1
|
Wu S, Hou Z, Zhu J, Wang R, An L, Xi P, Yan CH. Rational Design of Rare Earth-Based Nanomaterials for Electrocatalytic Reactions. ACS NANO 2025; 19:17087-17113. [PMID: 40310863 DOI: 10.1021/acsnano.5c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Rare earth-based nanomaterials hold great promise for applications in the electrocatalysis field owing to their unique 4f electronic structure, adjustable coordination modes, and high oxophilicity. As a cocatalyst, the location of rare earth elements can alter the intrinsic properties of support, including coordination environments, electronic structure, and structure evolution under applied potentials in a variable manner, to potentially impact catalytic performance with respect to their activity, stability, and selectivity. Therefore, a comprehensive understanding of the effects of rare earth elements' location on local structure and reaction mechanisms is a prerequisite for designing advanced rare earth-based nanomaterials. In this review, the rare earth-based nanomaterials have been categorized into three main groups based upon the location of rare earth elements in the support, namely lattice, surface, and interface structure. We initially discuss recent advances and representing breakthroughs to realize controllable synthesis of rare earth-based nanomaterials. Next, we discuss the state-of-the-art rare earth-based nanomaterials and the structure modulation strategy employed to enhance their catalytic performance. Combined with advanced characterizations, the role of rare earth elements in reaction mechanisms and structure evolution process is also discussed. Finally, we further highlight the future research directions and remaining challenges for the development of rare earth-based nanomaterials in practical applications.
Collapse
Affiliation(s)
- Shanshan Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyue Hou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Yuan W, Xiong Z, Zeng M, Zhou Z, Wang Z, Yang J, Zhao L, Pan Y, Qi F. Advances and Challenges in Speciation Measurement and Microkinetic Modeling for Gas-Solid Heterogeneous Catalysis. J Phys Chem A 2025; 129:423-438. [PMID: 39754581 DOI: 10.1021/acs.jpca.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics. Then, opportunities and challenges are presented based on recent research progress in gas-solid catalysis and combustion chemistry. For experimental approaches, the importance of ideal catalytic reactors, structured catalysts, and precise elementary rate measurements is emphasized. Additionally, integrating spatiotemporally resolved operando gas-phase diagnostics with surface-adsorbed species characterization methods offers new opportunities for gaining deeper insights into gas-surface reactions. In microkinetic modeling, a hybrid rate parameter evaluation approach that combines first-principles calculations with semiempirical methods, followed by automated mechanism generation and data-driven optimization, opens new avenues for efficiently constructing surface mechanisms. Furthermore, extending microkinetic modeling beyond mean-field approximations allows simulations under realistic catalyst operating conditions. Finally, the critical role of gas-phase mechanisms and comprehensive microkinetic modeling analyses in advancing our fundamental understanding of gas-solid catalytic processes is highlighted.
Collapse
Affiliation(s)
- Wenhao Yuan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zaili Xiong
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Meirong Zeng
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Diamanti E, López-Gallego F. Single-Particle and Single-Molecule Characterization of Immobilized Enzymes: A Multiscale Path toward Optimizing Heterogeneous Biocatalysts. Angew Chem Int Ed Engl 2024; 63:e202319248. [PMID: 38476019 DOI: 10.1002/anie.202319248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces. For this aim, multidimensional characterization of heterogeneous biocatalysts is required. In this context, spectroscopic and microscopic methodologies conducted at different space and temporal scales can inform about the intraparticle enzyme kinetics, the enzyme spatial distribution, and the mass transport issues. In this Minireview, we identify enzyme immobilization, enzyme catalysis, and enzyme inactivation as the three main processes for which advanced characterization tools unveil fundamental information. Recent advances in operando characterization of immobilized enzymes at the single-particle (SP) and single-molecule (SM) levels inform about their functional properties, unlocking the full potential of heterogeneous biocatalysis toward biotechnological applications.
Collapse
Affiliation(s)
- Eleftheria Diamanti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
4
|
Groppo E, Rojas-Buzo S, Bordiga S. The Role of In Situ/ Operando IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev 2023; 123:12135-12169. [PMID: 37882638 PMCID: PMC10636737 DOI: 10.1021/acs.chemrev.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysts undergo thermal- and/or adsorbate-induced dynamic changes under reaction conditions, which consequently modify their catalytic behavior. Hence, it is increasingly crucial to characterize the properties of a catalyst under reaction conditions through the so-called "operando" approach. Operando IR spectroscopy is probably one of the most ubiquitous and versatile characterization methods in the field of heterogeneous catalysis, but its potential in identifying adsorbate- and thermal-induced phenomena is often overlooked in favor of other less accessible methods, such as XAS spectroscopy and high-resolution microscopy. Without detracting from these techniques, and while aware of the enormous value of a multitechnique approach, the purpose of this Review is to show that IR spectroscopy alone can provide relevant information in this field. This is done by discussing a few selected case studies from our own research experience, which belong to the categories of both "single-site"- and nanoparticle-based catalysts.
