1
|
Alden SE, Wahab OJ, Zhang L, Vernon KL, Zhu B, Bailey KO, Ye X, Baker LA. Optically Transparent Carbon-Silicon Nitride Windows for Correlative Structural and Electrochemical Analysis of Nanomaterials. Anal Chem 2025. [PMID: 40408546 DOI: 10.1021/acs.analchem.5c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
We report an optically transparent carbon electrode-silicon nitride (OTCE-SiNx) window platform fabricated through clean-room microfabrication techniques. A wafer-scale fabrication process was implemented, which enabled a batch preparation of 2925 windows (100 × 100 μm) in user-friendly configurations. Application of OTCE-SiNx windows is demonstrated in the high-resolution structural and nanoscale electrochemical characterization of nanocrystals by transmission electron microscopy (TEM) and electrochemical scanning probe microscopy. High-resolution TEM (HR-TEM) and aberration-corrected high-angle annular dark-field TEM (HAADF-TEM) were achieved for nanocrystals supported on the OTCE-SiNx, with minimal background electron scattering or interference from the OTCE-SiNx. Additionally, the stability of OTCE-SiNx under prolonged voltammetric cycling was investigated. Scanning electrochemical cell microscopy (SECCM) revealed uniform nanoscale electrochemistry. Correlative electrochemical and electron microscopy on OTCE-SiNx was demonstrated for the hydrogen evolution reaction (HER) at clusters of sub-10 nm Au nanospheres.
Collapse
Affiliation(s)
- Sasha E Alden
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Oluwasegun J Wahab
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lingjie Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kelly L Vernon
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kathleen O Bailey
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Torres D, Bernal M, Ustarroz J. Deciphering Spatially-Resolved Electrochemical Nucleation and Growth Kinetics by Correlative Multimicroscopy. SMALL METHODS 2025; 9:e2401029. [PMID: 39568290 DOI: 10.1002/smtd.202401029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The study employs a multimicroscopy approach, combining Scanning Electrochemical Cell Microscopy (SECCM) and Field Emission Scanning Electron Microscopy (FESEM), to investigate electrochemical nucleation and growth (EN&G). Cu nanoparticles (NPs) are meticulously electrodeposited on glassy carbon (GC), to perform co-located characterization, supported by analytical modeling and statistical analysis. The findings reveal clear correlations between electrochemical descriptors (i-t transients) and physical descriptors (NPs size and distribution), offering valuable insights into nucleation kinetics, influenced by varied overpotentials, surface state, and electrode's area. Analysis of the stochasticity of nucleation reveals intriguing temporal distributions, indicating an increased likelihood of nucleation with higher overpotential and larger electrode's area. Notably, the local surface state significantly influences nucleation site number and activity, leading to spatial differences in nucleation rates unaccounted for in macroscopic experiments. The updated analytical model for EN&G current transients, considering SECCM geometry, shows excellent agreement with FESEM measurements, facilitating the calculation of active sites within individual regions. These results deepen the understanding of EN&G phenomena from a new perspective, and lay the groundwork for further theoretical advancements, showcasing the great potential of current experimental methods in advancing precise electrochemical manufacturing of micro- and nanostructures.
Collapse
Affiliation(s)
- Daniel Torres
- ChemSIN - Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050, Belgium
| | - Miguel Bernal
- ChemSIN - Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050, Belgium
| | - Jon Ustarroz
- ChemSIN - Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050, Belgium
- SURF - Research Group Electrochemical and Surface Engineering, Department Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Chen Z, Xu H, Chen T, Zhang J, Zhang S, Chen L, Pang H, Huang Z. MOF Derived Phosphide Nanocubes with Internal Heterojunction: A Study Powered by Single Entity Electrochemistry. NANO LETTERS 2025; 25:4921-4929. [PMID: 40096306 DOI: 10.1021/acs.nanolett.5c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metal-organic frameworks (MOFs) and their derivatives have captivated immense interest due to their tunable chemical composition and structures. Our research introduces an elegant strategy for advancing hybrid MOF-based electrocatalysts, employing scanning electrochemical cell microscopy (SECCM) for single-entity electrochemistry probing of individual particles with precisely engineered compositions and structures. We achieved controlled phosphidation of Prussian blue analogues, forming hollow nanocubes with Fe-doped CoP/Co2P heterojunctions, which demonstrated significantly enhanced hydrogen evolution reaction (HER) activity, emphasizing the pivotal role of structural and compositional tuning in transition metal phosphide catalysts. Utilizing SECCM, we probed the intrinsic HER activity of individual nanocubes, correlating their electrochemical behavior with their size and composition. Computational insights revealed that the heterojunctions enhanced the electronic conductivity and spin density, established internal electric fields, and minimized the Gibbs free energy barrier. This study paves the way toward advanced nanostructured electrocatalysts, underscoring the crucial interplay between size, structure, composition, and catalytic efficacy.
