulation on the composition and structure of g-C 3N 4-based photocatalysts. Chem Commun (Camb) 2023; 59:10476-10487. [PMID: 37577935 DOI: 10.1039/d3cc03052k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4), as an attractive metal-free polymer photocatalyst, has attracted extensive attention in energy and environmental fields in recent years. The photoactivity of bulk g-C3N4 is moderate on account of solid-phase thermal-condensation synthesis. This leads to inadequate light absorption, limited surface area, and easy recombination of charge carriers. The composition and nanostructure of g-C3N4 have been studied extensively. Molten-salt modulation is fascinating because of its "green" credentials and the properties of liquid-phase reaction systems. The review focuses mainly on molten-salt modulation of the composition and structure of g-C3N4 based-photocatalysts. We focus on elemental doping, molecular doping, and defect engineering, as well as control of the crystal structure, multi-dimensional structure, hom/heterostructures for photocatalytic applications. This review provides new insights to develop g-C3N4-based photocatalysts with control of composition and structure by facile molten-salt modulation in energy-conversion and environmental fields.
Collapse
Affiliation(s)
- Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Yan Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Hong Zhong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Shaoqin Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| | - Yuexiang Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
| |
Collapse
|
34
|
Liu Z, Zhang J, Li X, Cui R, Ma J, Sun R. Simultaneous photocatalytic biomass conversion and CO 2 reduction over high crystalline oxygen-doped carbon nitride. iScience 2023; 26:107416. [PMID: 37564699 PMCID: PMC10410522 DOI: 10.1016/j.isci.2023.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Simultaneous photocatalytic biorefinery and CO2 reduction to co-produce fuels and high value-added chemicals have recently attracted significant attention; however, comprehensive studies are still lacking. Herein, we report the preparation of highly crystalline oxygen-doped carbon nitride nanotubes (O-CNNTs-x) using an ammonium fluoride-assisted hydrothermal/calcination strategy. The hollow structure, high crystallinity, and O incorporation endowed the O-CNNTs-x with photocatalytic activity by considerably improving optical absorption and modulating the charge carrier motion. The lactic acid yield and CO evolution rate over O-CNNTs-2.0 reached 82.08% and 67.95 μmol g-1 h-1, which are 1.57- and 7.37-fold times higher than those of CN, respectively. Moreover, ·OH plays a key role in the oxidation half-reaction. This study offers a facile approach for fabricating highly crystalline element-doped CN with a customizable morphology and electronic properties and demonstrates the viability of co-photocatalytic CO2 reduction and biomass selective oxidation.
Collapse
Affiliation(s)
- Zhendong Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Junqiang Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinze Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Rui Cui
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Runcang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
35
|
He F, Yuan H, Hu Y, Huang J, Wang Z, Peng S, Li Y. Construction of π-conjugated crystalline carbon dots with carbon nitride nanofragments for efficient photocatalytic H 2 evolution. Chem Commun (Camb) 2023; 59:10016-10019. [PMID: 37523209 DOI: 10.1039/d3cc02859c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Crystalline carbon dots (CCDs) embedded in carbon nitride (CN) nanofragments (CCDs-CN) have been developed through facile molten salt treatment. Molten salt treatment not only reconstructs CN layered sheets to form nanofragments, but also promotes the crystallization of CDs-CN. The π-conjugated electric field between CCDs and CN accelerates charge carrier separation for efficient photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Hubo Yuan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yan Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Jiawei Huang
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Shaoqin Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yuexiang Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| |
Collapse
|
36
|
Li R, Deng Q, Chen A, Zhong Y, Yang R. Synthesis of Double Defects in g-C 3 N 4 to Enhance the H 2 O 2 Production by Dual-Electron O 2 Reduction. CHEMSUSCHEM 2023:e202300763. [PMID: 37551121 DOI: 10.1002/cssc.202300763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
In this work, the graphitic carbon nitride with -C≡N defects and S-defects (N2 -SCN-4) was constructed. The H2 O2 production efficiency of N2 -SCN-4 was 1423.3 μmol g-1 h-1 under the visible light (λ≥420 nm) irradiation, which was 15.4 times that of pristine g-C3 N4 . The -C≡N groups promote the adsorption of H+ and the S-defects provide the active center for the adsorption and activation of O2 . Furthermore, the surface morphology, microstructure, and photoelectric chemical properties of samples were investigated by a series of characterizations, and the response range of N2 -SCN-4 to visible light increases obviously. Meanwhile, the efficiency of photo-produced charge separation and the selectivity of H2 O2 production were discussed in detail. The experimental and characterization results confirmed that the charge separation efficiency and the selectivity of the 2e- O2 reduction reaction (ORR) were improved under the synergistic effect of the double defects. This work provides a strategy for improving the photocatalytic performance of photocatalysts.