Collapse
Affiliation(s)
- Elena Groppo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Sergio Rojas-Buzo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
5
|
Barbosa LFFM, Dubowik PB, Reddemann MA, Kneer R. Development of a cavity ring-down spectrometer toward multi-species composition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:105117. [PMID: 37902462 DOI: 10.1063/5.0149765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
This work presents the development of a cavity ring-down spectrometer (CRDS) designed for the detection of several molecules relevant for air pollution, including the second overtone of ro-vibration transitions from CO at 1.58 µm and NO at 1.79 µm. A unique feature of this CRDS is the use of custom mirrors with a reflectivity of about 99.99% from 1.52 to 1.80 µm, enabling efficient laser coupling into the cavity while ensuring a minimum detectable absorbance of 1.1 × 10-10 cm-1 within an integration time of about 1.2 s. In this work, the successful implementation of the current CRDS is demonstrated in two different wavelength regions. At 1.79 µm, the transitions R17.5 and R4.5 of the second overtone of NO are detected. At 1.58 µm, carbon dioxide and water vapor from untreated ambient air are measured, serving as an example to investigate the suitability of a post-processing procedure for the determination of the molar fraction in a multi-species composition. This post-processing procedure has the benefit of being calibration-free and SI-traceable. Additionally, CRDS measurements of gas mixtures containing CO and CO2 are also shown. In the future, the advantages of the developed cavity ring-down spectrometer will be exploited in order to perform fundamental studies on the transport processes of heterogeneous catalysis by locally resolving the gas phase near a working catalytic surface. The possibility to cover a broad wavelength region with this CRDS opens up the opportunity to investigate different catalytic reactions, including CO oxidation and NO reduction.
Collapse
Affiliation(s)
- Luís Felipe F M Barbosa
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Philip B Dubowik
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Manuel A Reddemann
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Reinhold Kneer
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| |
Collapse
|
6
|
Wollak B, Espinoza D, Dippel AC, Sturm M, Vrljic F, Gutowski O, Nielsen IG, Sheppard TL, Korup O, Horn R. Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:571-581. [PMID: 37042662 PMCID: PMC10161877 DOI: 10.1107/s1600577523001613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/22/2023] [Indexed: 05/06/2023]
Abstract
In heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure-activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet. Here, a fully automated and integrated catalytic profile reactor setup is shown for the combined measurement of temperature, gas composition and high-energy X-ray diffraction (XRD) profiles, using the oxidative dehydrogenation of C2H6 to C2H4 over MoO3/γ-Al2O3 as a test system. The profile reactor methodology was previously developed for X-ray absorption spectroscopy and is here extended for operando XRD. The profile reactor is a versatile and accessible research tool for combined spatially resolved structure-activity profiling, enabling the use of multiple synchrotron-based characterization methods to promote a knowledge-based optimization of a wide range of catalytic systems in a time- and resource-efficient way.
Collapse
Affiliation(s)
- Birte Wollak
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Diego Espinoza
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Sturm
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Filip Vrljic
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ida G. Nielsen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas L. Sheppard
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| | - Oliver Korup
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| | - Raimund Horn
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| |
Collapse
|
7
|
High EA, Lee E, Reece C. A transient flow reactor for rapid gas switching at atmospheric pressure. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2889503. [PMID: 37158700 DOI: 10.1063/5.0138479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Herein, we present a design for a transient flow reactor system with high detection sensitivity and minimal dead volume, such that it is capable of sub-second switching of the gas stream flowing through a catalytic bed. We demonstrate the reactor's capabilities for step transient, pulse, and stream oscillation experiments using the model system of CO oxidation over Pd catalysts, and we find that we are able to precisely model step transients for CO oxidation using a pseudo-homogenous-packed bed reactor model. The design principles leading to minimal gas hold-up time and increased sensitivity that are described in this paper can be implemented into existing flow reactor designs with minimal cost, providing a readily accessible alternative to the existing transient instrumentation.