Collapse
Affiliation(s)
- Zilong Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tingting Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiaqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Long Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Zhongjie Huang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Salek S, Byers JC. Influence of Particle Size on Mass Transport during the Oxygen Reduction Reaction at Single Silver Particles Using Scanning Electrochemical Cell Microscopy. J Phys Chem Lett 2024; 15:8494-8500. [PMID: 39133521 DOI: 10.1021/acs.jpclett.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Single entity electrochemical measurements enable insight into the electrocatalytic activity of individual particles based on composition, shape, and crystallographic orientation. In addition to structural effects, particle size can further influence electrocatalytic activity and reaction mechanisms through mass transport effects. In this work, electrodeposition was used to grow well-separated silver particles of varying sizes from 100 to 500 nm in radius. Using a multimicroscopy approach of scanning electrochemical cell microscopy combined with scanning electron microscopy, the electrocatalytic current of individual silver particles toward the oxygen reduction reaction was evaluated as a function of their size. It was found that the current density increased with decreasing particle radius, which was correlated to the mass transport of oxygen to the silver particle, demonstrating the importance of size dependent mass transport effects that can occur at the single particle level using scanning electrochemical cell microscopy and opening new opportunities for quantitative electrocatalysis measurements.
Collapse
Affiliation(s)
- Samaneh Salek
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Joshua C Byers
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
5
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Jayamaha G, Tegg L, Bentley CL, Kang M. High Throughput Correlative Electrochemistry-Microscopy Analysis on a Zn-Al Alloy. ACS PHYSICAL CHEMISTRY AU 2024; 4:375-384. [PMID: 39069978 PMCID: PMC11274284 DOI: 10.1021/acsphyschemau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 07/30/2024]
Abstract
Conventional electrodes and electrocatalysts possess complex compositional and structural motifs that impact their overall electrochemical activity. These motifs range from defects and crystal orientation on the electrode surface to layers and composites with other electrode components, such as binders. Therefore, it is vital to identify how these individual motifs alter the electrochemical activity of the electrode. Scanning electrochemical cell microscopy (SECCM) is a powerful tool that has been developed for investigating the electrochemical properties of complex structures. An example of a complex electrode surface is Zn-Al alloys, which are utilized in various sectors ranging from cathodic protection of steel to battery electrodes. Herein, voltammetric SECCM and correlative microstructure analysis are deployed to probe the electrochemical activities of a range of microstructural features, with 651 independent voltammetric measurements made in six distinctive areas on the surface of a Zn-Al alloy. Energy-dispersive X-ray spectroscopy (EDS) mapping reveals that specific phases of the alloy structure, particularly the α-phase Zn-Al, favor the early stages of metal dissolution (i.e., oxidation) and electrochemical reduction processes such as the oxygen reduction reaction (ORR) and redeposition of dissolved metal ions. A correlative analysis performed by comparing high-resolution quantitative elemental composition (i.e., EDS) with the corresponding spatially resolved cyclic voltammograms (i.e., SECCM) shows that the nanospot α-phase of the Zn-Al alloy contains high Al content (30-50%), which may facilitate local Al dissolution as the local pH increases during the ORR in unbuffered aqueous media. Overall, SECCM-based high-throughput electrochemical screening, combined with microstructure analysis, conclusively demonstrates that structure-composition heterogeneity significantly influences the local electrochemical activity on complex electrode surfaces. These insights are invaluable for the rational design of advanced electromaterials.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Levi Tegg
- School
of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
7
|
Wang Y, Chen C, Xiong X, Skaanvik SA, Zhang Y, Bøjesen ED, Wang Z, Liu W, Dong M. In Situ Tracking of Water Oxidation Generated Nanoscale Dynamics in Layered Double Hydroxides Nanosheets. J Am Chem Soc 2024; 146:17032-17040. [PMID: 38871344 PMCID: PMC11212054 DOI: 10.1021/jacs.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Layered double hydroxides (LDHs) are potential catalysts for water oxidation, and it is recognized that they undergo dynamic evolution during the operation. However, little is known about the interfacial behaviors at the nanoscale under working conditions nor the underlying effects on electrocatalytic performance. Herein, using electrochemical atomic force microscopy, we in situ visualize the heterogeneous evolution of LDH nanosheets during oxygen evolution reaction (OER). By further combining density functional theory calculations, we elucidate the origin of the heterogeneous dynamics and their impact on the OER efficiency. Our findings demonstrate that NiCo LDHs transform to the catalytically active NiCoOx(OH)2-x phase during OER, and the redox transition between is accompanied by compressive and tensile strain, leading to in-plane contraction and reversible expansion of the nanosheets. Nonisotropic strain and out-of-plane strain relaxation due to defects and interparticle interactions result in cracking and wrinkling in the nanostructure, which is responsible for the partial activation and long-term deterioration of LDH electrocatalysts toward the OER. With this knowledge, we suggest and validate that engineering defects can precisely tune these dynamic behaviors, improving the OER activity and stability among LDH-based electrocatalysts.
Collapse
Affiliation(s)
- Yuqing Wang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Chao Chen
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuya Xiong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| | | | - Yuge Zhang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Espen Drath Bøjesen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| | - Zegao Wang
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
- College
of Materials Science and Engineering, Sichuan
University, Chengdu 610065, China
| | - Wei Liu
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus
C, Denmark
| |
Collapse
|
8
|
Gaudin LF, Funston AM, Bentley CL. Drop-cast gold nanoparticles are not always electrocatalytically active for the borohydride oxidation reaction. Chem Sci 2024; 15:7243-7258. [PMID: 38756820 PMCID: PMC11095372 DOI: 10.1039/d4sc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University Clayton 3800 VIC Australia
| | - Alison M Funston
- School of Chemistry, Monash University Clayton 3800 VIC Australia
- ARC Centre of Excellence in Exciton Science, Monash University Clayton 3800 VIC Australia
| | | |
Collapse
|
9
|
Jayamaha G, Maleki M, Bentley CL, Kang M. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). Analyst 2024; 149:2542-2555. [PMID: 38632960 DOI: 10.1039/d4an00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| | - Mahin Maleki
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia
| | - Minkyung Kang
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
10
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Kang M, Bentley CL, Mefford JT, Chueh WC, Unwin PR. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS NANO 2023; 17:21493-21505. [PMID: 37883688 PMCID: PMC10655184 DOI: 10.1021/acsnano.3c06335] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of β-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 μm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 μm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of β-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.