Collapse
Affiliation(s)
- Renjie Li
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qunfen Deng
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Anli Chen
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Yujia Zhong
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Rui Yang
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, P. R. China
| |
Collapse
|
37
|
Xu Y, Shi W, Zhang Y, Tu Z, Sun B, Wang Z, Wang X, Liu Z, Wang W. Realigning the melon chains in carbon nitride by rubidium ions to promote photo-reductive activities for hydrogen evolution and environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131435. [PMID: 37086671 DOI: 10.1016/j.jhazmat.2023.131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The photocatalytic efficiency of polymeric carbon nitride (PCN) suffers from unsatisfactory charge separation because of its amorphous structure. Herein, we report a simple bottom-up method to synthesize a novel structure of rubidium ion inserted PCN (Rb-PCN), which involves the regular alignment of melon chains to endow a crystalline feature in PCN. The insertion of Rb+ decreased not only the N p electrons in the heptazine ring but also the plane angle of the heptazine motifs in the melon chain, which promoted the long-range periodicity and crystallinity of carbon nitride. This structurally rearranged crystalline Rb-PCN demonstrated considerably enhanced separation of charge carriers, resulting in six-fold higher photocatalytic hydrogen evolution activity than its amorphous counterpart. Furthermore, the photoexcited electrons can be efficiently trapped by O2 to generate H2O2, which facilitates the production of reactive oxygen species to inactivate bacteria and degrade organic pollutants, showing great potential for use in both energy and environmental applications.
Collapse
Affiliation(s)
- Yangsen Xu
- Institute of Information Technology, SZIIT Innovation Harbor, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, PR China
| | - Wenwu Shi
- Institute of Information Technology, SZIIT Innovation Harbor, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, PR China; University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yunxiao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, PR China
| | - Zhenlong Tu
- Institute of Information Technology, SZIIT Innovation Harbor, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, PR China
| | - Bangjin Sun
- Institute of Information Technology, SZIIT Innovation Harbor, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, PR China
| | - Zhiguo Wang
- University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinzhong Wang
- Institute of Information Technology, SZIIT Innovation Harbor, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, PR China.
| | - Zhenni Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
38
|
Li F, Yue X, Liao Y, Qiao L, Lv K, Xiang Q. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat Commun 2023; 14:3901. [PMID: 37400443 DOI: 10.1038/s41467-023-39578-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
Understanding charge transfer dynamics and carrier separation pathway is challenging due to the lack of appropriate characterization strategies. In this work, a crystalline triazine/heptazine carbon nitride homojunction is selected as a model system to demonstrate the interfacial electron-transfer mechanism. Surface bimetallic cocatalysts are used as sensitive probes during in situ photoemission for tracing the S-scheme transfer of interfacial photogenerated electrons from triazine phase to the heptazine phase. Variation of the sample surface potential under light on/off confirms dynamic S-scheme charge transfer. Further theoretical calculations demonstrate an interesting reversal of interfacial electron-transfer path under light/dark conditions, which also supports the experimental evidence of S-scheme transport. Benefiting from the unique merit of S-scheme electron transfer, homojunction shows significantly enhanced activity for CO2 photoreduction. Our work thus provides a strategy to probe dynamic electron transfer mechanisms and to design delicate material structures towards efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Fang Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yulong Liao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China.