Collapse
Affiliation(s)
- Eric A High
- Harvard University, Rowland Institute at Harvard, Cambridge, Massachusetts 02142, USA
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Esther Lee
- Harvard University, Rowland Institute at Harvard, Cambridge, Massachusetts 02142, USA
| | - Christian Reece
- Harvard University, Rowland Institute at Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Aquino A, Korup O, Horn R. Liquid Phase Epoxidation of Propylene to Propylene Oxide with Hydrogen Peroxide on Titanium Silicalite-1: Spatially Resolved Measurements and Numerical Simulations. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Andrés Aquino
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, 21073Hamburg, Germany
- Reacnostics GmbH, 20457Hamburg, Germany
| | - Oliver Korup
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, 21073Hamburg, Germany
- Reacnostics GmbH, 20457Hamburg, Germany
| | - Raimund Horn
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, 21073Hamburg, Germany
- Reacnostics GmbH, 20457Hamburg, Germany
| |
Collapse
|
9
|
Non-ideal Characteristics in a Micro Packed-bed Reactor: a Coupled Reaction-transport CFD Analysis for Propane Dehydrogenation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Anderson SD, Kreitz B, Turek T, Wehinger GD. Assessment of Concentration and Temperature Distribution in a Berty Reactor for an Exothermic Reaction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott D. Anderson
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, 38678, Germany
| | - Bjarne Kreitz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, 38678, Germany
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Thomas Turek
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, 38678, Germany
| | - Gregor D. Wehinger
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld, 38678, Germany
| |
Collapse
|
11
|
Yang Q, Kondratenko VA, Petrov SA, Doronkin DE, Saraçi E, Lund H, Arinchtein A, Kraehnert R, Skrypnik AS, Matvienko AA, Kondratenko EV. Identifying Performance Descriptors in CO 2 Hydrogenation over Iron-Based Catalysts Promoted with Alkali Metals. Angew Chem Int Ed Engl 2022; 61:e202116517. [PMID: 35244964 PMCID: PMC9314630 DOI: 10.1002/anie.202116517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Alkali metal promoters have been widely employed for preparation of heterogeneous catalysts used in many industrially important reactions. However, the fundamentals of their effects are usually difficult to access. Herein, we unravel mechanistic and kinetic aspects of the role of alkali metals in CO2 hydrogenation over Fe-based catalysts through state-of-the-art characterization techniques, spatially resolved steady-state and transient kinetic analyses. The promoters affect electronic properties of iron in iron carbides. These carbide characteristics determine catalyst ability to activate H2 , CO and CO2 . The Allen scale electronegativity of alkali metal promoter was successfully correlated with the rates of CO2 hydrogenation to higher hydrocarbons and CH4 as well as with the rate constants of individual steps of CO or CO2 activation. The derived knowledge can be valuable for designing and preparing catalysts applied in other reactions where such promoters are also used.
Collapse
Affiliation(s)
- Qingxin Yang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Sergey A. Petrov
- Institute of Solid-State Chemistry and MechanochemistryKutateladze Str. 18630128NovosibirskRussia
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of TechnologyHerrmann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Erisa Saraçi
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of TechnologyHerrmann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Aleks Arinchtein
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Ralph Kraehnert
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Andrey S. Skrypnik
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
- Institute of Solid-State Chemistry and MechanochemistryKutateladze Str. 18630128NovosibirskRussia
- Novosibirsk State UniversityPirogova Str. 1630090NovosibirskRussia
| | - Alexander A. Matvienko
- Institute of Solid-State Chemistry and MechanochemistryKutateladze Str. 18630128NovosibirskRussia
- Novosibirsk State UniversityPirogova Str. 1630090NovosibirskRussia
| | | |
Collapse
|
12
|
Wollak B, Doronkin D, Espinoza D, Sheppard T, Korup O, Schmidt M, Alizadefanaloo S, Rosowski F, Schroer C, Grunwaldt JD, Horn R. Exploring catalyst dynamics in a fixed bed reactor by correlative operando spatially-resolved structure-activity profiling. J Catal 2022. [DOI: 10.1016/j.jcat.2021.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Yang Q, Kondratenko VA, Petrov SA, Doronkin DE, Saraçi E, Lund H, Arinchtein A, Kraehnert R, Skrypnik AS, Matvienko AA, Kondratenko EV. Identifying Performance Descriptors in CO2 Hydrogenation over Iron‐based Catalysts Promoted with Alkali Metals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qingxin Yang
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Catalyst discovery and reaction engineering GERMANY
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Catalyst discovery and reaction engineering GERMANY
| | - Sergey A. Petrov
- Institute of Solid State Chemistry and Mechanochemistry SB RAS: Institut himii tverdogo tela i mehanohimii SO RAN Group of reactivity of solids RUSSIAN FEDERATION
| | - Dmitry E. Doronkin
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of catalysis research and technology GERMANY
| | - Erisa Saraçi
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Catalysis Research and Technology GERMANY
| | - Henrik Lund
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Analytics GERMANY
| | - Aleks Arinchtein
- Technische Universität Berlin: Technische Universitat Berlin Department of Chemistry GERMANY
| | - Ralph Kraehnert
- Technische Universität Berlin: Technische Universitat Berlin Department of Chemistry GERMANY
| | - Andrey S. Skrypnik
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Catalyst discovery and reactionengineering GERMANY
| | - Alexander A. Matvienko
- Institute of Solid State Chemistry and Mechanochemistry SB RAS: Institut himii tverdogo tela i mehanohimii SO RAN Group of reactivity of solids RUSSIAN FEDERATION
| | - Evgenii V. Kondratenko
- Leibniz-Institut für Katalyse e. V. Catalyst Discovery and Reaction Engineering Albert-Einstein-Straße 29A 18059 Rostock GERMANY
| |
Collapse
|
14
|
Stehle M, Sheppard TL, Thomann M, Fischer A, Besser H, Pfleging W, Grunwaldt JD. Spatial activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00553g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spatially resolved activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein revealed gradients in the gas phase composition and temperature, and thus the reaction network.