Collapse
Affiliation(s)
- Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown 2006 NSW, Australia
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - J. Tyler Mefford
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - William C. Chueh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Patrick R. Unwin
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
13
|
Fan Y, Walls M, Salzemann C, Noël JM, Kanoufi F, Courty A, Lemineur JF. Metal Core-Shell Nanoparticle Supercrystals: From Photoactivation of Hydrogen Evolution to Photocorrosion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305402. [PMID: 37492940 DOI: 10.1002/adma.202305402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Gas nanobubbles are directly linked to many important chemical reactions. While they can be detrimental to operational devices, they also reflect the local activity at the nanoscale. Here, supercrystals made of highly monodisperse Ag@Pt core-shell nanoparticles are first grown onto a solid support and fully characterized by electron microscopies and X-ray scattering. Supercrystals are then used as a plasmonic photocatalytic platform for triggering the hydrogen evolution reaction. The catalytic activity is measured operando at the single supercrystal level by high-resolution optical microscopy, which allows gas nanobubble nucleation to be probed at the early stage with high temporal resolution and the amount of gas molecules trapped inside them to be quantified. Finally, a correlative microscopy approach and high-resolution electron energy loss spectroscopy help to decipher the mechanisms at the origin of the local degradation of the supercrystals during catalysis, namely nanoscale erosion and corrosion.
Collapse
Affiliation(s)
- Yinan Fan
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | - Michael Walls
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay, 91405, France
| | - Caroline Salzemann
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | - Jean-Marc Noël
- ITODYS, Université Paris Cité, CNRS, Paris, F-75013, France
| | | | - Alexa Courty
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | | |
Collapse
|
14
|
Gao C, Li Y, Zhao J, Sun W, Guang S, Chen Q. Measuring the Pseudocapacitive Behavior of Individual V 2O 5 Particles by Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37392190 DOI: 10.1021/acs.analchem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
V2O5 is a promising pseudocapacitive material for electrochemical energy storage with balanced power and energy density. Understanding the charge-storage mechanism is of significance to further improve the rate performance. Here, we report an electrochemical study of individual V2O5 particles using scanning electrochemical cell microscopy with colocalized electron microscopy. A carbon sputtering procedure is proposed for the pristine V2O5 particles to improve their structure stability and electronic conductivity. The achieved high-quality electrochemical cyclic voltammetry results, structural integrity, and high oxidation to reduction charge ratio (as high as 97.74%) assured further quantitative analysis of the pseudocapacitive behavior of single particles and correlation with local particle structures. A broad range of capacitive contribution is revealed, with an average ratio of 76% at 1.0 V/s. This study provides new opportunities for quantitative analysis of the electrochemical charge-storage process at single particles, especially for electrode materials with electrolyte-induced instability.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yingjian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Sun
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Jin Z. High-Spatiotemporal-Resolution Electrochemical Measurements of Electrocatalytic Reactivity. Anal Chem 2023; 95:6477-6489. [PMID: 37023363 DOI: 10.1021/acs.analchem.2c05755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The real-time measurement of the individual or local electrocatalytic reactivity of catalyst particles instead of ensemble behavior is considerably challenging but very critical to uncover fundamental insights into catalytic mechanisms. Recent remarkable efforts have been made to the development of high-spatiotemporal-resolution electrochemical techniques, which allow the imaging of the topography and reactivity of fast electron-transfer processes at the nanoscale. This Perspective summarizes emerging powerful electrochemical measurement techniques for studying various electrocatalytic reactions on different types of catalysts. Principles of scanning electrochemical microscopy, scanning electrochemical cell microscopy, single-entity measurement, and molecular probing technique have been discussed for the purpose of measuring important parameters in electrocatalysis. We further demonstrate recent advances in these techniques that reveal quantitative information about the thermodynamic and kinetic properties of catalysts for various electrocatalytic reactions associated with our perspectives. Future research on the next-generation electrochemical techniques is anticipated to be focused on the development of instrumentation, correlative multimodal techniques, and new applications, thus enabling new opportunities for elucidating structure-reactivity relationships and dynamic information at the single active-site level.
