1
|
Liu X, Huang S, Li G, Chen X, Peng J. Construction of molecular compartments on the HKUST-1 for space-limited enhancement of visible light CO 2 reduction. J Colloid Interface Sci 2025; 690:137347. [PMID: 40117877 DOI: 10.1016/j.jcis.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
The construction of host structures with well-defined compartments that dispersedly accommodate catalytically active substances is a promising approach to significantly improve catalytic activity. Herein, we created separated compartments on the copper-based metal-organic framework (HKUST-1) by a mixed solvent-assisted approach and dispersedly confined tungstophosphoric acid hydrate (H3PW12O40) in its inner cavity structure to form the photocatalyst H3PW12O40@HKUST-1 with a novel "molecular compartment" structure. This structure not only enables the photosensitizer to be enriched in the interior of the "molecular compartment" structure to accelerate the photogenerated charge transfer but also creates a synergistic interaction between the H3PW12O40 units and the catalytic metal clusters in the main structure of the HKUST-1 to facilitate the photocatalytic CO2 reduction. H3PW12O40@HKUST-1 exhibits high CO2 to CO (415 μmol·g-1·h-1) and CH4 (37 μmol·g-1·h-1) conversion, corresponding to 73.9 % and 26.1 % selectivities for CO and CH4. This work provides a novel approach for the rational design of efficient catalysts for CO2 reduction.
Collapse
Affiliation(s)
- Xianjie Liu
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China; College of Optoelectronic Engineering, Chongqing University, Chongqing 401123, China
| | - Sijun Huang
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China.
| | - Genrong Li
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China.
| | - Xin Chen
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Jianchun Peng
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| |
Collapse
|
2
|
Yan Q, Chen Y, Tang B, Wu X, Zhou H, Wang H, Li H, Lu L, Zhang H, Yang S, Xu C, Ma T. Precise Engineering of Asymmetric Tri-Active Sites by Symbiotic Strategy for Photocontrolled Directional Reforming of Biomass. Angew Chem Int Ed Engl 2025:e202505718. [PMID: 40263668 DOI: 10.1002/anie.202505718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Sunlight-driven production of high-value chemicals from renewable resources represents a pivotal driver toward achieving sustainable energy supply. However, fundamental barriers include inadequate use of light energy and insufficient understanding of reactive oxygen species (ROS) regulating mechanisms in photocatalytic processes. To address this, a novel symbiotic strategy for the design of Cux/TiO2 single-atom catalysts (SACs) supported by density functional theory (DFT) calculations was proposed. The developed catalyst achieved nearly 100% conversion and selectivity for the directional photooxidative transformation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) or 2,5-furandicarboxylic acid (FDCA) under both vis-light and UV-vis light conditions. Importantly, compared to previous works, this catalyst exhibited the highest photooxidation activity reported to date while effectively suppressing the over-oxidation of HMF to CO2. Mechanistic investigations revealed that rational construction of Cu single-atoms (SAs) could effectively create the asymmetric Cu-Ov-Ti structure, which significantly enhanced the activation of O2 and HMF, facilitating generation of oxygen vacancy (Ov) and Ti3+. Furthermore, Cu SAs served as hole (h+) extractors in the photooxidation process, promoting rapid charge carrier transfer and ROS formation. The applicability of this developed strategy was further demonstrated for photooxidative conversion of various bio-feedstocks, including HMF and alcoholic substrates, indicating its great potential for harnessing light energy for sustainable valorization of biomass into high-value chemicals.
Collapse
Affiliation(s)
- Qiong Yan
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Xu Wu
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhou
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Wang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Lanlu Lu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Heng Zhang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Fernandes de Almeida V, Navalón S, Dhakshinamoorthy A, Garcia H. Revisiting Photocatalytic CO 2 Reduction to Methanol: A Perspective Focusing on Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202424537. [PMID: 39981959 DOI: 10.1002/anie.202424537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Photocatalytic CO2 reduction to CH3OH, particularly with metal-organic frameworks (MOFs) as photocatalysts, has garnered significant attention due to its long-term potential to harness sunlight for converting CO2 into a valuable fuel and chemical feedstock. Numerous studies in the literature report the successful formation of CH3OH from photocatalytic CO2 reduction, sometimes supplemented with sacrificial agents, with claims substantiated by isotopic labelling measurements. However, in this Scientific Perspective, we note that much of the existing evidence has not been obtained under sufficiently rigorous experimental conditions to conclusively confirm the formation of a highly reactive product like CH3OH from the chemically stable CO2 molecule. This Scientific Perspective outlines best practices designed to provide robust evidence for CH3OH formation in photocatalytic processes, which could be instrumental in clarifying the state-of-the-art and accelerating the development of this technology toward practical applications.
Collapse
Affiliation(s)
- Vitor Fernandes de Almeida
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Hermenegildo Garcia
- Instituto de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Yin G, Shen H, Gong X. Ultrathin Cu-Based Porphyrin Metal-Organic Framework Modified with ZnTe Promotes Highly Selective Photocatalytic CO 2 Reduction to CO. Inorg Chem 2025; 64:6943-6951. [PMID: 40167475 DOI: 10.1021/acs.inorgchem.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) into value-added chemical fuels is an effective strategy to address the fossil fuel crisis and global warming. Herein, a novel p-n junction composed of ZnTe nanoparticles and Cu-TCPP nanosheets was successfully constructed for efficient CO2-to-CO conversion. Structural and spectroscopic characterization confirmed the establishment of the p-n junction, which enhances charge separation and transfer. The ZnTe/Cu-TCPP composite exhibits enhanced photocatalytic CO2 reduction with CO as the primary product (120.53 μmol g-1), achieving 4.8- and 5.9-fold yield improvements over pristine ZnTe and Cu-TCPP, respectively. DFT calculations revealed a significantly enhanced CO2 adsorption energy (-0.549 eV) on the ZnTe/Cu-TCPP heterojunction, promoting the reaction. In situ DRIFTS analysis confirmed the presence of key intermediates (*COOH, *CH3, and *CO), validating their roles in the selective CO2-to-CO conversion pathways. A mechanistic study further elucidated the contribution of each component in the reaction process. Additionally, the ZnTe/Cu-TCPP photocatalyst exhibited excellent stability, demonstrating its potential for sustainable CO2 reduction.
