1
|
Wang W, Wu J, Jiang K, Zhou M, He G. Halogenation-induced C-N bond activation enables the synthesis of 1,2- cis C-aryl furanosides via deaminative cyclization. Chem Sci 2024; 16:410-417. [PMID: 39629490 PMCID: PMC11609718 DOI: 10.1039/d4sc07410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
1,2-cis C-Aryl furanosides are prevalent in nature and exhibit significant biological activities. The 1,2-cis configuration is less favorable in terms of stereoelectronic and steric effects, making the synthesis of this type of skeleton highly challenging. Traditional methods for the synthesis of 1,2-cis C-aryl furanosides usually require complicated protection manipulations, resulting in lengthy synthetic routes and low overall efficiency. Here, we report a simple and highly applicable procedure for the synthesis of 1,2-cis C-aryl furanosides from unprotected aldoses via Petasis reaction and subsequent deaminative cyclization. Unprotected aldose mediated Petasis reactions yield linear 1,2-trans 1-aryl polyhydroxy amines. Halogenation of the amine motif activates the conventionally inert C-N bond and triggers the key stereoinvertive intramolecular substitution process, affording 1,2-cis C-aryl furanosides with excellent chemo- and diastereoselectivity. This procedure does not require the use of any sensitive reagents, and can be conducted in one-pot without precautions against oxygen or moisture, offering a streamlined approach to 1,2-cis C-aryl furanoside natural products and bioactive agents.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jiawei Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Kaiyu Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Maochao Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| |
Collapse
|
2
|
Mayer RJ, Hampel N, Ofial AR, Mayr H. Resolving the Mechanistic Complexity in Triarylborane-Induced Conjugate Additions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Robert J. Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Nathalie Hampel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377München, Germany
| |
Collapse
|
3
|
Clarke J, Seo Y, Gagné MR, Bender TA. Achieving Site-Selective C–O Bond Reduction for High-Value Cellulosic Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua Clarke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Youngran Seo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R. Gagné
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Trandon A. Bender
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
4
|
Lowe JM, Seo Y, Clarke JJ, Gagné MR. Precyclization Conformer Profiles of -SiR 3+- and -Bcat +-Activated Linear Si-Protected Hexitols Explain Condensative Cyclization Selectivities. J Org Chem 2022; 87:12065-12071. [PMID: 36053236 DOI: 10.1021/acs.joc.2c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The condensative cyclization of sp3 C-O bonds in per-silylated hexitols is investigated by computation. Conformer searches using the Monte Carlo algorithm, followed by successively higher levels of theory (MMFF, PM3, and B3LYP), of -SiR3+- and -Bcat+-activated substrates lead to structures primed for intramolecular chemistry. Silane activation features O4 to C1 attack, while borane activation suggests boronium ions that activate O5 to C2 reactivity. This, in conjunction with Boltzmann population analysis, parallels reported reactivity for sorbitol, mannitol, and galactitol. Calculations using the meta-hybrid M06-2X functional additionally provide free-energy profiles for each cyclization event. In most of the cases presented, precyclization conformers that position a nucleophilic oxygen less than 3.0 Å from the C-O leaving group correlate to efficient experimental reactivities. Two examples of galactitol containing bridging silyl groups are analyzed computationally, and the experimental outcomes match predictions. The computational regime presented is a step closer to providing predictive power for the reduction of per-functionalized molecules.
Collapse
Affiliation(s)
- Jared M Lowe
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Youngran Seo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joshua J Clarke
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R Gagné
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Martin JL, Sati GC, Malakar T, Hatt J, Zimmerman PM, Montgomery J. Glycosyl Exchange of Unactivated Glycosidic Bonds: Suppressing or Embracing Side Reactivity in Catalytic Glycosylations. J Org Chem 2022; 87:5817-5826. [PMID: 35413188 PMCID: PMC9173671 DOI: 10.1021/acs.joc.2c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While developing boron-catalyzed glycosylations using glycosyl fluoride donors and trialkylsilyl ether acceptors, competing pathways involving productive glycosylation or glycosyl exchange were observed. Experimental and computational mechanistic studies suggest a novel mode of reactivity where a dioxolenium ion is a key intermediate that promotes both pathways through addition to either a silyl ether or to the acetal of an existing glycosidic linkage. Modifications in catalyst structure enable either pathway to be favored, and with this understanding, improved multicomponent iterative couplings and glycosyl exchange processes were demonstrated.