Collapse
Affiliation(s)
- Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
16
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
17
|
Bernal M, Torres D, Parapari SS, Čeh M, Rožman KŽ, Šturm S, Ustarroz J. A microscopic view on the electrochemical deposition and dissolution of Au with Scanning Electrochemical Cell Microscopy – Part I. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
19
|
Hussein HM, Wood G, Houghton D, Walker M, Han Y, Zhao P, Beanland R, Macpherson JV. Electron Beam Transparent Boron Doped Diamond Electrodes for Combined Electrochemistry-Transmission Electron Microscopy. ACS MEASUREMENT SCIENCE AU 2022; 2:439-448. [PMID: 36281293 PMCID: PMC9585633 DOI: 10.1021/acsmeasuresciau.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/16/2023]
Abstract
The majority of carbon based transmission electron microscopy (TEM) platforms (grids) have a significant sp2 carbon component. Here, we report a top down fabrication technique for producing freestanding, robust, electron beam transparent and conductive sp3 carbon substrates from boron doped diamond (BDD) using an ion milling/polishing process. X-ray photoelectron spectroscopy and electrochemical measurements reveal the sp3 carbon character and advantageous electrochemical properties of a BDD electrode are retained during the milling process. TEM diffraction studies show a dominant (110) crystallographic orientation. Compared with conventional carbon TEM films on metal supports, the BDD-TEM electrodes offer superior thermal, mechanical and electrochemical stability properties. For the latter, no carbon loss is observed over a wide electrochemical potential range (up to 1.80 V vs RHE) under prolonged testing times (5 h) in acid (comparable with accelerated stress testing protocols). This result also highlights the use of BDD as a corrosion free electrocatalyst TEM support for fundamental studies, and in practical energy conversion applications. High magnification TEM imaging demonstrates resolution of isolated, single atoms on the BDD-TEM electrode during electrodeposition, due to the low background electron scattering of the BDD surface. Given the high thermal conductivity and stability of the BDD-TEM electrodes, in situ monitoring of thermally induced morphological changes is also possible, shown here for the thermally induced crystallization of amorphous electrodeposited manganese oxide to the electrochemically active γ-phase.
Collapse
Affiliation(s)
| | - Georgia Wood
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Diamond
Science and Technology Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, U.K.
| | - Daniel Houghton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Yisong Han
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Pei Zhao
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Richard Beanland
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | | |
Collapse
|
20
|
Godeffroy L, Lemineur JF, Shkirskiy V, Miranda Vieira M, Noël JM, Kanoufi F. Bridging the Gap between Single Nanoparticle Imaging and Global Electrochemical Response by Correlative Microscopy Assisted By Machine Vision. SMALL METHODS 2022; 6:e2200659. [PMID: 35789075 DOI: 10.1002/smtd.202200659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The nanostructuration of an electrochemical interface dictates its micro- and macroscopic behavior. It is generally highly complex and often evolves under operating conditions. Electrochemistry at these nanostructurations can be imaged both operando and/or ex situ at the single nanoobject or nanoparticle (NP) level by diverse optical, electron, and local probe microscopy techniques. However, they only probe a tiny random fraction of interfaces that are by essence highly heterogeneous. Given the above background, correlative multimicroscopy strategy coupled to electrochemistry in a droplet cell provides a unique solution to gain mechanistic insights in electrocatalysis. To do so, a general machine-vision methodology is depicted enabling the automated local identification of various physical and chemical descriptors of NPs (size, composition, activity) obtained from multiple complementary operando and ex situ microscopy imaging of the electrode. These multifarious microscopically probed descriptors for each and all individual NPs are used to reconstruct the global electrochemical response. Herein the methodology unveils the competing processes involved in the electrocatalysis of hydrogen evolution reaction at nickel based NPs, showing that Ni metal activity is comparable to that of platinum.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marc Noël
- Université Paris Cité, ITODYS, CNRS, 75013, Paris, France
| | | |
Collapse
|
21
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Xu W, Li K, Shen L, Liu X, Chen Y, Feng J, Zhao W, Zhao L, Zhou W, Wang W, Li J. Piezodeposition of Metal Cocatalysts for Promoted Piezocatalytic Generation of Reactive Oxygen Species and Hydrogen in Water. ChemCatChem 2022. [DOI: 10.1002/cctc.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenxiu Xu
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Kai Li
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Lanbo Shen
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Xiaoyi Liu
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Yi Chen
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Junkun Feng
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - WeiWei Zhao
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Lili Zhao
- University of Jinan Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR) Jinan CHINA
| | - Weijia Zhou
- University of Jinan Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), Jinan CHINA
| | - Wenjun Wang
- Shandong University Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine Jinan CHINA
| | - Jianhua Li
- Shandong University School of Stomatology NO. 44-1 Road Wenhuaxi 250012 Jinan CHINA
| |
Collapse
|
23
|
Unwin P. Concluding remarks: next generation nanoelectrochemistry - next generation nanoelectrochemists. Faraday Discuss 2022; 233:374-391. [PMID: 35229863 DOI: 10.1039/d2fd00020b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this paper is to describe the scientific journey taken to arrive at present-day nanoelectrochemistry and consider how the area might develop in the future, particularly in light of papers presented at this Faraday Discussion. By adopting a generational approach, this brief contribution traces the story of the nanoelectrochemistry family within the broader electrochemistry field, with a focus on scientific capability and themes that were important to each generation. I shall consider research questions and the impact of technology that was developed or available in each period. Nanoelectrochemistry is still somewhat niche, but is attracting increasing numbers of researchers. It is set to become a major part of electrochemistry and interfacial science. It is studied by people with a fairly unique skillset, and I shall speculate on the skills and expertise that will be needed by nanoelectrochemists to address the challenges and opportunities that lie ahead. I conclude by asking: who will be the nanoelectrochemists of the future and what will they do?