Collapse
Affiliation(s)
- Guilin Yin
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Hui Shen
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Xiu Gong
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| |
Collapse
|
5
|
Zhang J, Duan L, Zhang W, Ma B, Zhang J, Li J, Wang A, Guo P, Zhao D, Ma Y. Crystal-Facet Engineering of Mesoporous CuS Cascade Nanoreactors Enhances Photocatalytic C-C Coupling of CO 2-to-C 2H 4. Angew Chem Int Ed Engl 2025; 64:e202423861. [PMID: 39801469 DOI: 10.1002/anie.202423861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 01/19/2025]
Abstract
Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO2 into valuable C2 products (e.g., C2H4). Herein, hollow mesoporous cube-like CuS nanoreactors (~860 nm) with controlled anisotropic crystal-facets are prepared through an interfacial-confined ion dynamic migration-rearrangement strategy. The regulation of the S2- ion concentration facilitates the modulation of the highly active (110) to (100) crystal-facet ratios from 0.119 to 0.288, and induces the formation of anisotropic crystal-facet heterojunctions. The controllable crystal-facet heterojunctions trigger the directional charge carrier migration, and are accompanied with the formation of tandem S-defect sites (Cu0-S1@S3). Both of them promote the efficient electron-hole pair dissociation and attain asymmetric C-C coupling. The hollow mesoporous CuS nanoreactors with optimized crystal-facet ratio of 0.224 (HMe-CuS-3) deliver a high selectivity of 72.7 % for the photocatalytic reduction of CO2 to acetylene (C2H2). Further constructed Au-(110) and Co3O4-(100) spatially separated cascade nanoreactors (SS-Au@Co3O4-CuS) achieve CO2-C2H4 photoreduction, in which the Co-sites enhance H2O dissociation to provide protons and the protonation of *CO to *COH. The *COH is further captured by Au-sites to accomplish the asymmetric *CO-*COH coupling and subsequent protonation, ensuring a high C2H4 generation rate of 4.11 μmol/g/h with a selectivity as high as 90.6 %.
Collapse
Affiliation(s)
- Jiaming Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Linlin Duan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Bing Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jiangwei Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Jinying Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Aixia Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Peiting Guo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yuzhu Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| |
Collapse
|
6
|
Khan M, Sun X, Zada A, Azizi S, Shah MIA, Khan JA, Ragab AH, Taher MA, Abbas Q, Han C. Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178629. [PMID: 39879952 DOI: 10.1016/j.scitotenv.2025.178629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
The increasing CO2 concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO2 capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO2 emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches. In this review article, we have discussed the effects of increased global temperature on human beings, economy and climate change. Further, we have discussed the photocatalytic conversion of CO2 (PC-CO2) into gaseous and liquid fuels under solar light driven photocatalysis. The adsorption and activation of CO2, its conversion into various intermediates, their stability and selectivity of the final products have been elaborated comprehensively. The conversion mechanisms of CO2 into CO, CH4, alcohol, aldehyde and carboxylic acid have been discussed in detail. The role of defects and exposed facets of photocatalysts, effect of metal and non-metal dopants, and the additive role of co-catalyst on the mechanisms and selectivity of the conversion products have been discussed comprehensively. Finally, future perspective is discussed to highlight the research gap in the PC-CO2. We hope that this article will help to understand the mechanisms of PC-CO2 and will direct researchers to add their role in the reduction of CO2 to control global warming and make life easier on earth in the coming years.
Collapse
Affiliation(s)
- Muhammad Khan
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong Province 518060, China
| | - Xiaohui Sun
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong Province 518060, China.
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa.
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
| | | | - Javed Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ahmed H Ragab
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mostafa A Taher
- Biology Department, Faculty of Science and Arts, King Khalid University, Mohail Assir, 61321, Saudi Arabia
| | - Qumber Abbas
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
7
|
Huang F, Wang F, Liu Y, Guo L. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO 2 to CH 3CH 2COOH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416708. [PMID: 39723696 DOI: 10.1002/adma.202416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The direct photocatalytic conversion of CO2 and H2O into high-value C3 chemicals holds great promise but remains challenging due to the intrinsic difficulty of C1-C1 and C2-C1 coupling processes and the lack of clarity regarding the underlying reaction mechanisms. Here, the design and synthesis of a Cu-ZnS photocatalyst featuring dispersed Cu single atoms are reported. These Cu single atoms are coordinated with S atoms, forming unique Cu-S-Zn active units with tunable charge distributions that interact favorably with surface-adsorbed intermediates. This configuration stabilizes the *COHCO intermediate and facilitates its subsequent coupling with *CO to form *COCOHCO both thermodynamically and kinetically favorable on the Cu-ZnS surface. Notably, multiple critical C3 intermediates, including *COCOHCO, *OCCCO, and *CHCHCO, are identified, providing a clear reaction pathway for CO2 to CH3CH2COOH conversion. The Cu-ZnS photocatalyst achieves a CO2 to CH3CH2COOH conversion rate of 0.45 µmol h-¹ with an electron selectivity of 91.2%. Remarkably, in the presence of triethanolamine, the production rate increases to 16.9 µmol h-¹ with a selectivity of 99.8%. These findings underscore the importance of modulating multicarbon coupling processes to enable the efficient photocatalytic transformation of CO2 into C3 products, paving the way for future advancements in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Fuxia Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Feng Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| |
Collapse
|
8
|
Wang K, Zhang R, Zhou B, Li Q, Zhou M, Shen HM, Wang Q, Xia J, Li H, Yi Q, She Y. Highly selective photocatalytic CO 2 reduction into C 2H 4 enabled by metal-organic framework-derived catalysts with high Cu + content. J Colloid Interface Sci 2025; 677:872-881. [PMID: 39173519 DOI: 10.1016/j.jcis.2024.08.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The highly selective conversion of CO2 into valuable C2H4 is a highly important but particularly challenging reaction. Herein, the metal-organic frameworks MOF-74(Cu) with infinite Cu(II)-O chains and Cu-BTC (BTC=benzene-1,3,5-tricarboxylate) with paddle-wheel binuclear Cu(II) clusters are used as precursors. These MOFs are reduced by NaBH4 to obtain Cu0/Cuδ+-based photocatalysts denoted as R-MOF-74(Cu) and R-Cu-BTC, respectively. Significantly, R-MOF-74(Cu) achieves a high selectivity of 90.2 % for C2H4 with a yield rate of 6.5 μmol g-1 within 5 h due to its high Cu+ content. To the best of our knowledge, this C2H4 product selectivity is a record high among all the photocatalysts reported so far for photocatalytic CO2 reduction. In contrast, R-Cu-BTC only forms CO as a product with a cumulative yield of 0.7 μmol g-1 within 5 h. Photoelectrochemical characterization and electron paramagnetic resonance results show that R-MOF-74(Cu) has low interfacial transfer resistance, high photogenerated electron separation efficiency, and excellent CO2 activation and water oxidation performance. In addition, in situ Fourier transform infrared spectroscopy is used to determine the possible reaction pathway from CO2 to C2H4 over R-MOF-74(Cu). This work demonstrates the great potential of MOF-derived photocatalysts for the conversion of CO2 into C2H4 and provides guidance for future photocatalyst development.