Collapse
Affiliation(s)
- Matthias Stehle
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131 Karlsruhe, Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Thomann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Achim Fischer
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Heino Besser
- Institute for Applied Materials - Applied Materials Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Wilhelm Pfleging
- Institute for Applied Materials - Applied Materials Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Albinsson D, Boje A, Nilsson S, Tiburski C, Hellman A, Ström H, Langhammer C. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging. Nat Commun 2020; 11:4832. [PMID: 32973158 PMCID: PMC7518423 DOI: 10.1038/s41467-020-18623-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst. Here, we bridge the gap between these two extremes by introducing highly multiplexed single particle plasmonic nanoimaging of model catalyst beds comprising 1000 nanoparticles, which are integrated in a nanoreactor platform that enables online mass spectroscopy activity measurements. Using the example of CO oxidation over Cu, we reveal how highly local spatial variations in catalyst state dynamics are responsible for contradicting information about catalyst active phase found in the literature, and identify that both surface and bulk oxidation state of a Cu nanoparticle catalyst dynamically mediate its activity.
Collapse
Affiliation(s)
- David Albinsson
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Astrid Boje
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christopher Tiburski
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Anders Hellman
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Competence Centre for Catalysis, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
16
|
Vainer BG. Infrared Thermography as a Powerful, Versatile, and Elegant Research Tool in Chemistry: Principles and Application to Catalysis and Adsorption. Chempluschem 2020; 85:1438-1454. [PMID: 32468712 DOI: 10.1002/cplu.202000202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Indexed: 11/07/2022]
Abstract
In this Review, diverse chemical problems that have been approached by means of infrared thermography (IRT) are covered in depth. Moreover, some novel steps forward in this field are made, described and discussed. Namely, the latest-generation IRT performance capabilities are harnessed in full; the initial phase of catalytic CO oxidation (called "fast ignition") is presented at the 0.01 s temporal resolution; at the same resolution, the thermal manifestation of the adsorption-desorption wave propagation after the gaseous reactant pulsed (0.6 s) wetting is exhibited. Furthermore, a radical difference in the thermal behavior of differently calcined γ-Al2 O3 supported Au catalysts, which underwent successive H2 O and CO attacks, is demonstrated, and the generally accepted fact that the catalyst temperature reflects the catalytic activity is validated experimentally. It is shown that latest-generation IRT may serve as unique and highly informative research tool in chemistry.
Collapse
Affiliation(s)
- Boris G Vainer
- Novosibirsk State University, Physical Department, 2 Pirogova str., Novosibirsk, 630090, Russia.,Rzhanov Institute of Semiconductor Physics SB RAS, Physical Bases of Photoelectronics Department, 13 Lavrentyev av., Novosibirsk, 630090, Russia
| |
Collapse
|
17
|
Coney C, Stere C, Millington P, Raj A, Wilkinson S, Caracotsios M, McCullough G, Hardacre C, Morgan K, Thompsett D, Goguet A. Spatially-resolved investigation of the water inhibition of methane oxidation over palladium. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00154f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd/Al2O3 catalysts are known to be active for low temperature methane oxidation reactions, however it has been shown that gases normally associated with methane gas streams (H2O, CO2, H2S) can have an inhibitory effect on the total oxidation reaction.
Collapse
Affiliation(s)
- Ciaran Coney
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Cristina Stere
- School of Chemical Engineering and Analytical Science
- University of Manchester
- Manchester
- UK
| | | | - Agnes Raj
- Johnson Matthey Technology Centre
- Reading RG4 9NH
- UK
| | | | | | | | - Christopher Hardacre
- School of Chemical Engineering and Analytical Science
- University of Manchester
- Manchester
- UK
| | - Kevin Morgan
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | | | - Alexandre Goguet
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| |
Collapse
|
18
|
Gänzler AM, Casapu M, Doronkin DE, Maurer F, Lott P, Glatzel P, Votsmeier M, Deutschmann O, Grunwaldt JD. Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO 2 and Pt/Al 2O 3 by Spatially Resolved Structure-Activity Correlations. J Phys Chem Lett 2019; 10:7698-7705. [PMID: 31730353 DOI: 10.1021/acs.jpclett.9b02768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spatially resolved operando HERFD-XANES (high energy resolution fluorescence detected X-ray absorption near edge structure) complemented by CO concentration gradient profiles along the catalyst bed (SpaciPro) was used to identify the dominant reaction paths for the low and high temperature CO oxidation on Pt/CeO2 and Pt/Al2O3. At low temperatures, features associated with CO adsorption on Pt were found for both catalysts. During the oxidation reaction light-off, the evolution of the spectral and catalytic profile diverged along the catalyst bed. The CO oxidation rate was high on Pt/CeO2 from the beginning of the catalyst bed with CO being adsorbed on Pt, whereas low CO conversion due to strong CO poisoning was found on Pt/Al2O3. This correlation of the CO concentration gradient with unique insight by HERFD-XANES gave direct proof of the crucial contribution of the Pt-CeO2 perimeter sites overcoming the CO self-inhibition effect at low temperatures.