Collapse
Affiliation(s)
- Patrick Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
24
|
Liu G, Hao L, Li H, Zhang K, Yu X, Li D, Zhu X, Hao D, Ma Y, Ma L. Topography Mapping with Scanning Electrochemical Cell Microscopy. Anal Chem 2022; 94:5248-5254. [PMID: 35312291 DOI: 10.1021/acs.analchem.1c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-resolution scanning electrochemical cell microscopy (SECCM), synchronously visualizing the topography and electrochemical activity, could be used to directly correlate the structure and activity of materials nanoscopically. However, its topographical measurement is largely restricted by the size and stability of the meniscus droplet formed at the end of the nanopipette. In this paper, we report a scheme that could reliably gain several tens nanometer resolution (≥65 nm) of SECCM using homemade ∼50 nm inner diameter probes. Furthermore, the topography and hydrogen evolution reaction (HER) activity of ∼45 nm self-assembled Au nanoparticles monolayer were simultaneously recorded successfully. This scheme could make mapping of both topologic and chemical properties of samples in the nanometer regime with SECCM routinely, which potentially can largely expand the field of SECCM applications.
Collapse
Affiliation(s)
- Gen Liu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Luzhen Hao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Hao Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Kaimin Zhang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xue Yu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Dong Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaodong Zhu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Danni Hao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China.,State Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
25
|
Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen. INORGANICS 2022. [DOI: 10.3390/inorganics10030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbon-based nanocomposites have been attracting extensive attention as high-performance catalysts in alkaline media towards the electrochemical reduction of oxygen. Herein, polyacrylonitrile nanoflowers are synthesized via a free-radical polymerization route and used as a structural scaffold and precursor, whereby controlled pyrolysis leads to the ready preparation of carbon nanocomposites (FeNi-NCF) doped with both metal (Fe and Ni) and nonmetal (N) elements. Transmission electron microscopy studies show that the FeNi-NCF composites retain the flower-like morphology, with the metal species atomically dispersed into the flaky carbon petals. Remarkably, despite a similar structure, elemental composition, and total metal content, the FeNi-NCF sample with a high Fe:Ni ratio exhibits an electrocatalytic performance towards oxygen reduction reaction (ORR) in alkaline media that is similar to that by commercial Pt/C, likely due to the Ni to Fe electron transfer that promotes the adsorption and eventual reduction of oxygen, as evidenced in X-ray photoelectron spectroscopic measurements. Results from this study underline the importance of the electronic properties of metal dopants in the manipulation of the ORR activity of carbon nanocomposites.
Collapse
|
26
|
Shan Y, Deng X, Lu X, Gao C, Li Y, Chen Q. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Jagdale GS, Choi MH, Siepser NP, Jeong S, Wang Y, Skalla RX, Huang K, Ye X, Baker LA. Electrospray deposition for single nanoparticle studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4105-4113. [PMID: 34554166 DOI: 10.1039/d1ay01295a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per μm2 and observation of 96.3% single Au OD deposition.
Collapse
Affiliation(s)
- Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Soojin Jeong
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| |
Collapse
|
28
|
Bentley CL. Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the sub‐particle to ensemble level. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
29
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
30
|
den Hartog S, Samanipour M, Ching HV, Van Doorslaer S, Breugelmans T, Hubin A, Ustarroz J. Reactive oxygen species formation at Pt nanoparticles revisited by electron paramagnetic resonance and electrochemical analysis. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Daviddi E, Shkirskiy V, Kirkman PM, Robin MP, Bentley CL, Unwin PR. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion potential relationships. Chem Sci 2020; 12:3055-3069. [PMID: 34164075 PMCID: PMC8179364 DOI: 10.1039/d0sc06516a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Practically important metal electrodes are usually polycrystalline, comprising surface grains of many different crystallographic orientations, as well as grain boundaries. In this study, scanning electrochemical cell microscopy (SECCM) is applied in tandem with co-located electron backscattered diffraction (EBSD) to give a holistic view of the relationship between the surface structure and the electrochemical activity and corrosion susceptibility of polycrystalline Cu. An unusual aqueous nanodroplet/oil (dodecane)/metal three-phase configuration is employed, which opens up new prospects for fundamental studies of multiphase electrochemical systems, and mimics the environment of corrosion in certain industrial and automotive applications. In this configuration, the nanodroplet formed at the end of the SECCM probe (nanopipette) is surrounded by dodecane, which acts as a reservoir for oil-soluble species (e.g., O2) and can give rise to enhanced flux(es) across the immiscible liquid–liquid interface, as shown by finite element method (FEM) simulations. This unique three-phase configuration is used to fingerprint nanoscale corrosion in a nanodroplet cell, and to analyse the interrelationship between the Cu oxidation, Cu2+ deposition and oxygen reduction reaction (ORR) processes, together with nanoscale open circuit (corrosion) potential, in a grain-by-grain manner. Complex patterns of surface reactivity highlight the important role of grains of high-index orientation and microscopic surface defects (e.g., microscratches) in modulating the corrosion-properties of polycrystalline Cu. This work provides a roadmap for in-depth surface structure–function studies in (electro)materials science and highlights how small variations in surface structure (e.g., crystallographic orientation) can give rise to large differences in nanoscale reactivity. Probing Cu corrosion in an aqueous nanodroplet/oil/metal three-phase environment revealed unique patterns of surface reactivity. The electrochemistry of high-index facets cannot be predicted simply from the low-index {001}, {011} and {111} responses.![]()
Collapse
Affiliation(s)
- Enrico Daviddi
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | | | - Cameron L Bentley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK .,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