Collapse
Affiliation(s)
- Keke Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Ruichao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolin Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengmeng Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Min Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qun Yi
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430070, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Tian L, Feng Y, Chen X, Wang H, Lin J, Shi W, Wei L, Xia W, Sun Q, Yang Y, Li Y. Highly stable 3D cellulose micro-rolls support TiO 2 for efficient photocatalysis degradation experiment under weak light conditions. Int J Biol Macromol 2025; 286:138377. [PMID: 39643187 DOI: 10.1016/j.ijbiomac.2024.138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Immobilization of nanometer-scale photocatalysts on a 3D polymeric substrate could play several complementary roles in photocatalysis, such as providing mechanical stability, facilitating easy recycling after usage, enhancing adsorption capability, and improving light harvesting properties through multiple reflections. To achieve stable and efficient photocatalysis under weak light conditions, 3D cellulose micro-rolls were introduced into the photocatalytic composites. Here, the formation of micro-rolls is attributed to the presence of titania nanoparticles, which generate uneven shrinkage stress in cellulose during the freeze-drying process, thereby inducing the cellulose to curl up. The dramatic structural transformation of the 3D micro-rolls increased the Brunauer-Emmett-Teller (BET) surface area of the sample. The 3D micro-roll structure is more favorable for photocatalysis due to its efficient mass transfer and exposed reactive sites, laying the foundation for enhanced adsorption capacity and photocatalytic reactions. The adsorption experiments suggested that the inner space of the micro-rolls provides a sufficient reaction zone, enabling fast mass transfer of molecules and easy access to the active sites. The samples could stand a high strain of 80 % and retain 96 % of the original maximum stress after 200 cyclic compressions, indicating excellent long-term stability. In addition, the photocatalytic tests show that with the help of micro-rolls, TiO2 can convert and utilize weak light that would otherwise be unused, and the catalysate exhibits almost no toxicity towards Escherichia coli.
Collapse
Affiliation(s)
- Linping Tian
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Yingxuan Feng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Xinjie Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jian Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Weichen Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Lin Wei
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Wenjie Xia
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yushan Yang
- College of Material and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan Province 650224, PR China.
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| |
Collapse
|
10
|
Loumissi T, Ishii R, Hara K, Oyumi T, Abe I, Li C, Zhang H, Hirayama R, Niki K, Itoi T, Izumi Y. Exchange of CO 2 with CO as Reactant Switches Selectivity in Photoreduction on Co-ZrO 2 from C 1-3 Paraffin to Small Olefins. Angew Chem Int Ed Engl 2024; 63:e202412090. [PMID: 39292412 PMCID: PMC11627130 DOI: 10.1002/anie.202412090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Photocatalytic reduction of CO2 into C2,3 hydrocarbons completes a C-neutral cycle. The reaction pathways of photocatalytic generation of C2,3 paraffin and C2H4 from CO2 are mostly unclear. Herein, a Co0-ZrO2 photocatalyst converted CO2 into C1-3 paraffin, while selectively converting CO into C2H4 and C3H6 (6.0±0.6 μmol h-1 gcat -1, 70 mol %) only under UV/Visible light. The photocatalytic cycle was conducted under 13CO and H2, with subsequent evacuation and flushing with CO. This iterative process led to an increase in the population of C2H4 and C3H6 up to 61-87 mol %, attributed to the accumulation of CH2 species at the interface between Co0 nanoparticles and the ZrO2 surface. CO2 adsorbed onto the O vacancies of the ZrO2 surface, with resulting COH species undergoing hydrogenation on the Co0 surface to yield C1-3 paraffin using either H2 or H2O (g, l) as the reductant. In contrast, CO adsorbed on the Co0 surface, converted to HCOH species, and then split into CH and OH species at the Co and O vacancy sites on ZrO2, respectively. This comprehensive study elucidates intricate photocatalytic pathways governing the transformation of CO2 into paraffin and CO to olefins.
Collapse
Affiliation(s)
- Tarik Loumissi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Rento Ishii
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Keisuke Hara
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Tomoki Oyumi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Ikki Abe
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Chongxu Li
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Hongwei Zhang
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Rumiko Hirayama
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Kaori Niki
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Takaomi Itoi
- Department of Mechanical EngineeringGraduate School of EngineeringChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Yasuo Izumi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| |
Collapse
|
11
|
Pan R, Wang Q, Zhao Y, Feng Z, Xu Y, Wang Z, Li Y, Zhang X, Zhang H, Liu J, Gu XK, Zhang J, Weng Y, Zhang J. Bioinspired catalytic pocket promotes CO 2-to-ethanol photoconversion on colloidal quantum wells. SCIENCE ADVANCES 2024; 10:eadq2791. [PMID: 39565844 PMCID: PMC11578185 DOI: 10.1126/sciadv.adq2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO2-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO2-to-ethanol photoreduction efficiency (5.5 millimoles gram-1 hour-1 in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH2…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO2 via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO2 reduction.
Collapse
Affiliation(s)
- Rongrong Pan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yan Zhao
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zhendong Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuan Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yapeng Li
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiuming Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Haoqing Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yuxiang Weng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024; 124:12006-12085. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Liu M, Jiang G, Zhao Z, Shi Y, Zhao S. Construction of oxygen-rich vacancies and heterojunctions coupled with different morphologies of CeO 2/mesoporous TiO 2 framework structures for efficient photocatalytic CO 2 reduction performance. Dalton Trans 2024; 53:17963-17975. [PMID: 39432295 DOI: 10.1039/d4dt02014f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The coupling of efficient adsorption and effective charge separation with photocatalysts enables the use of sunlight for photocatalytic reduction of carbon dioxide (CO2) into high-value-added products. In this work, we used a straightforward solid-phase hydrothermal technique to build an oxygen-vacancy-rich, heterogeneous interface-coupled CeO2/mesoporous TiO2 framework structural system. The heterogeneous structure was constructed by introducing oxygen-vacancy-rich CeO2 into mesoporous TiO2, which may encourage the transfer of charges and increase the number of active sites and CO2 adsorption by utilizing the coupled synergistic effect of oxygen vacancies and heterogeneous interfaces, and it can also regulate the pathway of the photocatalytic reaction and the selectivity of the products. The composite of CeO2 with different morphologies and oxygen-rich vacancies regulated the system's active sites and degree of exposure and enhanced photocatalytic CO2 reduction. The highest CO yield of 6.25 mmol gcat-1 was obtained by use of the rod CeO2/mesoporous TiO2 composite photocatalyst (R-CeO2/TiO2), and this yield was 1.6 times higher than that of pure mesoporous TiO2 and 1.84 times higher than that of pure R-CeO2. Also, the product selectivity increased by 4.3% compared to a single sample. Combining the Mott-Schottky plot results and the energy-barrier perspective to further explore the photocatalytic reduction of the CO2 reaction mechanism as well as the product selectivity, it appears that the construction of the composite system of oxygen-rich vacancies and heterogeneous boundary-coupled photocatalysis provides a practical pathway for the photocatalytic reaction, which may contribute to the photocatalytic reaction's high efficiency and yield selectivity.
