1
|
Bharatbhai JA, Roy S, Dey A, Aziz T, Tothadi S, Bandhyopadhyay M, Giri S, Das S. A Tetranuclear Ni II 4O 4 Cubane Molecular Complex as an Efficient Electrocatalyst for Oxygen Evolution Reaction: From Synthesis to Mechanistic Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504175. [PMID: 40351050 DOI: 10.1002/smll.202504175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Indexed: 05/14/2025]
Abstract
The oxygen evolution reaction (OER) is integral to electrochemical energy systems; however, its intrinsic sluggish kinetics necessitate the design of high-performance electrocatalysts to minimize overpotential, enhance the durability, and optimize the efficiency. Significant efforts have been dedicated to developing OER catalysts based on earth-abundant transition-metal complexes. Here, the efficacy of a tetranuclear cubane-cored Ni(II) complex, [Ni₄(LH)₄(MeOH)]·CHCl₃ (1), in OER is demonstrated. The complex is synthesized using a tetradentate Schiff-base ligand, [2-{(E)-(2-hydroxyphenylimino)methyl)-6-(hydroxymethyl)-4-methylphenol}], and characterized by single-crystal X-ray diffraction. The redox properties of complex 1 are evaluated by cyclic voltammetry in the solid state, which emphasize the quasireversible oxidation state of the Ni(II) metal center. The complex 1 is immobilized on activated carbon cloth (CC), referred as CC-1, which demonstrates efficient OER catalysis, subsequently activating to form the Ni(O)OH catalyst. The postreaction analysis including UV-vis, FTIR, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy confirm the stability of molecular complex 1. The results demonstrate efficient OER catalysis with a low overpotential of 330 mV versus reversible hydrogen electrode and a Tafel slope of 64 mV dec-1, confirming an effective OER catalyst in alkaline medium with a deep understanding of the core reaction mechanisms.
Collapse
Affiliation(s)
- Joshi Ankitkumar Bharatbhai
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research and Management, Near Khokhra Circle Maninagar East, Ahmedabad, Gujarat, 380026, India
| | - Soumalya Roy
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Atanu Dey
- Industrial Chemical Product Development and Analysis Centre, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka, 561203, India
| | - Tarik Aziz
- Department of Chemistry, Indian Institution of Technology, Bombay, Powai, Maharashtra, 400076, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Mahuya Bandhyopadhyay
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research and Management, Near Khokhra Circle Maninagar East, Ahmedabad, Gujarat, 380026, India
| | - Soumen Giri
- Department of Chemistry, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research and Management, Near Khokhra Circle Maninagar East, Ahmedabad, Gujarat, 380026, India
| |
Collapse
|
2
|
Zhang Q, Zhang P, Cui C. A nearly transparent Ni-based oxygen-evolving catalyst for photoelectrocatalysis. Chem Commun (Camb) 2025; 61:5978-5981. [PMID: 40135401 DOI: 10.1039/d5cc00865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
An adaptive Ni-based catalyst derived from soluble nickel-bipyridine [Ni(bpy)3]2+ exhibits increased active sites, and yet is nearly transparent to solar light; hence, this catalyst on nickel-sputtered Si exhibits a 250 mV negative shift of overpotential at 20 mA cm-2 relative to the pristine Ni/Si photoanode.
Collapse
Affiliation(s)
- Qiu Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Peikun Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China.