32
|
Chung I, Song B, Kim J, Yun Y. Enhancing Effect of Residual Capping Agents in Heterogeneous Enantioselective Hydrogenation of α-keto Esters over Polymer-Capped Pt/Al2O3. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iljun Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Byeongju Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeongmyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yongju Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
33
|
Roehrich B, Sepunaru L. Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations. Angew Chem Int Ed Engl 2020; 59:19184-19192. [PMID: 32745310 DOI: 10.1002/anie.202007148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/31/2020] [Indexed: 11/08/2022]
Abstract
While the electrochemical nanoimpact technique has recently emerged as a method of studying single entities, it is limited by requirement of a catalytically active particle impacting an inert electrode. We show that an active particle-active electrode can provide mechanistic insight into electrochemical reactions. When an individual Pt electrocatalyst adsorbs to the surface of a partially active electrode, further reduction of electrode-produced species can proceed on the nanocatalyst. Current transients obtained during hydrogen evolution allow simultaneous measurement of the Pt catalyst over different length scales, size dependency suggests H atom intercalation as a catalytic deactivation mechanism. Although results show that outer-sphere redox probes are unproductive for particle characterization, the breadth of inner-sphere electrochemical reactions makes this a promising method for understanding the properties of catalytic nanomaterials, one at a time.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Building 232, Santa Barbara, CA, 93106, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Building 232, Santa Barbara, CA, 93106, USA
| |
Collapse
|
34
|
Roehrich B, Sepunaru L. Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and Biochemistry University of California Santa Barbara, Building 232 Santa Barbara CA 93106 USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry University of California Santa Barbara, Building 232 Santa Barbara CA 93106 USA
| |
Collapse
|
35
|
Bentley CL, Agoston R, Tao B, Walker M, Xu X, O'Mullane AP, Unwin PR. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44307-44316. [PMID: 32880446 DOI: 10.1021/acsami.0c11759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-film electrodes, produced by coating a conductive support with a thin layer (nanometer to micrometer) of active material, retain the unique properties of nanomaterials (e.g., activity, surface area, conductivity, etc.) while being economically scalable, making them highly desirable as electrocatalysts. Despite the ever-increasing methods of thin-film deposition (e.g., wet chemical synthesis, electrodeposition, chemical vapor deposition, etc.), there is insufficient understanding on the nanoscale electrochemical activity of these materials in relation to structure/composition, particularly for those that lack long-range order (i.e., amorphous thin-film materials). In this work, scanning electrochemical cell microscopy (SECCM) is deployed in tandem with complementary, colocated compositional/structural analysis to understand the microscopic factors governing the electrochemical activity of amorphous molybdenum sulfide (a-MoSx) thin films, a promising class of hydrogen evolution reaction (HER) catalyst. The a-MoSx thin films, produced under ambient conditions by electrodeposition, possess spatially heterogeneous electrocatalytic activity on the tens-of-micrometer scale, which is not attributable to microscopic variations in elemental composition or chemical structure (i.e., Mo and/or S bonding environments), shown through colocated, local energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis. A new SECCM protocol is implemented to directly correlate electrochemical activity to the electrochemical surface area (ECSA) in a single measurement, revealing that the spatially heterogeneous HER response of a-MoSx is predominantly attributable to variations in the nanoscale porosity of the thin film, with surface roughness ruled out as a major contributing factor by complementary atomic force microscopy (AFM). As microscopic composition, structure, and porosity (ECSA) are all critical factors dictating the functional properties of nanostructured materials in electrocatalysis and beyond (e.g., battery materials, electrochemical sensors, etc.), this work further cements SECCM as a premier tool for structure-function studies in (electro)materials science.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Roland Agoston
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Binglin Tao
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
36
|
Su P, Espenship MF, Laskin J. Principles of Operation of a Rotating Wall Mass Analyzer for Preparative Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1875-1884. [PMID: 32809825 DOI: 10.1021/jasms.0c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this contribution, we describe the principles of operation of a rotating wall mass analyzer (RWMA), a mass-dispersive device for preparative mass spectrometry. Ions of different m/z are spatially separated by RWMA and deposited onto ring-shaped areas of distinct radii on a surface. We use a combination of an analytical equation for predicting the radius of the deposition ring and SIMION simulations to understand how to optimize the experimental conditions for the separation of multicomponent mixtures. The results of these simulations are compared with the experimental data. We introduce a universal mass calibration procedure, based on a series of polyacrylamide ions, which is subsequently used to predict the deposition radii of unknown analytes. The calibration is independent of the polarity, kinetic energy, and charge state of the ion as demonstrated by assigning m/z values of different analytes including multiply charged ubiquitin ions. We demonstrate that mass resolution of the RWMA is affected by the width and kinetic energy distribution of the ion beam. The best mass resolution obtained in this study is m/Δm = ∼20. Preparative mass spectrometry using RWMA provides the advantages of simplicity, compactness, and low fabrication cost, which are particularly promising for the development of miniaturized instrumentation. The results presented in this work can be readily adapted to preparative separation of a variety of charged species of interest to the broad scientific community.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael F Espenship
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
37
|