Collapse
Affiliation(s)
- Andreas M Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
| | - Dmitry E Doronkin
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
- Institute of Catalysis Research and Technology (IKFT) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
| | - Patrick Lott
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
| | - Pieter Glatzel
- European Synchrotron Radiation Facility , 71 avenue des Martyrs CS 40220, 38000 Grenoble Cedex 9, France
| | - Martin Votsmeier
- Umicore AG & Co. KG , Rodenbacher Chaussee 4 , 63457 Hanau , Germany
| | - Olaf Deutschmann
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
- Institute of Catalysis Research and Technology (IKFT) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , Engesserstraße 20 , 76131 Karlsruhe , Germany
- Institute of Catalysis Research and Technology (IKFT) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
19
|
Goulas KA, Dery S, Dietrich P, Johnson GR, Grippo A, Wang YC, Gross E. X-ray tomography measurements identify structure-reactivity correlations in catalysts for oxygenates coupling reactions. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Nyathi TM, Fischer N, York APE, Morgan DJ, Hutchings GJ, Gibson EK, Wells PP, Catlow CRA, Claeys M. Impact of Nanoparticle-Support Interactions in Co 3O 4/Al 2O 3 Catalysts for the Preferential Oxidation of Carbon Monoxide. ACS Catal 2019; 9:7166-7178. [PMID: 32064146 PMCID: PMC7011734 DOI: 10.1021/acscatal.9b00685] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/24/2019] [Indexed: 11/28/2022]
Abstract
![]()
Different
supporting procedures were followed to alter the nanoparticle–support
interactions (NPSI) in two Co3O4/Al2O3 catalysts, prepared using the reverse micelle technique.
The catalysts were tested in the dry preferential oxidation of carbon
monoxide (CO-PrOx) while their phase stability was monitored using
four complementary in situ techniques, viz., magnet-based characterization,
PXRD, and combined XAS/DRIFTS, as well as quasi in situ XPS,
respectively. The catalyst with weak NPSI achieved higher CO2 yields and selectivities at temperatures below 225 °C compared
to the sample with strong NPSI. However, relatively high degrees of
reduction of Co3O4 to metallic Co were reached
between 250 and 350 °C for the same catalyst. The presence of
metallic Co led to the undesired formation of CH4, reaching
a yield of over 90% above 300 °C. The catalyst with strong NPSI
formed very low amounts of metallic Co (less than 1%) and CH4 (yield of up to 20%) even at 350 °C. When the temperature was
decreased from 350 to 50 °C under the reaction gas, both catalysts
were slightly reoxidized and gradually regained their CO oxidation
activity, while the formation of CH4 diminished. The present
study shows a strong relationship between catalyst performance (i.e.,
activity and selectivity) and phase stability, both of which are affected
by the strength of the NPSI. When using a metal oxide as the active
CO-PrOx catalyst, it is important for it to have significant reduction
resistance to avoid the formation of undesired products, e.g., CH4. However, the metal oxide should also be reducible (especially
on the surface) to allow for a complete conversion of CO to CO2 via the Mars–van Krevelen mechanism.
Collapse
Affiliation(s)
- Thulani M. Nyathi
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| | - Nico Fischer
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| | - Andrew P. E. York
- Johnson Matthey Technology Centre, Sonning Common, Reading, RG4 9NH United Kingdom
| | - David J. Morgan
- Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Graham J. Hutchings
- Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Emma K. Gibson
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
| | - Peter P. Wells
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
- Harwell Science and Innovation Campus, Diamond Light Source Ltd., Chilton, Didcot OX11 0DE, United Kingdom
| | - C. Richard A. Catlow
- Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon OX11 0FA, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Michael Claeys
- Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
21
|
Stegehake C, Riese J, Grünewald M. Modeling and Validating Fixed‐Bed Reactors: A State‐of‐the‐Art Review. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carolin Stegehake
- Ruhr University BochumLaboratory for Fluid Separation Universitätsstrasse 150 44801 Bochum Germany
| | - Julia Riese
- Ruhr University BochumLaboratory for Fluid Separation Universitätsstrasse 150 44801 Bochum Germany
| | - Marcus Grünewald
- Ruhr University BochumLaboratory for Fluid Separation Universitätsstrasse 150 44801 Bochum Germany
| |
Collapse
|
22
|
Pfaff S, Zhou J, Hejral U, Gustafson J, Shipilin M, Albertin S, Blomberg S, Gutowski O, Dippel A, Lundgren E, Zetterberg J. Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for operando catalyst surface characterization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033703. [PMID: 30927778 DOI: 10.1063/1.5086925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
We have combined three techniques, High Energy Surface X-Ray Diffraction (HESXRD), Surface Optical Reflectance, and Planar Laser Induced Fluorescence in an operando study of CO oxidation over a Pd(100) catalyst. We show that these techniques provide useful new insights such as the ability to verify that the finite region being probed by techniques such as HESXRD is representative of the sample surface as a whole. The combination is also suitable to determine when changes in gas composition or surface structure and/or morphology occur and to subsequently correlate them with high temporal resolution. In the study, we confirm previous results which show that the Pd(100) surface reaches high activity before an oxide can be detected. Furthermore, we show that the single crystal catalyst surface does not behave homogeneously, which we attribute to the surface being exposed to inhomogeneous gas conditions in mass transfer limited scenarios.