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
3
|
Zhao Y, Dongfang N, Huang C, Erni R, Li J, Zhao H, Pan L, Iannuzzi M, Patzke GR. Operando monitoring of the functional role of tetrahedral cobalt centers for the oxygen evolution reaction. Nat Commun 2025; 16:580. [PMID: 39794313 PMCID: PMC11723956 DOI: 10.1038/s41467-025-55857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The complexity of the intrinsic oxygen evolution reaction (OER) mechanism, particularly the precise relationships between the local coordination geometry of active metal centers and the resulting OER kinetics, remains to be fully understood. Herein, we construct a series of 3 d transition metal-incorporated cobalt hydroxide-based nanobox architectures for the OER which contain tetrahedrally coordinated Co(II) centers. Combination of bulk- and surface-sensitive operando spectroelectrochemical approaches reveals that tetrahedral Co(II) centers undergo a dynamic transformation into highly active Co(IV) intermediates acting as the true OER active species which activate lattice oxygen during the OER. Such a dynamic change in the local coordination geometry of Co centers can be further facilitated by partial Fe incorporation. In comparison, the formation of such active Co(IV) species is found to be hindered in CoOOH and Co-FeOOH, which are predominantly containing [CoIIIO6] and [CoII/FeIIIO6] octahedra, respectively, but no mono-μ-oxo-bridged [CoIIO4] moieties. This study offers a comprehensive view of the dynamic role of local coordination geometry of active metal centers in the OER kinetics.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Nanchen Dongfang
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Chong Huang
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Erni
- Electron Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jingguo Li
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, China
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Han Zhao
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, China
| | | | - Greta R Patzke
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Huang T, Sun LP, Li X, Guan BO. Lab-on-Fiber Operando Deciphering of a MOF Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411510. [PMID: 39632652 DOI: 10.1002/adma.202411510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Despite the great success in deploying metal-organic frameworks (MOFs) as efficient electrocatalysts, the low adoption of operando methods hinders the understanding of underlying mechanism. By leveraging the subtle refractive index evolution, including both the real and the imaginary parts, an entirely new concept of a lab-on-fiber operando method and its feasibility for "pristine-immersion-operando-post analysis" of electrocatalyts are demonstrated. Concurrent collection of absorption spectra and surface plasmon resonance is achieved by engineering fiber-optic waveguides to simultaneously induce guided light attenuation and plasmonic coupling. In situ-formed Co hydroxide and oxide reactive intermediates in zeolitic imidazolate framework-67 (ZIF-67) electrocatalyst are optically identified, which shows its underlying self-reconstruction conversions at different stages during electrocatalytic oxygen evolution reactions, and address the gap in knowledge concerning whether ZIF-67 is a precatalyst for real catalyst production. This illuminating operando method offers intriguing opportunities to collect all the observables in a single fiber, provides an exciting potential of a new class of device with long-sought integration and miniaturization capability, and is expected to enable the electrocatalysis community to conquer challenges with conducting multimodal operando experiments outside the laboratory.
Collapse
Affiliation(s)
- Tiansheng Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
5
|
Liu Y, Hao X, Tang C, Li Z, Wu S, Qiao S, Zhou H. Oxygen Evolution Enhancement of Oxalate-Based Nickel-Iron MOF through Bipyridine Coordinated Strategy. Inorg Chem 2024; 63:23374-23387. [PMID: 39565956 DOI: 10.1021/acs.inorgchem.4c04133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The catalytic performance of oxalate-based Ni-Fe metal-organic frameworks (MOFs) in the oxygen evolution reaction (OER) was investigated via a coordination strategy. The bidentate chelating ligand 2,2'-bpy (2,2'-bipyridine), was utilized to improve the catalytic kinetics under ambient conditions. The results revealed that a MOF-to-MOF transformation including the formation of [M(2,2'-bpy)n]2/3+ (M = Ni/Fe, n = 1-3) could boost alkaline OER, giving an impressive ultralow overpotential of 220 mV at a current density of 10 mA/cm2 in a 1 M KOH solution, surpassing the performance of control group activity of oxalate-based Ni-Fe MOF. However, excessive addition of the ligand had a negative effect, leading to decreased activity. Further investigation revealed the double role of 2,2'-bpy: Both promote and suppress catalytic reactions. The catalytic mechanism was then discussed, highlighting the potential of secondary ligands to effectively fine-tune the catalytic behavior of these materials.