Torres D, Madriz L, Vargas R, Scharifker BR. Electrochemical formation of copper phosphide from aqueous solutions of Cu(II) and hypophosphite ions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|
39
|
Su P, Hu H, Unsihuay D, Zhang D, Dainese T, Diaz RE, Lee J, Gunaratne DK, Wang H, Maran F, Mei J, Laskin J. Preparative Mass Spectrometry Using a Rotating‐Wall Mass Analyzer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pei Su
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Hang Hu
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Daisy Unsihuay
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Di Zhang
- School of Materials Engineering Purdue University 701 W. Stadium Avenue West Lafayette IN 47907 USA
| | - Tiziano Dainese
- Department of Chemistry University of Padova 1, Via Marzolo Padova 35131 Italy
| | - Rosa E. Diaz
- Birck Nanotechnology Center, Discovery Park Purdue University 1205 W. State St. West Lafayette IN 47907 USA
| | - Jongsu Lee
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Don K. Gunaratne
- Physical Science Division Pacific Northwest National Laboratory P.O. Box 999, MSIN K8-88 Richland WA 99352 USA
| | - Haiyan Wang
- School of Materials Engineering Purdue University 701 W. Stadium Avenue West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering Purdue University 465 Northwestern Avenue West Lafayette IN 47907 USA
| | - Flavio Maran
- Department of Chemistry University of Padova 1, Via Marzolo Padova 35131 Italy
| | - Jianguo Mei
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Julia Laskin
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
40
|
Lemineur JF, Noël JM, Courty A, Ausserré D, Combellas C, Kanoufi F. In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. J Am Chem Soc 2020; 142:7937-7946. [PMID: 32223242 DOI: 10.1021/jacs.0c02071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.
Collapse
Affiliation(s)
- Jean-François Lemineur
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France.,Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Alexa Courty
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Dominique Ausserré
- Université du Maine, Institut des Matériaux et Molécules du Mans, CNRS-UMR 6283, Avenue O. Messiaen, 72000 Le Mans, France
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| |
Collapse
|
41
|
Tarnev T, Cychy S, Andronescu C, Muhler M, Schuhmann W, Chen Y. A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopy. Angew Chem Int Ed Engl 2020; 59:5586-5590. [PMID: 31960548 PMCID: PMC7155139 DOI: 10.1002/anie.201916419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 11/09/2022]
Abstract
A universal nano-capillary based method for sample deposition on the silicon nitride membrane of liquid-cell transmission electron microscopy (LCTEM) chips is demonstrated. It is applicable to all substances which can be dispersed in a solvent and are suitable for drop casting, including catalysts, biological samples, and polymers. Most importantly, this method overcomes limitations concerning sample immobilization due to the fragility of the ultra-thin silicon nitride membrane required for electron transmission. Thus, a straightforward way is presented to widen the research area of LCTEM to encompass any sample which can be externally deposited beforehand. Using this method, Nix B nanoparticles are deposited on the μm-scale working electrode of the LCTEM chip and in situ observation of single catalyst particles during ethanol oxidation is for the first time successfully monitored by means of TEM movies.
Collapse
Affiliation(s)
- Tsvetan Tarnev
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty for Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Steffen Cychy
- Industrial ChemistryFaculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Corina Andronescu
- Chemical Technology IIIFaculty of Chemistry and CENIDECenter for NanointegrationUniversity Duisburg EssenCarl-Benz-Strasse 19947057DuisburgGermany
| | - Martin Muhler
- Industrial ChemistryFaculty of Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty for Chemistry and BiochemistryRuhr University Bochum44801BochumGermany
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS)Ruhr University Bochum44801BochumGermany
| |
Collapse
|
42
|
Su P, Hu H, Unsihuay D, Zhang D, Dainese T, Diaz RE, Lee J, Gunaratne DK, Wang H, Maran F, Mei J, Laskin J. Preparative Mass Spectrometry Using a Rotating‐Wall Mass Analyzer. Angew Chem Int Ed Engl 2020; 59:7711-7716. [PMID: 32109333 DOI: 10.1002/anie.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Pei Su
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Hang Hu
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Daisy Unsihuay
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Di Zhang
- School of Materials Engineering Purdue University 701 W. Stadium Avenue West Lafayette IN 47907 USA
| | - Tiziano Dainese
- Department of Chemistry University of Padova 1, Via Marzolo Padova 35131 Italy
| | - Rosa E. Diaz
- Birck Nanotechnology Center, Discovery Park Purdue University 1205 W. State St. West Lafayette IN 47907 USA
| | - Jongsu Lee
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Don K. Gunaratne
- Physical Science Division Pacific Northwest National Laboratory P.O. Box 999, MSIN K8-88 Richland WA 99352 USA
| | - Haiyan Wang
- School of Materials Engineering Purdue University 701 W. Stadium Avenue West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering Purdue University 465 Northwestern Avenue West Lafayette IN 47907 USA
| | - Flavio Maran
- Department of Chemistry University of Padova 1, Via Marzolo Padova 35131 Italy
| | - Jianguo Mei
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Julia Laskin
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
43
|
Alden SE, Siepser NP, Patterson JA, Jagdale GS, Choi M, Baker LA. Array Microcell Method (AMCM) for Serial Electroanalysis. ChemElectroChem 2020; 7:1084-1091. [PMID: 36588586 PMCID: PMC9798888 DOI: 10.1002/celc.201901976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe a method for electrochemical measurement and synthesis based on the combination of a mobile micropipette and a microelectrode array, which we term the array microcell method (AMCM). AMCM has the ability to address single electrodes within a microelectrode array (MEA) and provides a simple, low-cost format to enable versatile electrochemical measurements. In AMCM, a droplet at the tip of a movable micropipette (inner diameter of 50 μm) functions as an electrochemical cell, in which the electrode area is defined by a microelectrode of the array. We also report carbon MEAs that are well suited for AMCM and are fabricated from pyrolyzed photoresist films (PPFs). PPF-MEAs with nominal electrode diameters of 5.5 μm are characterized by AMCM, standard macroscale electrochemical methods, and finite element modeling. The versatility of AMCM is demonstrated by measurement of single Pt microparticles and by electrodeposition of shapecontrolled Pt nanoparticles.