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
39
|
Liu Y, Xia X, Gao Z, Zhao Q, Ding J, Cheng X, Wei L. Stable photodegradation of antibiotics by the functionalized 3D-Bi 2MoO 6@MoO 3/PU composite sponge: High efficiency pathways, optical properties and Z-scheme heterojunction mechanism. CHEMOSPHERE 2023; 332:138911. [PMID: 37172622 DOI: 10.1016/j.chemosphere.2023.138911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The designation and fabrication of heterogeneous photocatalyst with superior redox capability is an important technique for emerging pollutants treatment. In this study, we designed the Z-scheme heterojunction of stable 3D-Bi2MoO6@MoO3/PU, which could not only accelerate the migration and separation in photogenerated carriers, but also stabilize the separation rate of photo-generation carriers. In the Bi2MoO6@MoO3/PU photocatalytic system, 88.89% of oxytetracycline (OTC, 10 mg L-1) and 78.25%-84.59% of multiple antibiotics (SDZ, NOR, AMX and CFX, 10 mg L-1) could be decomposed within 20 min under the optimized reaction condition, revealing the superior performance and potential application value. Specifically, the morphology, chemical structure and optical properties detection of Bi2MoO6@MoO3/PU greatly affected the direct Z-scheme electron transferring mode in the p-n type heterojunction. Besides, the ·OH, h+, ·O2- dominated the photoactivation process through ring-opening, dihydroxylation, deamination, decarbonization and demethylation in OTC decomposition. Expectantly, the stability and universality of Bi2MoO6@MoO3/PU composite photocatalyst would further broaden the practical application and demonstrated that the potential of photocatalytic technique in antibiotics pollutants for wastewater remediation.
Collapse
Affiliation(s)
- Yu Liu
- School of Environment, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); Harbin Institute of Technology, Harbin, 150090, China
| | - Xinhui Xia
- School of Environment, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); Harbin Institute of Technology, Harbin, 150090, China
| | - Zhelu Gao
- School of Environment, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- School of Environment, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- School of Environment, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); Harbin Institute of Technology, Harbin, 150090, China
| | - Xiuwen Cheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Liangliang Wei
- School of Environment, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
40
|
Cheng C, Shi J, Mao L, Dong CL, Huang YC, Zong S, Liu J, Shen S, Guo L. Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting. J Colloid Interface Sci 2023; 637:271-282. [PMID: 36706723 DOI: 10.1016/j.jcis.2023.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Structure regulation (including electronic structure and morphology) for graphitic carbon nitride (g-C3N4) is an effective way to promote the photocatalytic activity. Herein, an ultrathin porous g-C3N4 (BCN-HT100) was synthesized by calcination of biuret hydrate. Hydrothermal treatment induced biuret recrystallization to form biuret hydrate precursor with regular morphology and large crystal size, thus promoting the polymerization of melem to form g-C3N4 network. Accordingly, BCN-HT100 possessed ultrathin nanosheet structure, higher polymerization degree, larger surface area and more pores than biuret-derived g-C3N4. BCN-HT100 behaved high-efficiency photocatalytic H2-productin activity with an apparent quantum yield (AQY) of 58.7% at 405 nm due to the enhanced utilization efficiency for photo-generated charge carriers and abundant reactive sites. Furthermore, Pt-NiCo2O4 dual cocatalysts were employed on BCN-HT100 for achieving photocatalytic overall water splitting, and the AQY reached 4.9% at 405 nm. This work provides a meaningful reference to designing g-C3N4 to achieve efficient solar energy conversion into hydrogen.
Collapse
Affiliation(s)
- Cheng Cheng
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China; School of Chemical Engineering and Technology, Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jinwen Shi
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China; Integrated Energy Institute, Sichuan Digital Economy Industry Development Research Institute, 88 Jiefang Road, Chengdu 610036, China.