Collapse
Affiliation(s)
- S Pfaff
- Combustion Physics, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - J Zhou
- Combustion Physics, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - U Hejral
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - J Gustafson
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - M Shipilin
- Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
| | - S Albertin
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - S Blomberg
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - O Gutowski
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - A Dippel
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - E Lundgren
- Synchrotron Radiation Research, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - J Zetterberg
- Combustion Physics, Lund University, P.O. Box 118, Lund 22100, Sweden
| |
Collapse
|
23
|
Schmidt JE, Ye X, van Ravenhorst IK, Oord R, Shapiro DA, Yu Y, Bare SR, Meirer F, Poplawsky JD, Weckhuysen BM. Probing the Location and Speciation of Elements in Zeolites with Correlated Atom Probe Tomography and Scanning Transmission X-Ray Microscopy. ChemCatChem 2019; 11:488-494. [PMID: 31123533 PMCID: PMC6519228 DOI: 10.1002/cctc.201801378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 01/22/2023]
Abstract
Characterizing materials at nanoscale resolution to provide new insights into structure property performance relationships continues to be a challenging research target due to the inherently low signal from small sample volumes, and is even more difficult for nonconductive materials, such as zeolites. Herein, we present the characterization of a single Cu-exchanged zeolite crystal, namely Cu-SSZ-13, used for NOX reduction in automotive emissions, that was subject to a simulated 135,000-mile aging. By correlating Atom Probe Tomography (APT), a single atom microscopy method, and Scanning Transmission X-ray Microscopy (STXM), which produces high spatial resolution X-ray Absorption Near Edge Spectroscopy (XANES) maps, we show that a spatially non-uniform proportion of the Al was removed from the zeolite framework. The techniques reveal that this degradation is heterogeneous at length scales from micrometers to tens of nanometers, providing complementary insight into the long-term deactivation of this catalyst system.
Collapse
Affiliation(s)
- Joel E. Schmidt
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Xinwei Ye
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
- School of Materials Science and Engineering Key Laboratory of Advanced Energy Materials Chemistry (MOE) Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjin300350P.R. China
| | - Ilse K. van Ravenhorst
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Ramon Oord
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - David A. Shapiro
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley CA94720USA
| | - Young‐Sang Yu
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley CA94720USA
| | - Simon R. Bare
- SLAC National Accelerator LaboratoryMenlo Park CA94025USA
| | - Florian Meirer
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| | - Jonathan D. Poplawsky
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrecht3584 CGNetherlands
| |
Collapse
|
24
|
Vamvakeros A, Jacques SDM, Di Michiel M, Matras D, Middelkoop V, Ismagilov IZ, Matus EV, Kuznetsov VV, Drnec J, Senecal P, Beale AM. 5D operando tomographic diffraction imaging of a catalyst bed. Nat Commun 2018; 9:4751. [PMID: 30420610 PMCID: PMC6232103 DOI: 10.1038/s41467-018-07046-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023] Open
Abstract
We report the results from the first 5D tomographic diffraction imaging experiment of a complex Ni–Pd/CeO2–ZrO2/Al2O3 catalyst used for methane reforming. This five-dimensional (three spatial, one scattering and one dimension to denote time/imposed state) approach enabled us to track the chemical evolution of many particles across the catalyst bed and relate these changes to the gas environment that the particles experience. Rietveld analysis of some 2 × 106 diffraction patterns allowed us to extract heterogeneities in the catalyst from the Å to the nm and to the μm scale (3D maps corresponding to unit cell lattice parameters, crystallite sizes and phase distribution maps respectively) under different chemical environments. We are able to capture the evolution of the Ni-containing species and gain a more complete insight into the multiple roles of the CeO2-ZrO2 promoters and the reasons behind the partial deactivation of the catalyst during partial oxidation of methane. Multi-scale chemical imaging holds the potential to revolutionize our understanding of the relationships between structure and functionality in complex catalytic materials. Here the authors report the results from the first 5D tomographic diffraction imaging experiment of a complex Ni – Pd/ CeO2 – ZrO2/ Al2O3 catalyst used for methane reforming.