Collapse
Affiliation(s)
- Morigejile Liu
- School of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Guangmei Jiang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, China
| | - Ying Shi
- School of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Siqin Zhao
- School of Chemistry and Environmental Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
- Key Laboratory of Environmental Chemistry in the Inner Mongolia Autonomous Region, China
| |
Collapse
|
14
|
Liu H, Sun B, Li Z, Xiao D, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Plasmon-Driven Highly Selective CO 2 Photoreduction to C 2H 4 on Ionic Liquid-Mediated Copper Nanowires. Angew Chem Int Ed Engl 2024; 63:e202410596. [PMID: 39031951 DOI: 10.1002/anie.202410596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Selective CO2 photoreduction to value-added multi-carbon (C2+) feedstocks, such as C2H4, holds great promise in direct solar-to-chemical conversion for a carbon-neutral future. Nevertheless, the performance is largely inhibited by the high energy barrier of C-C coupling process, thereby leading to C2+ products with low selectivity. Here we report that through facile surface immobilization of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid, plasmonic Cu nanowires could enable highly selective CO2 photoreduction to C2H4 product. At an optimal condition, the resultant plasmonic photocatalyst exhibits C2H4 production with selectivity up to 96.7 % under 450 nm monochromatic light irradiation, greatly surpassing its pristine Cu counterpart. Combined in situ spectroscopies and computational calculations unravel that the addition of EMIM-BF4 ionic liquid modulates the local electronic structure of Cu, resulting in its enhanced adsorption strength of *CO intermediate and significantly reduced energy barrier of C-C coupling process. This work paves new path for Cu surface plasmons in selective artificial photosynthesis to targeted products.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
15
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
16
|
Xie Z, Li L, Gong S, Xu S, Luo H, Li D, Chen H, Chen M, Liu K, Shi W, Xu D, Lei Y. Clustering-Resistant Cu Single Atoms on Porous Au Nanoparticles Supported by TiO 2 for Sustainable Photoconversion of CO 2 into CH 4. Angew Chem Int Ed Engl 2024; 63:e202410250. [PMID: 38887820 DOI: 10.1002/anie.202410250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Photocatalysts based on single atoms (SAs) modification can lead to unprecedented reactivity with recent advances. However, the deactivation of SAs-modified photocatalysts remains a critical challenge in the field of photocatalytic CO2 reduction. In this study, we unveil the detrimental effect of CO intermediates on Cu single atoms (Cu-SAs) during photocatalytic CO2 reduction, leading to clustering and deactivation on TiO2. To address this, we developed a novel Cu-SAs anchored on Au porous nanoparticles (CuAu-SAPNPs-TiO2) via a vectored etching approach. This system not only enhances CH4 production with a rate of 748.8 μmol ⋅ g-1 ⋅ h-1 and 93.1 % selectivity but also mitigates Cu-SAs clustering, maintaining stability over 7 days. This sustained high performance, despite the exceptionally high efficiency and selectivity in CH4 production, highlights the CuAu-SAPNPs-TiO2 overarching superior photocatalytic properties. Consequently, this work underscores the potential of tailored SAs-based systems for efficient and durable CO2 reduction by reshaping surface adsorption dynamics and optimizing the thermodynamic behavior of the SAs.
Collapse
Affiliation(s)
- Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongyun Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongjing Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kuili Liu
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong Lei
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
- Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| |
Collapse
|
17
|
Cui Y, Labidi A, Liang X, Huang X, Wang J, Li X, Dong Q, Zhang X, Othman SI, Allam AA, Bahnemann DW, Wang C. Pivotal Impact Factors in Photocatalytic Reduction of CO 2 to Value-Added C 1 and C 2 Products. CHEMSUSCHEM 2024; 17:e202400551. [PMID: 38618906 DOI: 10.1002/cssc.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Over the past decades, CO2 greenhouse emission has been considerably increased, causing global warming and climate change. Indeed, converting CO2 into valuable chemicals and fuels is a desired option to resolve issues caused by its continuous emission into the atmosphere. Nevertheless, CO2 conversion has been hampered by the ultrahigh dissociation energy of C=O bonds, which makes it thermodynamically and kinetically challenging. From this prospect, photocatalytic approaches appear promising for CO2 reduction in terms of their efficiency compared to other traditional technologies. Thus, many efforts have been made in the designing of photocatalysts with asymmetric sites and oxygen vacancies, which can break the charge distribution balance of CO2 molecule, reduce hydrogenation energy barrier and accelerate CO2 conversion into chemicals and fuels. Here, we review the recent advances in CO2 hydrogenation to C1 and C2 products utilizing photocatalysis processes. We also pin down the key factors or parameters influencing the generation of C2 products during CO2 hydrogenation. In addition, the current status of CO2 reduction is summarized, projecting the future direction for CO2 conversion by photocatalysis processes.
Collapse
Affiliation(s)
- Yongqian Cui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xinxin Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xin Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Jingyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Ximing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Qibing Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xiaolong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Detlef W Bahnemann
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
- Institute for Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| |
Collapse
|
18
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Wang Y, Sun Y, Liu X, Dong F. Predicting and understanding photocatalytic CO 2 reduction reaction with IR spectroscopy-based interpretable machine learning framework. PNAS NEXUS 2024; 3:pgae339. [PMID: 39262856 PMCID: PMC11389833 DOI: 10.1093/pnasnexus/pgae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
The highly selective conversion of carbon dioxide into value-added products is extremely valuable. However, even with the aid of in situ characterization techniques, it remains challenging to directly correlate extensive spectral data carrying microscopic information with macroscopic performance. Herein, we adopted advanced machine learning (ML) approaches to establish an accurate and interpretable relationship between vibrational spectral signals and catalytic performances to uncover hidden physical insights. Focusing on photocatalytic CO2 reduction, our model is shown to effectively and accurately predict the CO production activity and selectivity based solely on the infrared (IR) spectral signals, the generalizability of which is additionally demonstrated with a new Bi5O7I photocatalytic system. More importantly, further model analysis has revealed a novel strategy to steer CO selectivity, the physical sanity of which is verified by a detailed reaction mechanism analysis. This work demonstrates the tremendous potential of machine-learned spectroscopy to efficiently identify reaction control factors, which can further lay the foundation for targeted optimization and reverse design.