| | - Liuhao Mao
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, 151 Yingzhuan Road, Tamsui 25137, Taiwan, China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, 151 Yingzhuan Road, Tamsui 25137, Taiwan, China
| | - Shichao Zong
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jiamei Liu
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
41
|
Mo Z, Miao Z, Yan P, Sun P, Wu G, Zhu X, Ding C, Zhu Q, Lei Y, Xu H. Electronic and energy level structural engineering of graphitic carbon nitride nanotubes with B and S co-doping for photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 645:525-532. [PMID: 37159994 DOI: 10.1016/j.jcis.2023.04.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
The ideal photocatalyst used for photocatalytic water splitting requires strong light absorption, fast charge separation/transfer ability and abundant active sites. Heteroatom doping offers a promising and rational approach to optimize the photocatalytic activity. However, achieving high photocatalytic performance remains challenging if just relying on single-element doping. Herein, Boron (B) and sulfur (S) dopants are simultaneously introduced into graphitic carbon nitride (g-C3N4) nanotubes by supramolecular self-assembly strategy. The developed B and S co-doped g-C3N4 nanotubes (B,S-TCN) exhibited an outstanding photocatalytic performance in the conversion of H2O into H2 (9.321 mmol g-1h-1), and the corresponding external quantum efficiency (EQE) reached 5.3% under the irradiation of λ = 420 nm. It is well evidenced by the closely combined experimental and (density functional theory) DFT calculations: (1) the introduction of B dopants can facilitate H2O adsorption and drive interatomic electron transfer, leading to efficient water splitting reaction. (2) S dopants can stretch the VB position to promote the oxidation ability of g-C3N4, which can accelerate the consumption of holes and thus inhibit the recombination with electrons. (3) the simultaneous introduction of B and S can engineer the electronic and energy level structural of g-C3N4 for optimizing interior charge transfer. Finally, the purpose of maximizing photocatalytic performance is achieved.
Collapse
Affiliation(s)
- Zhao Mo
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihuan Miao
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengcheng Yan
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Peipei Sun
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Guanyu Wu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Cheng Ding
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Qiang Zhu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Yucheng Lei
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Xu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
42
|
Gupta A, Bhoyar T, Abraham BM, Kim DJ, Pasupuleti KS, Umare SS, Vidyasagar D, Gedanken A. Potassium Molten Salt-Mediated In Situ Structural Reconstruction of a Carbon Nitride Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18898-18906. [PMID: 37018662 DOI: 10.1021/acsami.3c00239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-free polymeric carbon nitride (PCN) materials are at the forefront of photocatalytic applications. Nevertheless, the overall functionality and performance of bulk PCN are limited by rapid charge recombination, high chemical inertness, and inadequate surface-active sites. To address these, here, we employed potassium molten salts (K+X-, where X- is Cl-, Br-, and I-) as a template for the in situ generation of surface reactive sites in thermal pyrolyzed PCN. Theoretical calculations imply that addition of KX salts to PCN-forming monomers causes halogen ions to be doped into C or N sites of PCN with a relative trend of halogen ion doping being Cl < Br < I. The experimental results show that reconstructing C and N sites in PCN develops newer reactive sites that are beneficial for surface catalysis. Interestingly, the photocatalytic H2O2 generation rate of KBr-modified PCN was 199.0 μmol h-1, about three times that of bulk PCN. Owing to the simple and straightforward approach, we expect molten salt-assisted synthesis to have wide exploration in modifying PCN photocatalytic activity.
Collapse
Affiliation(s)
- Akanksha Gupta
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Toshali Bhoyar
- Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010 Maharashtra, India
| | - B Moses Abraham
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dong Jin Kim
- School of Energy Engineering, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea
| | | | - Suresh S Umare
- Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010 Maharashtra, India
| | - Devthade Vidyasagar
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
43
|
Liu X, Du Y, Zhao Y, Huang Z, Jing X, Wang D, Yu L, Sun M. Main/side chain asymmetric molecular design enhances charge transfer of two-dimensional conjugated polymer/g-C 3N 4 heterojunctions for high-efficiency photocatalytic sterilization and degradation. J Colloid Interface Sci 2023; 641:619-630. [PMID: 36963255 DOI: 10.1016/j.jcis.2023.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heterojunctions based on conjugated polymers (PHJs) are of promise as photocatalysts. Here, we fabricate the two-dimensional benzodithiophene (BDT) and thieno[2,3-f]benzofuran (TBF) based conjugated polymers/g-C3N4 PHJs creatively using the symmetry-breaking strategy. PD1 and PD3 with the asymmetric backbone TBF have better crystallinity. Moreover, PD3 utilizing fluorinated benzotriazole as the electron acceptor unit possesses more compact π - π stacking and higher charge mobility. The conjugated polymer PD5 with asymmetric side chains in the donor unit BDT guarantees more efficient charge transfer in the corresponding PD5/g-C3N4 PHJ while maintaining comparable light utilization rate. Consequently, PD5/g-C3N4 shows the champion performance with photocatalytic sterilization rates reaching 99.1% and 97.3% for S. aureus and E. coli. Notably, the reaction rate constant for Rhodamine B degradation of PD5/g-C3N4 is 8 times that of g-C3N4, a record high among conjugated polymers/g-C3N4. This study aims to reveal the structure - property correlation of asymmetric conjugated polymers/g-C3N4 for potential photocatalysis applications.