Collapse
Affiliation(s)
- Yashu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Xuan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zehang Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shilin Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Qiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongbo Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Zheng X, Wu Q, Xiao M, Li L, Zhao R, Cui C. Electrochemical Redox Conversion of Formate to CO via Coupling Fe-Co Layered Double Hydroxides and Au Catalysts. Chemistry 2024; 30:e202303383. [PMID: 38164084 DOI: 10.1002/chem.202303383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Formate has been considered an inactive molecule and thus cannot be further reduced under CO2 reduction conditions, which limits its widespread application as feedstock. Here we present an electrochemical redox conversion of formate to CO through the potential-dependent generation of carbon dioxide radical anions (CO2 ⋅- ) on Fe-Co layered double hydroxides (Fe-Co LDHs) and the subsequent reduction of CO2 ⋅- to CO on Au catalysts. We present an electrodeposition protocol for the synthesis of Fe-Co LDHs with precise composition control and find that Fe1 Co4 exhibits a promising potential window for CO2 ⋅- formation between 1.14 and 1.4 V and an optimized potential at 1.24 V at a neutral pH condition. We further determined the formation of CO2 ⋅- at 1.24 V via electron paramagnetic resonance and CO2 at >1.4 V through differential electrochemical mass spectrometry. This work provides a redox chemistry route for converting formate into CO through a coupled slit parallel-plate electrode system.
Collapse
Affiliation(s)
- Xia Zheng
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ruijuan Zhao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
7
|
Jia H, Yao N, Yu C, Cong H, Luo W. Unveiling the Electrolyte Cations Dependent Kinetics on CoOOH-Catalyzed Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202313886. [PMID: 37864480 DOI: 10.1002/anie.202313886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
The electrolyte cations-dependent kinetics have been widely observed in many fields of electrocatalysis, however, the exact mechanism of the influence on catalytic performance is still a controversial topic of considerable discussion. Herein, combined with operando X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), we verify that the electrolyte cations could intercalate into the layer of pristine CoOOH catalyst during the oxygen evolution reaction (OER) process, while the bigger cations lead to enlarged interlayer spacing and increased OER activity, following the order Cs+ >K+ >Na+ >Li+ . X-ray absorption spectroscopy (XAS), in situ Raman, in situ Ultraviolet-visible (UV/Vis) spectroscopy, in situ XAS spectroscopy, cyclic voltammetry (CV), and theoretical calculations reveal that the intercalation of electrolyte cations efficiently modify the oxidation states of Co by enlarging the Co-O bonds, which in turn enhance the d-band center of Co, optimize the adsorption strength of oxygen intermediates, facilitate the formation of OER active Co(IV) species, and reduce the energy barrier of the rate-determing step (RDS), thereby enhancing the OER activity. This work not only provides an informative picture to understand the complicated dependence of OER kinetics on electrolyte cations, but also sheds light on understanding the mechanism of other electrolyte cation-targeted electrocatalysis.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University Hubei, 430072, Wuhan, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Hubei, 430073, Wuhan, P. R. China
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University Hubei, 430072, Wuhan, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Hubei, 430072, Wuhan, P. R. China
| |
Collapse
|
8
|
Saini A, Das C, Rai S, Guha A, Dolui D, Majumder P, Dutta A. A homogeneous cobalt complex mediated electro and photocatalytic O 2/H 2O interconversion in neutral water. iScience 2023; 26:108189. [PMID: 37920669 PMCID: PMC10618691 DOI: 10.1016/j.isci.2023.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The O2/H2O redox couple is vital in various renewable energy conversion strategies. This work delves into the Co(L-histidine)2 complex, a functional mimic of oxygen-carrying metalloproteins, and its electrochemical behavior driving the bidirectional oxygen reduction (ORR) and oxygen evolution (OER) activity in neutral water. This complex electrocatalyzes O2 via two distinct pathways: a two-electron O2/H2O2 reduction (catalytic rate = 250 s-1) and a four-electron O2 to H2O production (catalytic rate = 66 s-1). The formation of the key trans-μ-1,2-Co(III)-peroxo intermediate expedites this process. Additionally, this complex effectively oxidizes water to O2 (catalytic rate = 15606 s-1) at anodic potentials via a Co(IV)-oxo species. Additionally, this complex executes the ORR and OER under photocatalytic conditions in neutral water in the presence of appropriate photosensitizer (Eosin-Y) and redox mediators (triethanolamine/ORR and Na2S2O8/OER) at an appreciable rate. These results highlight one of the early examples of both electro- and photoactive bidirectional ORR/OER catalysts operational in neutral water.