Collapse
Affiliation(s)
- Yanxia Wang
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, China
| | - Xinyan Liu
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, China
| |
Collapse
|
20
|
Liu Q, Bai C, Zhu C, Guo W, Li G, Guo S, Kripalani D, Zhou K, Chen R. M/BiOCl-(M = Pt, Pd, and Au) Boosted Selective Photocatalytic CO 2 Reduction to C 2 Hydrocarbons via *CHO Intermediate Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400934. [PMID: 39022985 PMCID: PMC11425252 DOI: 10.1002/advs.202400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Selective CO2 photoreduction to C2 hydrocarbons is significant but limited by the inadequate adsorption strength of the reaction intermediates and low efficiency of proton transfer. Herein, an ameliorative *CO adsorption and H2O activation strategy is realized via decorating bismuth oxychloride (BiOCl) nanostructures with different metal (Pt, Pd, and Au) species. Experimental and theoretical calculation results reveal that distinct *CO binding energies and *H acquisition abilities of the metal cocatalysts mediate the CO2 reduction activity and hydrocarbon selectivity. The relatively moderate *CO adsorption and *H supply over Pd/BiOCl endows it with the lowest free energy to generate *CHO, leading to its highest activity of hydrocarbon production. Specifically, the Pt cocatalyst can efficiently participate in H2O dissociation to deliver more *H for facilitating the protonation of the *CHO and *CHOH, thereby favoring CH4 production with 76.51% selectivity. A lower *H supply over Pd/BiOCl and Au/BiOCl results in a large energy barrier for *CHO or *CHOH protonation and thus a more thermodynamically favored OC─CHO coupling pathway, which endows them with vastly increased C2 hydrocarbon selectivity of 81.21% and 92.81%, respectively. The understanding of efficient C2 hydrocarbon production in this study sheds light on how materials can be engineered for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Qiong Liu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyDonghu New & High Technology Development ZoneWuhan430205P. R. China
| | - Chengbo Bai
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Chengxin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Wenjin Guo
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Sheng Guo
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Devesh Kripalani
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Nanyang Environment and Water Research InstituteNanyang Technological University1 CleanTech LoopSingapore637141Singapore
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| |
Collapse
|
21
|
Li J, Du M, Wu Z, Zhang X, Xue W, Huang H, Zhong C. Engineering Single-Atom Sites with the Irving-Williams Series for the Simultaneous Co-photocatalytic CO 2 Reduction and CH 3CHO Oxidation. Angew Chem Int Ed Engl 2024; 63:e202407975. [PMID: 38818660 DOI: 10.1002/anie.202407975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The bonding effects between 3d transition-metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition-metal atoms of the spontaneous geometrical distortions, that is the Jahn-Teller effect, can alter CFSE, thereby leading to the Irving-Williams series. However, engineering single-atom sites (SASs) using the Irving-Williams series as an ideal guideline has not been reported to date. Herein, alkynyl-linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving-Williams series was employed to accurately predict the bonding effects between 3d transition-metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu-SASs/CPFs exhibits higher stability and faster charge-transfer efficiency, far surpassing other metal-SASs/CPFs. As expected, Cu-SASs/CPFs demonstrates a high photoreduction of CO2-to-CO activity (~30.3 μmol ⋅ g-1 ⋅ h-1) and an exceptional photooxidation of CH3CHO-to-CH3COOH activity (~24.7 μmol ⋅ g-1 ⋅ h-1). Interestingly, the generated *O2 - is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving-Williams to regulate the catalytic performances.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Minghao Du
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhenfa Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xinru Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
22
|
Xie Z, Xu S, Li L, Gong S, Wu X, Xu D, Mao B, Zhou T, Chen M, Wang X, Shi W, Song S. Well-defined diatomic catalysis for photosynthesis of C 2H 4 from CO 2. Nat Commun 2024; 15:2422. [PMID: 38499562 PMCID: PMC10948895 DOI: 10.1038/s41467-024-46745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.
Collapse
Affiliation(s)
- Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaojie Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
23
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
24
|
Ren C, Li Q, Ling C, Wang J. Mechanism-Guided Design of Photocatalysts for CO 2 Reduction toward Multicarbon Products. J Am Chem Soc 2023; 145:28276-28283. [PMID: 38095164 DOI: 10.1021/jacs.3c11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photocatalytic reduction of CO2 to high value-added multicarbon (C2+) products is an important way to achieve sustainable production of green energy but limited by the low efficiency of catalysts. One fundamental issue lies in the high complexity of catalyst structure and reaction process, making the rational catalyst design and targeted performance optimization a grand challenge. Herein, we performed a mechanism-guided design of photocatalysts for CO2 reduction by using the experimentally reported Cu doped TiO2 (Cu-TiO2) with high C3H8 selectivity and well-defined structure as the prototype. Our mechanistic study highlights three key factors for C3H8 formation, i.e., formation of double O vacancies (Vdi-O) for selectivity, C-C coupling for activity, and Vdi-O recovery for durability. More importantly, Vdi-O formation/recovery and C-C coupling are negatively correlated, indicating that ideal candidates should achieve a balance between oxygen vacancy (VO) formation and C-C coupling. On this basis, TiO2 with the doping of two adjacent Cu atoms (Cu-Cu-TiO2) was designed with enhanced performance for CO2 photoreduction toward C3H8. Furthermore, a simple descriptor (Nμ, "effective d electron number") based on inherent atomic properties was constructed to uncover the underlying causes of the performance variation of different systems. These results provide new insights into the "structure-performance" relation of metal oxide-based photocatalysts, thus offering useful strategies for the rational design of excellent catalysts for CO2 photoreduction.
Collapse
Affiliation(s)
- Chunjin Ren
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| |
Collapse
|
25
|
Xie W, Liu Y, Zhang X, Yan H, Liu XH, Zhang X, Zhao Q, Huang H. Asymmetric Cu-N-La Species Enabling Atomic-Level Donor-Acceptor Structure and Favored Reaction Thermodynamics for Selective CO 2 Photoreduction to CH 4. Angew Chem Int Ed Engl 2023:e202314384. [PMID: 38100253 DOI: 10.1002/anie.202314384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023]
Abstract
Photocatalytic CO2 reduction into ideal hydrocarbon fuels, such as CH4 , is a sluggish kinetic process involving adsorption of multiple intermediates and multi-electron steps. Achieving high CH4 activity and selectivity therefore remains a great challenge, which largely depends on the efficiency of photogenerated charge separation and transfer as well as the intermediate energy levels in CO2 reduction. Herein, we construct La and Cu dual-atom anchored carbon nitride (LaCu/CN), with La-N4 and Cu-N3 coordination bonds connected by Cu-N-La bridges. The asymmetric Cu-N-La species enables the establishment of an atomic-level donor-acceptor structure, which allows the migration of electrons from La atoms to the reactive Cu atom sites. Simultaneously, intermediates during CO2 reduction on LaCu/CN demonstrate thermodynamically more favorable process for CH4 formation based on theoretical calculations. Eventually, LaCu/CN exhibits a high selectivity (91.6 %) for CH4 formation with a yield of 125.8 μmol g-1 , over ten times of that for pristine CN. This work presents a strategy for designing multi-functional dual-atom based photocatalysts.
Collapse
Affiliation(s)
- Wenke Xie
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yushen Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xing Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Huijuan Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Xuan-He Liu
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
26
|
Xiong W, Dong Y, Pan A. Fabricating a type II heterojunction by growing lead-free perovskite Cs 2AgBiBr 6in situ on graphite-like g-C 3N 4 nanosheets for enhanced photocatalytic CO 2 reduction. NANOSCALE 2023; 15:15619-15625. [PMID: 37712856 DOI: 10.1039/d3nr04152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Perovskite-based photocatalysts have received significant attention for converting CO2 into fuels, such as CO, CH4 or long alkyl chains. However, the use of these catalysts is plagued by several limitations, such as poor stability, lead toxicity, and inadequate conversion efficiency due to the rapid recombination of carriers. Herein, a g-C3N4@Cs2AgBiBr6 (CABB) type II heterojunction photocatalyst has been prepared by growing lead-free CABB nanocrystals (10-14 nm) on the graphite-like carbon nitride (g-C3N4) nanosheet using the in situ crystallization method. The resulting nanocomposite, g-C3N4@CABB, demonstrated an efficient charge transfer pathway via a typical type II heterojunction. With formation rates of 10.30 μmol g-1 h-1 for CO and 0.88 μmol g-1 h-1 for CH4 under visible light irradiation, the nanocomposite exhibited enhanced photocatalytic efficiency in CO2 reduction compared to CABB and g-C3N4. The improved photocatalytic performance of the g-C3N4@CABB nanocomposite was attributed to the fabricated type II heterojunction, which boosted the interfacial charge transfer from g-C3N4 to CABB. This work will inspire the design of heterojunction-based photocatalysts and increase the fundamental understanding of perovskite-based catalysts in the CO2 photoreduction process.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd, Nanjing 210023, China.
| | - Yuehong Dong
- State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd, Nanjing 210023, China.
| | - Aizhao Pan
- State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd, Nanjing 210023, China.