Collapse
Affiliation(s)
- Xiaojie Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yahui Du
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ziwei Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Jing
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxue Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
44
|
He Y, Gao M, Zhou Y, Zhou Y. Efficient photocatalytic remediation of typical antibiotics in water via Mn 3O 4 decorated carbon nitride nanotube. CHEMOSPHERE 2023; 311:136925. [PMID: 36283432 DOI: 10.1016/j.chemosphere.2022.136925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic abuse will seriously affect the ecology and environment. Photocatalytic oxidation technology based on carbon nitride (g-C3N4) has been widely adopted to treat wastewater containing antibiotics. Here, a novel composite photocatalyst MCNT was prepared by loading manganese oxide (Mn3O4) on the surface of g-C3N4 nanotubes (CNT). Three typical antibiotics, trimethoprim (TMP), norfloxacin (NOR), and tetracycline (TC) were used as model contaminants to evaluate the oxidative properties of prepared materials. Compared with bulk g-C3N4, the degradation rates of TMP, NOR, and TC catalyzed by MCNT-5 were increased by 2, 3, and 1.4 times, respectively, mainly due to 1) the larger specific surface area of the nanotube structure of CNT, which provides abundant active sites for antibiotic adsorption and catalytic oxidation, and 2) the loading of Mn3O4, which promotes the directional migration of photogenerated charges and improves the separation efficiency of photogenerated electrons and holes. The free radical capture and quenching experiments confirmed that MCNT degraded the target organic pollutants with hydroxyl radical (·OH) and singlet oxygen (1O2) as the main active oxidants. This catalyst maintained 80% photocatalytic oxidation performance after five cyclic experiments. This study provides new insights into developing efficient, stable, and environmentally-friendly photocatalysts and provides a new dimension to mitigate the antibiotic pollution problem.
Collapse
Affiliation(s)
- Yiling He
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Gao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbo Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
45
|
Fan C, Wan Z, Pan M, Hou J, Shi Y, Guo W, Wang G, Peng S, Jing Q, Chen L. Photoassisted Electrochemical Hydrogen Evolution Reaction of MFe 2O 4@Ultrathin Black Phosphorus Amorphous-Crystalline Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54748-54757. [PMID: 36458335 DOI: 10.1021/acsami.2c16543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring highly active, stable, and low-cost catalysts for photoelectrochemical hydrogen evolution reaction (PE-HER) is vital in the field of energy conversion. Herein, we construct a new amorphous crystalline interface that amorphous iron-based spinel oxide (A-MFe2O4 (M = Ni, Co, Zn)) is uniformly anchored on the crystalline exfoliated black phosphorus (C-EBP) nanosheets via electrochemical and solvothermal strategies. Among these A-MFe2O4@C-EBP catalysts, more oxygen defects of A-NiFe2O4@C-EBP interface provide a larger effective electrochemical active area of 32.33 mF cm-2 as well as a turnover frequency of 0.44 s-1 and allow for an optimum equilibrium of the hydrogen-containing adsorption intermediates. Furthermore, A-NiFe2O4@C-EBP exhibits significant PE-HER performance with an overpotential of 42 mV at 10 mA cm-2 under visible-light irradiation. Density functional theory (DFT) calculations show that the amorphous-crystalline composite structure causes a large number of oxygen defects enhancing the intrinsic activity of A-NiFe2O4@C-EBP, which A-NiFe2O4@C-EBP significantly improves its adsorption capacity for H* for HER and has the lowest Gibbs free energy change for HER. This study not only provides a superior multifunctional amorphous-crystalline interface catalysts but also helps to understand the catalytic mechanism of PE-HER.