Collapse
Affiliation(s)
- Abhishek Saini
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aritra Guha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dependu Dolui
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Piyali Majumder
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Xiao M, Wu Q, Ku R, Zhou L, Long C, Liang J, Mavrič A, Li L, Zhu J, Valant M, Li J, Zeng Z, Cui C. Self-adaptive amorphous CoO xCl y electrocatalyst for sustainable chlorine evolution in acidic brine. Nat Commun 2023; 14:5356. [PMID: 37660140 PMCID: PMC10475099 DOI: 10.1038/s41467-023-41070-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Electrochemical chlorine evolution reaction is of central importance in the chlor-alkali industry, but the chlorine evolution anode is largely limited by water oxidation side reaction and corrosion-induced performance decay in strong acids. Here we present an amorphous CoOxCly catalyst that has been deposited in situ in an acidic saline electrolyte containing Co2+ and Cl- ions to adapt to the given electrochemical condition and exhibits ~100% chlorine evolution selectivity with an overpotential of ~0.1 V at 10 mA cm-2 and high stability over 500 h. In situ spectroscopic studies and theoretical calculations reveal that the electrochemical introduction of Cl- prevents the Co sites from charging to a higher oxidation state thus suppressing the O-O bond formation for oxygen evolution. Consequently, the chlorine evolution selectivity has been enhanced on the Cl-constrained Co-O* sites via the Volmer-Heyrovsky pathway. This study provides fundamental insights into how the reactant Cl- itself can work as a promoter toward enhancing chlorine evolution in acidic brine.
Collapse
Affiliation(s)
- Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ruiqi Ku
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Liujiang Zhou
- School of Physics, University Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junwu Liang
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, Guangxi, 537000, China.
- Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Andraž Mavrič
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jing Zhu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Matjaz Valant
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
10
|
Zhang W, Gu Q, Fu X, Wang Y, Jian Y, Sun H, Gao Z. Regulating CO and H 2 Ratios in Syngas Produced from Photocatalytic CO 2/H 2O Reduction by Cu and Co Dual Active Centers on Carbon Nitride Hollow Nanospheres. Inorg Chem 2023; 62:13615-13625. [PMID: 37549013 DOI: 10.1021/acs.inorgchem.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
For photocatalytic CO2 reduction to produce syngas, there are challenges in achieving a high catalytic efficiency and precise control over the product ratio. In this study, two non-noble metal complexes Cobpy and Cubpy (bpy = 2,2'-bipyridine) as cocatalysts for CO2 reduction and hydrogen evolution, respectively, were in situ supported on carbon nitride hollow nanospheres to construct a hybrid system for photocatalytic syngas production. The resulting CO/H2 ratio can be precisely regulated within a wide range of 0:1-9:1 by accurately controlling the content of the two complexes. The presence of the two complexes promotes the migration of photogenerated electrons of the carbon nitride. CO2 can be reduced to CO on the photoreduced species Co(bpy)2+ of Cobpy on CNHS, and H+ can be reduced to H2 on the photoreduced species Cu(bpy)2+ of Cubpy. Furthermore, this method is also applicable to other photocatalysts, such as CdS and TiO2 for generating syngas and regulating product ratios.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Xianliang Fu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, P. R. China
- School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, P. R. China
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, P. R. China
| |
Collapse
|
11
|
Wu Q, Liang J, Xiao M, Long C, Li L, Zeng Z, Mavrič A, Zheng X, Zhu J, Liang HW, Liu H, Valant M, Wang W, Lv Z, Li J, Cui C. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat Commun 2023; 14:997. [PMID: 36813796 PMCID: PMC9947139 DOI: 10.1038/s41467-023-36718-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak "non-bonding" interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO2 interaction that substantially elevates the population of Co4+ sites for improved water oxidation. We find that phenanthroline only coordinates with Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electrolytes, which can be deposited as amorphous CoOxHy film containing non-bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ deposited catalyst demonstrates a low overpotential of 216 mV at 10 mA cm-2 and sustainable activity over 1600 h with Faradaic efficiency above 97%. Density functional theory calculations reveal that the presence of phenanthroline can stabilize CoO2 through the non-covalent interaction and generate polaron-like electronic states at the Co-Co center.