- School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China
| |
Collapse
|
27
|
Yang Y, Zhang HY, Wang Y, Shao LH, Fang L, Dong H, Lu M, Dong LZ, Lan YQ, Zhang FM. Integrating Enrichment, Reduction, and Oxidation Sites in One System for Artificial Photosynthetic Diluted CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304170. [PMID: 37363880 DOI: 10.1002/adma.202304170] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Artificial photosynthetic diluted CO2 reduction directly driven by natural sunlight is a challenging, but promising way to realize carbon-resources recycling utilization. Herein, a three-in-one photocatalytic system of CO2 enrichment, CO2 reduction and H2 O oxidation sites is designed for diluted CO2 reduction. A Zn-Salen-based covalent organic framework (Zn-S-COF) with oxidation and reductive sites is synthesized; then, ionic liquids (ILs) are loaded into the pores. As a result, [Emim]BF4 @Zn-S-COF shows a visible-light-driven CO2 -to-CO conversion rate of 105.88 µmol g-1 h-1 under diluted CO2 (15%) atmosphere, even superior than most photocatalysts in high concentrations CO2 . Moreover, natural sunlight driven diluted CO2 reduction rate also reaches 126.51 µmol g-1 in 5 h. Further experiments and theoretical calculations reveal that the triazine ring in the Zn-S-COF promotes the activity of H2 O oxidation and CO2 reduction sites, and the loaded ILs provide an enriched CO2 atmosphere, realizing the efficient photocatalytic activity in diluted CO2 reduction.
Collapse
Affiliation(s)
- Yan Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hong-Yu Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Lu-Hua Shao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Liang Fang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Hong Dong
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| |
Collapse
|
28
|
Wu D, Liu X, Tian C, Zhou J, Lai J, Ran H, Gao B, Zhou M, Huang Q, Tang X. Enhanced photocatalytic activity and mechanism insight of copper-modulated lead-free Cs 2AgSbCl 6 double perovskite microcrystals. iScience 2023; 26:107355. [PMID: 37520698 PMCID: PMC10372833 DOI: 10.1016/j.isci.2023.107355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Lead halide perovskites are prospective candidates for CO2 photoconversion. Herein, we report copper-doped lead-free Cs2AgSbCl6 double perovskite microcrystals (MCs) for gas-solid phase photocatalytic CO2 reduction. The 0.2Cu@Cs2AgSbCl6 double perovskite MCs display unprecedented CO2 photoreduction capability with CO and CH4 yields of 412 and 128 μmol g-1, respectively. The ultrafast transient absorption spectroscopy reveals the enhanced separation of photoexcited carriers in copper-doped Cs2AgSbCl6 MCs. The active sites and reaction intermediates on the surface of the doped Cs2AgSbCl6 are dynamically monitored and precisely unraveled based on the in-situ Fourier transform infrared spectroscopy investigation. In combination with density functional theory calculations, it is revealed that the copper-doped Cs2AgSbCl6 MCs facilitate sturdy CO2 adsorption and activation and strikingly enhance the photocatalytic performance. This work offers an in-depth interpretation of the photocatalytic mechanism of Cs2AgSbCl6 doped with copper, which may provide guidance for future design of high-performance photocatalysts for solar fuel production.
Collapse
Affiliation(s)
- Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaoqing Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Changqing Tian
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jinchen Zhou
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Junan Lai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Hongmei Ran
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Bo Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miao Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Huang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Lei M, Tang Y, Zhu L, Tang H. Chemical reductive technologies for the debromination of polybrominated diphenyl ethers: A review. J Environ Sci (China) 2023; 127:42-59. [PMID: 36522073 DOI: 10.1016/j.jes.2022.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants, which had attracted amounts of attention due to their harmful characteristics of high toxicity, environmental persistence and potential bioaccumulation. Many chemical reductive debromination technologies have been developed for the debromination of PBDEs, including photolysis, photocatalysis, electrocatalysis, zero-valent metal reduction, chemically catalytic reduction and mechanochemical method. This review aims to provide information about the degradation thermodynamics and kinetics of PBDEs and summarize the degradation mechanisms in various systems. According to the comparative analysis, the rapid debromination to generate bromine-free products in an electron-transfer process, of which photocatalysis is a representative one, is found to be relatively difficult, because the degradation rate of PBDEs depended on the Br-rich phenyl ring with the lowest unoccupied molecular orbital (LUMO) localization. On the contrary, the complete debromination occurs easily in other systems with active hydrogen atoms as the main reactive species, such as chemically catalytic reduction systems. The review provides the knowledge on the chemical reductive technique of PBDEs, which would greatly help not only clarify the degradation mechanism but also design the more efficient system for the rapid and deep debromination of PBDEs in the future.
Collapse
Affiliation(s)
- Ming Lei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Yao Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Heqing Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
30
|
Gao S, Zhang Q, Su X, Wu X, Zhang XG, Guo Y, Li Z, Wei J, Wang H, Zhang S, Wang J. Ingenious Artificial Leaf Based on Covalent Organic Framework Membranes for Boosting CO 2 Photoreduction. J Am Chem Soc 2023; 145:9520-9529. [PMID: 37076447 DOI: 10.1021/jacs.2c11146] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 μmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.
Collapse
Affiliation(s)
- Shuaiqi Gao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Qian Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiaofang Su
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiangkun Wu
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Yingying Guo
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Jishi Wei
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Huiyong Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Suojiang Zhang
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
31
|
Wei F, Xue W, Yu Z, Lu XF, Wang S, Lin W, Wang X. Dynamic cooperations between lattice oxygen and oxygen vacancies for photocatalytic ethane dehydrogenation by a self-restoring LaVO4 catalyst. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
32
|
Designing covalent organic frameworks with Co-O 4 atomic sites for efficient CO 2 photoreduction. Nat Commun 2023; 14:1147. [PMID: 36854683 PMCID: PMC9975230 DOI: 10.1038/s41467-023-36779-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Cobalt coordinated covalent organic frameworks have attracted increasing interest in the field of CO2 photoreduction to CO, owing to their high electron affinity and predesigned structures. However, achieving high conversion efficiency is challenging since most Co related coordination environments facilitate fast recombination of photogenerated electron-hole pairs. Here, we design two kinds of Co-COF catalysts with oxygen coordinated Co atoms and find that after tuning of coordination environment, the reported Co framework catalyst with Co-O4 sites exhibits a high CO production rate of 18000 µmol g-1 h-1 with selectivity as high as 95.7% under visible light irradiation. From in/ex-situ spectral characterizations and theoretical calculations, it is revealed that the predesigned Co-O4 sites significantly facilitate the carrier migration in framework matrixes and inhibit the recombination of photogenerated electron-hole pairs in the photocatalytic process. This work opens a way for the design of high-performance catalysts for CO2 photoreduction.