Collapse
Affiliation(s)
- Sasha E Alden
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Jacqueline A Patterson
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Myunghoon Choi
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA)
| |
Collapse
|
44
|
Tarnev T, Cychy S, Andronescu C, Muhler M, Schuhmann W, Chen Y. Eine universelle, auf Nanokapillaren basierende Methode zur Katalysatorimmobilisierung für die Flüssigzell‐Transmissionselektronenmikroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tsvetan Tarnev
- Lehrstuhl für Analytische Chemie und Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Steffen Cychy
- Technische Chemie Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Corina Andronescu
- Chemical Technology III Faculty of Chemistry and CENIDE Center for Nanointegration University Duisburg Essen Carl-Benz-Straße 199 47057 Duisburg Deutschland
| | - Martin Muhler
- Technische Chemie Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Wolfgang Schuhmann
- Lehrstuhl für Analytische Chemie und Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum 44801 Bochum Deutschland
| | - Yen‐Ting Chen
- Zentrum für molekulare Spektroskopie und Simulation solvensgesteuerter Prozesse (ZEMOS) Ruhr-Universität Bochum 44801 Bochum Deutschland
| |
Collapse
|
45
|
Choi M, Siepser NP, Jeong S, Wang Y, Jagdale G, Ye X, Baker LA. Probing Single-Particle Electrocatalytic Activity at Facet-Controlled Gold Nanocrystals. NANO LETTERS 2020; 20:1233-1239. [PMID: 31917592 PMCID: PMC7727918 DOI: 10.1021/acs.nanolett.9b04640] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Electrocatalytic reduction reactions (i.e., the hydrogen evolution reaction (HER) and oxygen reduction reaction) at individual, faceted Au nanocubes (NCs) and nano-octahedra (ODs) expressing predominantly {100} and {111} crystal planes on the surface, respectively, were studied by nanoscale voltammetric mapping. Cyclic voltammograms were collected at individual nanoparticles (NPs) with scanning electrochemical cell microscopy (SECCM) and correlated with particle morphology imaged by electron microscopy. Nanoscale measurements from a statistically informative set of individual NPs revealed that Au NCs have superior HER electrocatalytic activity compared to that of Au ODs, in good agreement with macroscale cyclic voltammetry measurements. Au NCs exhibited more particle-to-particle variation in catalytic activity compared to that with Au ODs. The approach of single-particle SECCM imaging coupled with macroscale CV on well-defined NPs provides a powerful toolset for the design and activity assessment of nanoscale electrocatalysts.
Collapse
Affiliation(s)
- Myunghoon Choi
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Natasha P Siepser
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Soojin Jeong
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Yi Wang
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Gargi Jagdale
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Xingchen Ye
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Lane A Baker
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
46
|
Ornelas IM, Unwin PR, Bentley CL. High-Throughput Correlative Electrochemistry-Microscopy at a Transmission Electron Microscopy Grid Electrode. Anal Chem 2019; 91:14854-14859. [PMID: 31674764 DOI: 10.1021/acs.analchem.9b04028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As part of the revolution in electrochemical nanoscience, there is growing interest in using electrochemistry to create nanostructured materials and to assess properties at the nanoscale. Herein, we present a platform that combines scanning electrochemical cell microscopy with ex situ scanning transmission electron microscopy to allow the ready creation of an array of nanostructures coupled with atomic-scale analysis. As an illustrative example, we explore the electrodeposition of Pt at carbon-coated transmission electron microscopy (TEM) grid supports, where in a single high-throughput experiment it is shown that Pt nanoparticle (PtNP) density increases and size polydispersity decreases with increasing overpotential (i.e., driving force). Furthermore, the coexistence of a range of nanostructures, from single atoms to aggregates of crystalline PtNPs, during the early stages of electrochemical nucleation and growth supports a nonclassical aggregative growth mechanism. Beyond this exemplary system, the presented correlative electrochemistry-microscopy approach is generally applicable to solve ubiquitous structure-function problems in electrochemical science and beyond, positioning it as a powerful platform for the rational design of functional nanomaterials.
Collapse
Affiliation(s)
- Isabel M Ornelas
- Nanoscale Physics Research Laboratory , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Patrick R Unwin
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Cameron L Bentley
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom
| |
Collapse
|
47
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
48
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Bentley CL, Kang M, Unwin PR. Nanoscale Surface Structure–Activity in Electrochemistry and Electrocatalysis. J Am Chem Soc 2018; 141:2179-2193. [DOI: 10.1021/jacs.8b09828] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|