Collapse
Affiliation(s)
- Qianbao Wu
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Junwu Liang
- grid.440772.20000 0004 1799 411XOptoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, Guangxi 537000 China
| | - Mengjun Xiao
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang Long
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Lei Li
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Andraž Mavrič
- grid.438882.d0000 0001 0212 6916Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Xia Zheng
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jing Zhu
- grid.59053.3a0000000121679639Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Hongfei Liu
- grid.54549.390000 0004 0369 4060Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Matjaz Valant
- grid.438882.d0000 0001 0212 6916Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Wei Wang
- grid.54549.390000 0004 0369 4060School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zhengxing Lv
- grid.458506.a0000 0004 0497 0637Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiong Li
- grid.458506.a0000 0004 0497 0637Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
12
|
Wang C, Zhai P, Xia M, Liu W, Gao J, Sun L, Hou J. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209307. [PMID: 36408935 DOI: 10.1002/adma.202209307] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The regulation of atomic and electronic structures of active sites plays an important role in the rational design of oxygen evolution reaction (OER) catalysts toward electrocatalytic hydrogen generation. However, the precise identification of the active sites for surface reconstruction behavior during OER remains elusive for water-alkali electrolysis. Herein, irreversible reconstruction behavior accompanied by copper dynamic evolution for cobalt iron layered double hydroxide (CoFe LDH) precatalyst to form CoFeCuOOH active species with high-valent Co species is reported, identifying the origin of reconstructed active sites through operando UV-Visible (UV-vis), in situ Raman, and X-ray absorption fine-structure (XAFS) spectroscopies. Density functional theory analysis rationalizes this typical electronic structure evolution causing the transfer of intramolecular electrons to form ligand holes, promoting the reconstruction of active sites. Specifically, unambiguous identification of active sites for CoFeCuOOH is explored by in situ 18 O isotope-labeling differential electrochemical mass spectrometry (DEMS) and supported by theoretical calculation, confirming mechanism switch to oxygen-vacancy-site mechanism (OVSM) pathway on lattice oxygen. This work enables to elucidate the vital role of dynamic active-site generation and the representative contribution of OVSM pathway for efficient OER performance.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingyue Xia
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
13
|
Jiang X, Zhang W, Xu G, Lai J, Wang L. Interface engineering of metal nanomaterials enhance the electrocatalytic water splitting and fuel cell performance. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xue Jiang
- Key Laboratory of Eco‐chemical Engineering, Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology Qingdao University of Science and Technology Qingdao P. R. China
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Wen Zhang
- Key Laboratory of Eco‐chemical Engineering, Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology Qingdao University of Science and Technology Qingdao P. R. China
| | - Guang‐Rui Xu
- Key Laboratory of Eco‐chemical Engineering, Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology Qingdao University of Science and Technology Qingdao P. R. China
- School of Materials Science and Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Jianping Lai
- Key Laboratory of Eco‐chemical Engineering, Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology Qingdao University of Science and Technology Qingdao P. R. China
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P. R. China
| | - Lei Wang
- Key Laboratory of Eco‐chemical Engineering, Key Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology Qingdao University of Science and Technology Qingdao P. R. China
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P. R. China