Collapse
|
33
|
Shen Y, Ren C, Zheng L, Xu X, Long R, Zhang W, Yang Y, Zhang Y, Yao Y, Chi H, Wang J, Shen Q, Xiong Y, Zou Z, Zhou Y. Room-temperature photosynthesis of propane from CO 2 with Cu single atoms on vacancy-rich TiO 2. Nat Commun 2023; 14:1117. [PMID: 36849519 PMCID: PMC9970977 DOI: 10.1038/s41467-023-36778-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Photochemical conversion of CO2 into high-value C2+ products is difficult to achieve due to the energetic and mechanistic challenges in forming multiple C-C bonds. Herein, an efficient photocatalyst for the conversion of CO2 into C3H8 is prepared by implanting Cu single atoms on Ti0.91O2 atomically-thin single layers. Cu single atoms promote the formation of neighbouring oxygen vacancies (VOs) in Ti0.91O2 matrix. These oxygen vacancies modulate the electronic coupling interaction between Cu atoms and adjacent Ti atoms to form a unique Cu-Ti-VO unit in Ti0.91O2 matrix. A high electron-based selectivity of 64.8% for C3H8 (product-based selectivity of 32.4%), and 86.2% for total C2+ hydrocarbons (product-based selectivity of 50.2%) are achieved. Theoretical calculations suggest that Cu-Ti-VO unit may stabilize the key *CHOCO and *CH2OCOCO intermediates and reduce their energy levels, tuning both C1-C1 and C1-C2 couplings into thermodynamically-favourable exothermal processes. Tandem catalysis mechanism and potential reaction pathway are tentatively proposed for C3H8 formation, involving an overall (20e- - 20H+) reduction and coupling of three CO2 molecules at room temperature.
Collapse
Affiliation(s)
- Yan Shen
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Chunjin Ren
- grid.263826.b0000 0004 1761 0489School of Physics, Southeast University, Nanjing, China
| | - Lirong Zheng
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Xu
- grid.268415.cChemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ran Long
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Wenqing Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Yong Yang
- grid.410579.e0000 0000 9116 9901Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, China
| | - Yongcai Zhang
- grid.268415.cChemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yingfang Yao
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Haoqiang Chi
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, China.
| | - Qing Shen
- University of Electrocommunication, Graduate School of Informatics and Engineering, Chofu, Tokyo Japan
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
| | - Zhigang Zou
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Yong Zhou
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China. .,School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China.
| |
Collapse
|
34
|
Zuo Q, Cui R, Wang L, Wang Y, Yu C, Wu L, Mai Y, Zhou Y. High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Gao M, Fan J, Li X, Wang Q, Li D, Feng J, Duan X. A Carbon-Negative Hydrogen Production Strategy: CO 2 Selective Capture with H 2 Production. Angew Chem Int Ed Engl 2023; 62:e202216527. [PMID: 36599818 DOI: 10.1002/anie.202216527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
We reported a strategy of carbon-negative H2 production in which CO2 capture was coupled with H2 evolution at ambient temperature and pressure. For this purpose, carbonate-type Cux Mgy Fez layered double hydroxide (LDH) was preciously constructed, and then a photocatalysis reaction of interlayer CO3 2- reduction with glycerol oxidation was performed as driving force to induce the electron storage on LDH layers. With the participation of pre-stored electrons, CO2 was captured to recover interlayer CO3 2- in presence of H2 O, accompanied with equivalent H2 production. During photocatalysis reaction, Cu0.6 Mg1.4 Fe1 exhibited a decent CO evolution amount of 1.63 mmol g-1 and dihydroxyacetone yield of 3.81 mmol g-1 . In carbon-negative H2 production process, it showed an exciting CO2 capture quantity of 1.61 mmol g-1 and H2 yield of 1.44 mmol g-1 . Besides, this system possessed stable operation capability under simulated flu gas condition with negligible performance loss, exhibiting application prospect.
Collapse
Affiliation(s)
- Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaxuan Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xintao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing, 100029, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
36
|
Xie W, Li K, Liu XH, Zhang X, Huang H. P-Mediated Cu-N 4 Sites in Carbon Nitride Realizing CO 2 Photoreduction to C 2 H 4 with Selectivity Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208132. [PMID: 36331052 DOI: 10.1002/adma.202208132] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic CO2 reduction to high value-added C2 products (e.g., C2 H4 ) is of considerable interest but challenging. The C2 H4 product selectivity strongly hinges on the intermediate energy levels in the CO2 reduction pathway. Herein, Cu-N4 sites anchored phosphorus-modulated carbon nitride (CuACs/PCN) is designed as a photocatalyst to tailor the intermediate energy levels in the the C2 H4 formation reaction pathway for realizing its high production with tunable selectivity. Theoretical calculations combined with experimental data demonstrate that the formation of the C-C coupling intermediates can be realized on Cu-N4 sites and the surrounding doped P facilitates the production of C2 H4 . Thus, CuACs/PCN exhibits a high C2 H4 selectivity of 53.2% with a yielding rate of 30.51 µmol g-1 . The findings reveal the significant role of the coordination environment and surrounding microenvironment of Cu single atoms in C2 H4 formation and offer an effective approach for highly selective CO2 photoreduction to produce C2 H4 .
Collapse
Affiliation(s)
- Wenke Xie
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Kuangjun Li
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Xuan-He Liu
- School of Science, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Xing Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| |
Collapse
|
37
|
Wei Y, You F, Zhao D, Wan J, Gu L, Wang D. Heterogeneous Hollow Multi‐Shelled Structures with Amorphous‐Crystalline Outer‐Shells for Sequentially Photoreduction of CO
2. Angew Chem Int Ed Engl 2022; 61:e202212049. [DOI: 10.1002/anie.202212049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Feifei You
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
38
|
Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO 2 reduction. Nat Commun 2022; 13:6466. [PMID: 36309504 PMCID: PMC9617972 DOI: 10.1038/s41467-022-34263-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Colloidal quantum dots have been emerging as promising photocatalysts to convert CO2 into fuels by using solar energy. However, the above photocatalysts usually suffer from low CO2 adsorption capacity because of their nonporous structures, which principally reduces their catalytic efficiency. Here, we show that synchronizing imine polycondensation reaction to self-assembly of colloidal CdSe/CdS nanorods can produce micro-meso hierarchically porous nanocomposites with double-shelled nanocomposites. Owing to their hierarchical pores and the ability to separate photoexcited electrons, the self-assembled porous nanocomposites exhibit remarkably higher activity (≈ 64.6 μmol g−1 h−1) toward CO2 to CO in solid-gas regime than that of nonporous solids from self-assembled CdSe/CdS nanorods under identical conditions. Importantly, the length of the nanorods is demonstrated to be crucial to correlate their ability to long-distance separation of photogenerated electrons and holes along their axial direction. Overall, this approach provides a rational strategy to optimize the CO2 adsorption and conversion by integrating the inorganic and organic semiconductors. The authors design double shelled hollow superstructures from self-assembled CdSe/CdS nanorods in covalent organic frameworks for CO2 photo-reduction at a gas/solid interface.