Collapse
Affiliation(s)
- A Vamvakeros
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK. .,Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell, Didcot, OX11 0FA, UK. .,Finden Limited, Merchant House, 5 East St. Helens Street, Abingdon, OX14 5EG, UK. .,ESRF, 71 Avenue des Martyrs, 38000, Grenoble, France.
| | - S D M Jacques
- Finden Limited, Merchant House, 5 East St. Helens Street, Abingdon, OX14 5EG, UK.
| | - M Di Michiel
- ESRF, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - D Matras
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell, Didcot, OX11 0FA, UK.,School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - V Middelkoop
- Flemish Institute for Technological Research, VITO NV, Boeretang 200, 2400 Mol, Belgium
| | - I Z Ismagilov
- Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, Russian Federation, 630090
| | - E V Matus
- Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, Russian Federation, 630090
| | - V V Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5, Novosibirsk, Russian Federation, 630090
| | - J Drnec
- ESRF, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - P Senecal
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell, Didcot, OX11 0FA, UK
| | - A M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK. .,Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell, Didcot, OX11 0FA, UK. .,Finden Limited, Merchant House, 5 East St. Helens Street, Abingdon, OX14 5EG, UK.
| |
Collapse
|
25
|
Stegehake C, Riese J, Grünewald M. Aktueller Stand zur Modellierung von Festbettreaktoren und Möglichkeiten zur experimentellen Validierung. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carolin Stegehake
- Ruhr-Universität Bochum; Institut für Thermo- und Fluiddynamik; Lehrstuhl für Fluidverfahrenstechnik; Universitätsstraße 150 44801 Bochum Deutschland
| | - Julia Riese
- Ruhr-Universität Bochum; Institut für Thermo- und Fluiddynamik; Lehrstuhl für Fluidverfahrenstechnik; Universitätsstraße 150 44801 Bochum Deutschland
| | - Marcus Grünewald
- Ruhr-Universität Bochum; Institut für Thermo- und Fluiddynamik; Lehrstuhl für Fluidverfahrenstechnik; Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
26
|
Portela R, Perez-Ferreras S, Serrano-Lotina A, Bañares MA. Engineering operando methodology: Understanding catalysis in time and space. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1740-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Stewart C, Gibson EK, Morgan K, Cibin G, Dent AJ, Hardacre C, Kondratenko EV, Kondratenko VA, McManus C, Rogers S, Stere CE, Chansai S, Wang YC, Haigh SJ, Wells PP, Goguet A. Unraveling the H 2 Promotional Effect on Palladium-Catalyzed CO Oxidation Using a Combination of Temporally and Spatially Resolved Investigations. ACS Catal 2018; 8:8255-8262. [PMID: 30221029 PMCID: PMC6135604 DOI: 10.1021/acscatal.8b01509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Indexed: 12/02/2022]
Abstract
![]()
The promotional effect
of H2 on the oxidation of CO
is of topical interest, and there is debate over whether this promotion
is due to either thermal or chemical effects. As yet there is no definitive
consensus in the literature. Combining spatially resolved mass spectrometry
and X-ray absorption spectroscopy (XAS), we observe a specific environment
of the active catalyst during CO oxidation, having the same specific
local coordination of the Pd in both the absence and presence of H2. In combination with Temporal Analysis of Products (TAP),
performed under isothermal conditions, a mechanistic insight into
the promotional effect of H2 was found, providing clear
evidence of nonthermal effects in the hydrogen-promoted oxidation
of carbon monoxide. We have identified that H2 promotes
the Langmuir–Hinshelwood mechanism, and we propose this is
linked to the increased interaction of O with the Pd surface in the
presence of H2. This combination of spatially resolved
MS and XAS and TAP studies has provided previously unobserved insights
into the nature of this promotional effect.