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao P. R. China
| |
Collapse
|
14
|
Xia L, Jiang W, Hartmann H, Mayer J, Lehnert W, Shviro M. Multistep Sulfur Leaching for the Development of a Highly Efficient and Stable NiS x/Ni(OH) 2/NiOOH Electrocatalyst for Anion Exchange Membrane Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19397-19408. [PMID: 35452215 PMCID: PMC9073836 DOI: 10.1021/acsami.2c01302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Nickel (poly)sulfides have been widely studied as anodic catalysts for alkaline water electrolysis owing to their diverse morphologies, high catalytic activities in the oxygen evolution reaction (OER), and low cost. To utilize low-cost and high-efficiency polysulfides with industry-relevant cycling stability, we develop a Ni-rich NiSx/Ni(OH)2/NiOOH catalyst derived from NiS2/Ni3S4 nanocubes. Ni-rich NiSx/Ni(OH)2/NiOOH shows improved OER catalytic activity (η = 374 mV@50 mA cm-2) and stability (0.1% voltage increase) after 65 h of a galvanostatic test at 10 mA cm-2 compared with commercial Ni/NiO and hydrothermally synthesized Ni(OH)2 (both show η > 460 mV@50 mA cm-2 along with 4.40 and 1.92% voltage increase, respectively). A water-splitting electrolyzer based on Pt/C||AF1-HNN8-50||NiSx/Ni(OH)2/NiOOH exhibits a current density of 1800 mA cm-2 at 2.0 V and 500 h high-rate stability at 1000 mA cm-2 with negligible attenuation of only 0.12 mV h-1. This work provides an understanding of truly stable species, intrinsic active phases of Ni polysulfides, their high-rate stability in a real cell, and sheds light on the development of stable chalcogenide-based anodic electrocatalysts for anion exchange membrane water electrolysis (AEMWE).
Collapse
Affiliation(s)
- Lu Xia
- Institute
of Energy and Climate Research, Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Faculty
of Mechanical Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Wulyu Jiang
- Institute
of Energy and Climate Research, Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Faculty
of Mechanical Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Heinrich Hartmann
- Central
Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Joachim Mayer
- ER-C
2, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- GFE, RWTH Aachen
University, 52074 Aachen, Germany
| | - Werner Lehnert
- Institute
of Energy and Climate Research, Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Faculty
of Mechanical Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Meital Shviro
- Institute
of Energy and Climate Research, Electrochemical Process Engineering
(IEK-14), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| |
Collapse
|
15
|
Zhang P, Wang P, Wang W, Wu Q, Xiao M, Alberto R, Zhang Y, Cui C. Efficient Alkaline Water Oxidation with a Regenerable Nickel Pseudo-Complex. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48661-48668. [PMID: 34619966 DOI: 10.1021/acsami.1c13609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient and robust electrocatalysts are required for the oxygen evolution reaction (OER). Photosystem II-inspired synthetic transition metal complexes have shown promising OER activity in water-poor or mild conditions, yet challenges remain in the improvement of current density and performance stability for practical applications in alkaline electrolytes in contrast to solid-state oxide catalysts. Here, we report that a nickel pseudo-complex (bpy)zNiOxHy (bpy = 2,2'-bipyridine) catalyst, which bridges solid oxide and molecular catalysts, exhibits the highest OER activity among nickel-based catalysts with a turnover frequency of 1.1 s-1 at an overpotential of 0.30 volts, even outperforming iron-incorporated nickel (oxy)hydroxide under an identical nickel mass load. Benefiting from the strong coordination between bpy and nickel, this (bpy)zNiOxHy catalyst exhibits long-term stability in highly alkaline media at 1.0 mA cm-2 for over 200 h and at 20 mA cm-2 for over 60 h. Our findings indicate that dynamically coordinating a small amount of bpy in the catalyst layer efficiently sustains highly active nickel sites for water oxidation, demonstrating a general strategy for improving the activity of transition metal sites with active ligands beyond the incorporation of metal cations to form double-layered hydroxides.