Collapse
Affiliation(s)
- Joshua L Martin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Girish C Sati
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Tanmay Malakar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jessica Hatt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
6
|
Seo Y, Lowe JM, Romano N, Gagné MR. Switching between X-Pyrano-, X-Furano-, and Anhydro- X-pyranoside Synthesis (X = C, N) under Lewis acid Catalyzed Conditions. Org Lett 2021; 23:5636-5640. [PMID: 34259527 DOI: 10.1021/acs.orglett.1c01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of C-glycosides can be obtained from the fluoroarylborane (B(C6F5)3) or silylium (R3Si+) catalyzed functionalization of 1-MeO- and per-TMS-sugars with TMS-X reagents. A one-step functionalization with a change as simple as the addition order and/or Lewis acid and TMS-X enables one to afford chiral synthons that are common (C-pyranosides), have few viable synthetic methods (C-furanosides), or are virtually unknown (anhydro-C-pyranosides), which mechanistically arise from whether a direct substitution, isomerization/substitution, or substitution/isomerization occurs, respectively.
Collapse
Affiliation(s)
- Youngran Seo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jared M Lowe
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Neyen Romano
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R Gagné
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Klare HFT, Albers L, Süsse L, Keess S, Müller T, Oestreich M. Silylium Ions: From Elusive Reactive Intermediates to Potent Catalysts. Chem Rev 2021; 121:5889-5985. [PMID: 33861564 DOI: 10.1021/acs.chemrev.0c00855] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The history of silyl cations has all the makings of a drama but with a happy ending. Being considered reactive intermediates impossible to isolate in the condensed phase for decades, their actual characterization in solution and later in solid state did only fuel the discussion about their existence and initially created a lot of controversy. This perception has completely changed today, and silyl cations and their donor-stabilized congeners are now widely accepted compounds with promising use in synthetic chemistry. This review provides a comprehensive summary of the fundamental facts and principles of the chemistry of silyl cations, including reliable ways of their preparation as well as their physical and chemical properties. The striking features of silyl cations are their enormous electrophilicity and as such reactivity as super Lewis acids as well as fluorophilicity. Known applications rely on silyl cations as reactants, stoichiometric reagents, and promoters where the reaction success is based on their steady regeneration over the course of the reaction. Silyl cations can even be discrete catalysts, thereby opening the next chapter of their way into the toolbox of synthetic methodology.
Collapse
Affiliation(s)
- Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Lena Albers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Lars Süsse
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Sebastian Keess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| |
Collapse
|
8
|
Holmstedt S, George L, Koivuporras A, Valkonen A, Candeias NR. Deoxygenative Divergent Synthesis: En Route to Quinic Acid Chirons. Org Lett 2020; 22:8370-8375. [PMID: 33002357 DOI: 10.1021/acs.orglett.0c02995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The installation of vicinal mesylate and silyl ether groups in a quinic acid derivative generates a system prone for stereoselective borane-catalyzed hydrosilylation through a siloxonium intermediate. The diversification of the reaction conditions allowed the construction of different defunctionalized fragments foreseen as useful synthetic fragments. The selectivity of the hydrosilylation was rationalized on the basis of deuteration experiments and computational studies.