Collapse
|
39
|
Liu B, Zhan S, Du J, Yang X, Zhao Y, Li L, Wan J, Zhao ZJ, Gong J, Yang N, Yu R, Wang D. Revealing the Mechanism of sp-N Doping in Graphdiyne for Developing Site-Defined Metal-Free Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206450. [PMID: 36217835 DOI: 10.1002/adma.202206450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to the limited reserves of metals, scientists are devoted to exploring high-performance metal-free catalysts based on carbon materials to solve environment-related issues. Doping would build up inhomogeneous charge distribution on surface, which is an efficient approach for boosting the catalytic performance. However, doping sites are difficult to control in traditional carbon materials, thus hindering their development. Taking the advantage of unique sp-C in graphdiyne (GDY), a new N doping configuration of sp-hybridized nitrogen (sp-N), bringing a Pt-comparable catalytic activity in oxygen reduction reaction is site-defined introduced. However, the reaction intermediate of this process is never captured, hindering the understanding of the mechanism and the precise synthesis of metal-free catalysts. After the four-year study, the fabrication of intermediate-like molecule is realized, and finally sp-N doped GDY via the pericyclic reaction is obtained. Compared with GDY doped with other N configurations, the designed sp-N GDY shows much higher catalytic activity in electroreduction of CO2 toward CH4 production, owing to the unique electronic structure introduced by sp-N, which is more favorable in stabilizing the intermediate. Thus, besides opening the black-box for the site-defined doping, this work reveals the relationship between doping configuration and products of CO2 reduction.
Collapse
Affiliation(s)
- Baokun Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuhui Zhan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiang Du
- School of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin Yang
- School of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yasong Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ranbo Yu
- Department of Physical Chemistry School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
40
|
Si S, Shou H, Mao Y, Bao X, Zhai G, Song K, Wang Z, Wang P, Liu Y, Zheng Z, Dai Y, Song L, Huang B, Cheng H. Low‐Coordination Single Au Atoms on Ultrathin ZnIn
2
S
4
Nanosheets for Selective Photocatalytic CO
2
Reduction towards CH
4. Angew Chem Int Ed Engl 2022; 61:e202209446. [DOI: 10.1002/anie.202209446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shenghe Si
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei 230029 China
| | - Yuyin Mao
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Xiaolei Bao
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Guangyao Zhai
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Peng Wang
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Ying Dai
- School of Physics Shandong University Jinan 250100 China
| | - Li Song
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei 230029 China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| |
Collapse
|
41
|
Wang G, Chen Z, Wang T, Wang D, Mao J. P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO
2
Reduction to Hydrocarbon Fuels with High C
2
H
6
Evolution. Angew Chem Int Ed Engl 2022; 61:e202210789. [DOI: 10.1002/anie.202210789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Gang Wang
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 P. R. China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
42
|
Shi H, Wang H, Zhou Y, Li J, Zhai P, Li X, Gurzadyan GG, Hou J, Yang H, Guo X. Atomically Dispersed Indium‐Copper Dual‐Metal Active Sites Promoting C−C Coupling for CO
2
Photoreduction to Ethanol. Angew Chem Int Ed Engl 2022; 61:e202208904. [DOI: 10.1002/anie.202208904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Haozhi Wang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Yichen Zhou
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jiahui Li
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Xiangyang Li
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Gagik G. Gurzadyan
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Hong Yang
- School of Engineering The University of Western Australia Perth WA 6009 Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals PSU-DUT Joint Center for Energy Research, and School of Chemical Engineering Dalian University of Technology Dalian 116024 China
| |
Collapse
|
43
|
Yousaf M, Ahmad M, Zhao ZP. Rapid and highly selective conversion of CO2 to methanol by heterometallic porous ZIF-8. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
44
|
Li J, Yu X, Xue W, Nie L, Huang H, Zhong C. Engineering the direct Z‐scheme systems over lattice intergrown of
MOF‐on‐MOF
for selective
CO
2
photoreduction to
CO. AIChE J 2022. [DOI: 10.1002/aic.17906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jian Li
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Xinmiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Lei Nie
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| |
Collapse
|
45
|
Jia Q, Zhou J, Gong L, Wang L, Ma X, Zhao Y. Z-scheme heterostructure of Cu2O/Pt/NH2-MIL-125(Ti) for photocatalytic CO2 reduction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Zhang M, Wang X, Qi X, Guo H, Liu L, Zhao Q, Cui W. Effect of Ag cocatalyst on highly selective photocatalytic CO2 reduction to HCOOH over CuO/Ag/UiO-66 Z-scheme heterojunction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Si S, Shou H, Mao Y, Bao X, Zhai G, Song K, Wang Z, Wang P, Liu Y, Zheng Z, Dai Y, Song L, Huang B, Cheng H. Low‐Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shenghe Si
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Hongwei Shou
- University of Science and Technology of China National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience CHINA
| | - Yuyin Mao
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Xiaolei Bao
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Guangyao Zhai
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Kepeng Song
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Zeyan Wang
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Peng Wang
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Yuanyuan Liu
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Zhaoke Zheng
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Ying Dai
- Shandong University School of Physics CHINA
| | - Li Song
- University of Science and Technology of China National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience CHINA
| | - Baibiao Huang
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Hefeng Cheng
- Shandong University State Key Laboratory of Crystal Materials Shanda Nan Road 27#Shandong University 250100 Jinan CHINA
| |
Collapse
|
48
|
Wang G, Chen Z, Wang T, Wang D, Mao J. P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO2 Reduction to Hydrocarbon Fuels with High C2H6 Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Wang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Zhe Chen
- Westlake University School of Science CHINA
| | - Tao Wang
- Westlake University School of Science CHINA
| | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| | - Junjie Mao
- Anhui Normal University College of Chemistry and Materials Science CHINA
| |
Collapse
|
49
|
Shi H, Wang H, Zhou Y, Li J, Zhai P, Li X, Gargik G G, Hou J, Yang H, Guo X. Atomically Dispersed Indium‐Copper Dual‐Metal Active Sites Promoting C–C Coupling for CO2 Photoreduction to Ethanol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hainan Shi
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Haozhi Wang
- Tianjin University Chemical Engineering CHINA
| | - Yichen Zhou
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Jiahui Li
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Panlong Zhai
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Xiangyang Li
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | | | - Jungang Hou
- Dalian University of Technology State Key Lab of Finechemicals CHINA
| | - Hong Yang
- The University of Western Australia School of Engineering AUSTRALIA
| | - Xinwen Guo
- Dalian University of Technology State Key Leb of Fine Chemicals No 2 Linggong Road, Gaoxin District 116024 Dalian CHINA
| |
Collapse
|
50
|
Yang H, Dai K, Zhang J, Dawson G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|