Collapse
Affiliation(s)
- Changchun Fan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhenzhen Wan
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Meiling Pan
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Juan Hou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yulin Shi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wen Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shanglong Peng
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
46
|
Wang R, Cao X, Huang H, Ji X, Chen X, Liu J, Yan P, Wei S, Chen L, Wang Y. Facile Chemical Vapor Modification Strategy to Construct Surface Cyano-Rich Polymer Carbon Nitrides for Highly Efficient Photocatalytic H 2 Evolution. CHEMSUSCHEM 2022; 15:e202201575. [PMID: 36149300 DOI: 10.1002/cssc.202201575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The surface grafting of electro-negative cyano groups on polymer carbon nitrides (PCNs) is an effective way to tail their electronic structure. Despite the significant progress in the synthesis of cyano group-enriched PCN, developing a simple and efficient method remains challenging. Here, a facile strategy was developed for fabricating surface cyano-rich PCN (PCN-DM) with a porous structure via chemical vapor modification using diaminomaleonitrile. The cyano groups of diaminomaleonitrile substituted the amino groups on PCN surface via a deamination. The hydrogen production rate of the PCN-DM was approximately 17 times higher than that of pristine PCN. This significant increase in photocatalytic performance could be assigned to the fusion of cyano groups in the surface of PCN, forming new gap states that broadened the visible-light harvesting and accelerated charge separation for photoredox reactions. This study unveils a promising approach for incorporating functional units in the design of novel photocatalysts for efficient hydrogen production.
Collapse
Affiliation(s)
- Ruirui Wang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Xiaohua Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Huanan Huang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Xingtao Ji
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Xiudong Chen
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Jinhang Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Ping Yan
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| | - Shunhang Wei
- School of Mathematical Information, Shaoxing University, 312000, Shaoxing, Zhejiang, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 333 Nanchen Road, 200444, Shanghai, P. R. China
| | - Yawei Wang
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, 332005, Jiujiang, Jiangxi, P. R. China
| |
Collapse
|
47
|
Li B, Guo Z, Feng Y, Meng M, Pan Y, Zhang Y. Boosting Photosynthetic H 2O 2 of Polymeric Carbon Nitride by Layer Configuration Regulation and Fluoride-Potassium Double-Site Modification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43328-43338. [PMID: 36112467 DOI: 10.1021/acsami.2c12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic hydrogen peroxide (H2O2) production will become a burgeoning strategy for solar energy utilization by selective oxygen reduction reaction (ORR). Polymeric carbon nitride (PCN) shows relatively high two-electron ORR selectivity for H2O2 production but still limited low H2O2 production efficiency due to slow exciton dissociation. Herein, we constructed a heptazine/triazine layer stacked carbon nitride heterojunction with fluorine/potassium (F/K) dual sites (FKHTCN). The introduction of F/K not only can regulate layer components to enhance the charge separation efficiency but, more importantly, also optimize the adsorption of surface oxygen molecules and intermediate *OOH during H2O2 production. Consequently, FKHTCN efficiently improves the photocatalytic H2O2 production rate up to 3380.9 μmol h-1 g-1, nearly 15 times higher than that of traditional PCN. Moreover, a production-utilization cascade system was designed to explore their practical application in environmental remediation. This work lays out the importance of engineering a layer-stacked configuration and active sites for enhancing photocatalysis.
Collapse
Affiliation(s)
- Binrong Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiwei Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunxiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingping Zhang
- College of Information Technology, Jilin Normal University, Jilin 136000, China
| |
Collapse
|
48
|
Wang W, Kou X, Li T, Zhao R, Su Y. Tunable heptazine/triazine feature of nitrogen deficient graphitic carbon nitride for electronic modulation and boosting photocatalytic hydrogen evolution. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Zhu J, Zhang G, Xu YS, Huang W, He C, Zhang P, Mi H. Cyanamide defects induced built-in electric field in crystalline carbon nitride for enhanced visible to near infrared light photocatalytic activity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00715k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nitride materials have achieved high accomplishments in solar to hydrogen energy conversion under visible light. However, the weak kinetics and rapid recombination of photogenerated charge carriers result in a...
Collapse
|