Collapse
Affiliation(s)
- Suvi Holmstedt
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Lijo George
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Alisa Koivuporras
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Arto Valkonen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Culver DB, Venkatesh A, Huynh W, Rossini AJ, Conley MP. Al(OR F) 3 (R F = C(CF 3) 3) activated silica: a well-defined weakly coordinating surface anion. Chem Sci 2019; 11:1510-1517. [PMID: 34084380 PMCID: PMC8148071 DOI: 10.1039/c9sc05904k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Weakly Coordinating Anions (WCAs) containing electron deficient delocalized anionic fragments that are reasonably inert allow for the isolation of strong electrophiles. Perfluorinated borates, perfluorinated aluminum alkoxides, and halogenated carborane anions are a few families of WCAs that are commonly used in synthesis. Application of similar design strategies to oxide surfaces is challenging. This paper describes the reaction of Al(ORF)3*PhF (RF = C(CF3)3) with silica partially dehydroxylated at 700 °C (SiO2-700) to form the bridging silanol [triple bond, length as m-dash]Si-OH⋯Al(ORF)3 (1). DFT calculations using small clusters to model 1 show that the gas phase acidity (GPA) of the bridging silanol is 43.2 kcal mol-1 lower than the GPA of H2SO4, but higher than the strongest carborane acids, suggesting that deprotonated 1 would be a WCA. Reactions of 1 with NOct3 show that 1 forms weaker ion-pairs than classical WCAs, but stronger ion-pairs than carborane or borate anions. Though 1 forms stronger ion-pairs than these state-of-the-art WCAs, 1 reacts with alkylsilanes to form silylium type surface species. To the best of our knowledge, this is the first example of a silylium supported on derivatized silica.
Collapse
Affiliation(s)
- Damien B Culver
- Department of Chemistry, University of California Riverside California 92521 USA
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Winn Huynh
- Department of Chemistry, University of California Riverside California 92521 USA
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Matthew P Conley
- Department of Chemistry, University of California Riverside California 92521 USA
| |
Collapse
|
10
|
Künzler S, Rathjen S, Merk A, Schmidtmann M, Müller T. An Experimental Acidity Scale for Intramolecularly Stabilized Silyl Lewis Acids. Chemistry 2019; 25:15123-15130. [PMID: 31469201 PMCID: PMC6899571 DOI: 10.1002/chem.201903241] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 01/15/2023]
Abstract
A new NMR-based Lewis acidity scale is suggested and its application is demonstrated for a family of silyl Lewis acids. The reaction of p-fluorobenzonitrile (FBN) with silyl cations that are internally stabilized by interaction with a remote chalcogenyl or halogen donor yields silylated nitrilium ions with the silicon atom in a trigonal bipyramidal coordination environment. The 19 F NMR chemical shifts and the 1 J(CF) coupling constants of these nitrilium ions vary in a predictable manner with the donor capability of the stabilizing group. The spectroscopic parameters are suitable probes for scaling the acidity of Lewis acids. These new probes allow for the discrimination between very similar Lewis acids, which is not possible with conventional NMR tests, such as the well-established Gutmann-Beckett method.
Collapse
Affiliation(s)
- Sandra Künzler
- Carl von Ossietzky Universität OldenburgCarl von Ossietzky-Str. 9–1126129OldenburgGermany, European Union
| | - Saskia Rathjen
- Carl von Ossietzky Universität OldenburgCarl von Ossietzky-Str. 9–1126129OldenburgGermany, European Union
| | - Anastasia Merk
- Carl von Ossietzky Universität OldenburgCarl von Ossietzky-Str. 9–1126129OldenburgGermany, European Union
| | - Marc Schmidtmann
- Carl von Ossietzky Universität OldenburgCarl von Ossietzky-Str. 9–1126129OldenburgGermany, European Union
| | - Thomas Müller
- Carl von Ossietzky Universität OldenburgCarl von Ossietzky-Str. 9–1126129OldenburgGermany, European Union
| |
Collapse
|
11
|
Seo Y, Lowe JM, Gagné MR. Controlling Sugar Deoxygenation Products from Biomass by Choice of Fluoroarylborane Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Youngran Seo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jared M. Lowe
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R. Gagné
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Lowe JM, Seo Y, Gagné MR. Boron-Catalyzed Site-Selective Reduction of Carbohydrate Derivatives with Catecholborane. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jared M. Lowe
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Youngran Seo
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R. Gagné
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|