Collapse
Affiliation(s)
- Caomhán Stewart
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Emma K. Gibson
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
- UK Catalysis Hub, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, U.K
| | - Kevin Morgan
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Giannantonio Cibin
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Andrew J. Dent
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Christopher Hardacre
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Evgenii V. Kondratenko
- Leibniz-Institut für Katalyse e.V, Universität Rostock, Albert-Einstein-Straße 29a, Rostock D-18059, Germany
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse e.V, Universität Rostock, Albert-Einstein-Straße 29a, Rostock D-18059, Germany
| | - Colin McManus
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Scott Rogers
- UK Catalysis Hub, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Cristina E. Stere
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Sarayute Chansai
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Yi-Chi Wang
- School of Materials, University of Manchester, Manchester M13 9PL, U.K
| | - Sarah J. Haigh
- School of Materials, University of Manchester, Manchester M13 9PL, U.K
| | - Peter P. Wells
- UK Catalysis Hub, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, U.K
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Alexandre Goguet
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| |
Collapse
|
28
|
Benítez-Mateos AI, Nidetzky B, Bolivar JM, López-Gallego F. Single-Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group; CIC BiomaGUNE; Paseo Miramon 182 San Sebastian-Donostia 20014 Spain
- IKERBASQUE; Basque Foundation for Science; Bilbao Spain
| |
Collapse
|
29
|
Sprenger P, Kleist W, Grunwaldt JD. Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01149] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Sprenger
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Wolfgang Kleist
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Schwach P, Pan X, Bao X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev 2017; 117:8497-8520. [DOI: 10.1021/acs.chemrev.6b00715] [Citation(s) in RCA: 656] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Schwach
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xiulian Pan
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xinhe Bao
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Chemistry
Department, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
31
|
Time Resolved Operando X-ray Techniques in Catalysis, a Case Study: CO Oxidation by O2 over Pt Surfaces and Alumina Supported Pt Catalysts. Catalysts 2017. [DOI: 10.3390/catal7020058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, Reuter K, Grunwaldt J. Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem 2017; 9:17-29. [PMID: 28239429 PMCID: PMC5299475 DOI: 10.1002/cctc.201600996] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 01/12/2023]
Abstract
In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.
Collapse
Affiliation(s)
- Kai F. Kalz
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
| | - Ralph Kraehnert
- Department of ChemistryTechnische Universität BerlinD-10623BerlinGermany
| | - Muslim Dvoyashkin
- Institute of Chemical TechnologyUniversität LeipzigD-04103LeipzigGermany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigD-04103LeipzigGermany
| | - Ulrike Krewer
- Institute of Energy and Process Systems EngineeringTU BraunschweigD-38106BraunschweigGermany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research CenterTechnische Universität MünchenD-85747GarchingGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)D-76131KarlsruheGermany
| |
Collapse
|
33
|
Goguet A, Stewart C, Touitou J, Morgan K. In Situ Spatially Resolved Techniques for the Investigation of Packed Bed Catalytic Reactors: Current Status and Future Outlook of Spaci-FB. ADVANCES IN CHEMICAL ENGINEERING 2017. [DOI: 10.1016/bs.ache.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
34
|
Morgan K, Maguire N, Fushimi R, Gleaves JT, Goguet A, Harold MP, Kondratenko EV, Menon U, Schuurman Y, Yablonsky GS. Forty years of temporal analysis of products. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00678k] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detailed understanding of reaction mechanisms and kinetics is required in order to develop and optimize catalysts and catalytic processes. Temporal analysis of products (TAP) is an instrument capable of providing such understanding.
Collapse
Affiliation(s)
- K. Morgan
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - N. Maguire
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | | | - J. T. Gleaves
- Department of Energy, Environmental and Chemical Engineering
- Washington University
- St Louis
- USA
| | - A. Goguet
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - M. P. Harold
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston
- USA
| | - E. V. Kondratenko
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- Rostock
- Germany
| | - U. Menon
- Department of Chemical and Biomolecular Engineering
- University of Houston
- Houston
- USA
| | - Y. Schuurman
- IRCELYON
- Université Claude Bernard Lyon 1
- Villeurbanne Cédex
- France
| | - G. S. Yablonsky
- Parks College of Engineering, Aviation and Technology
- Saint Louis University
- Saint Louis
- USA
| |
Collapse
|
35
|
Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J 2016. [DOI: 10.1002/aic.15520] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gregor D. Wehinger
- Chemical and Process Engineering; Technische Universität Berlin; Fraunhoferstr. 33-36 10587 Berlin Germany
| | - Matthias Kraume
- Chemical and Process Engineering; Technische Universität Berlin; Fraunhoferstr. 33-36 10587 Berlin Germany
| | - Viktor Berg
- Institute of Chemical Reaction Engineering; Hamburg University of Technology; Eißendorfer Str. 38 21073 Hamburg Germany
| | - Oliver Korup
- Institute of Chemical Reaction Engineering; Hamburg University of Technology; Eißendorfer Str. 38 21073 Hamburg Germany
| | - Katharina Mette
- Dept. of Inorganic Chemistry; Fritz Haber Institute of the Max Planck Society; Faradayweg 4-6 14195 Berlin Germany
| | - Robert Schlögl
- Dept. of Inorganic Chemistry; Fritz Haber Institute of the Max Planck Society; Faradayweg 4-6 14195 Berlin Germany
| | - Malte Behrens
- Inorganic Chemistry, University of Duisburg-Essen; Universitätsstr. 7 45141 Essen Germany
| | - Raimund Horn
- Institute of Chemical Reaction Engineering; Hamburg University of Technology; Eißendorfer Str. 38 21073 Hamburg Germany
| |
Collapse
|
36
|
Gossler H, Kee BL, Zhu H, Hettel M, Deutschmann O, Kee RJ. Flow and pressure characteristics in rectangular channels with internal cylindrical bodies. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|