Collapse
Affiliation(s)
- Peikun Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pai Wang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Wang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtza Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mengjun Xiao
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Yanning Zhang
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtza Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
16
|
Nandy S, Wu Q, Tilley SD, Cui C. Improved water oxidation with metal oxide catalysts via a regenerable and redox-inactive ZnO xH y overlayer. Chem Commun (Camb) 2021; 57:10230-10233. [PMID: 34528032 DOI: 10.1039/d1cc03406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a regenerable and redox-inactive ZnOxHy layer that was in situ deposited onto metal oxides MOz (M = Co, Fe, and Ni) in alkaline media containing [Zn(OH)4]2- species during water oxidation. An interface dipole was developed at the MOz/Zn interface, resulting in a decrease of the OER overpotential. Exemplified by the CoOz/ZnOxHy bilayer structure, it presented a 155 mV lower overpotential to deliver 10 mA cm-2 and long-term stability relative to the unmodified CoOz film.
Collapse
Affiliation(s)
- Swarnava Nandy
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China.,Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland.,Molecular Electrochemistry Laboratory, Institute of Fundamental & Frontier Sciences, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental & Frontier Sciences, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| | - S David Tilley
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Chunhua Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China.,Molecular Electrochemistry Laboratory, Institute of Fundamental & Frontier Sciences, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
17
|
Li CF, Zhao JW, Xie LJ, Wu JQ, Ren Q, Wang Y, Li GR. Surface-Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal-Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:18129-18137. [PMID: 33982379 DOI: 10.1002/anie.202104148] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Metal-organic frameworks (MOFs) with carboxylate ligands as co-catalysts are very efficient for the oxygen evolution reaction (OER). However, the role of local adsorbed carboxylate ligands around the in-situ-transformed metal (oxy)hydroxides during OER is often overlooked. We reveal the extraordinary role and mechanism of surface-adsorbed carboxylate ligands on bi/trimetallic layered double hydroxides (LDHs)/MOFs for OER electrocatalytic activity enhancement. The results of X-ray photoelectron spectroscopy (XPS), synchrotron X-ray absorption spectroscopy, and density functional theory (DFT) calculations show that the carboxylic groups around metal (oxy)hydroxides can efficiently induce interfacial electron redistribution, facilitate an abundant high-valence state of nickel species with a partially distorted octahedral structure, and optimize the d-band center together with the beneficial Gibbs free energy of the intermediate. Furthermore, the results of in situ Raman and FTIR spectra reveal that the surface-adsorbed carboxylate ligands as Lewis base can promote sluggish OER kinetics by accelerating proton transfer and facilitating adsorption, activation, and dissociation of hydroxyl ions (OH- ).
Collapse
Affiliation(s)
- Cheng-Fei Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Wei Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jie Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jin-Qi Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Ren
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gao-Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
18
|
Li C, Zhao J, Xie L, Wu J, Ren Q, Wang Y, Li G. Surface‐Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal–Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cheng‐Fei Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jia‐Wei Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Ling‐Jie Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jin‐Qi Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Qian Ren
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gao‐Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
19
|
Singh TI, Rajeshkhanna G, Pan UN, Kshetri T, Lin H, Kim NH, Lee JH. Alkaline Water Splitting Enhancement by MOF-Derived Fe-Co-Oxide/Co@NC-mNS Heterostructure: Boosting OER and HER through Defect Engineering and In Situ Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101312. [PMID: 34145762 DOI: 10.1002/smll.202101312] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Introducing defects and in situ topotactic transformation of the electrocatalysts generating heterostructures of mixed-metal oxides(hydroxides) that are highly active for oxygen evolution reaction (OER) in tandem with metals of low hydrogen adsorption barrier for efficient hydrogen evolution reaction (HER) is urgently demanded for boosting the sluggish OER and HER kinetics in alkaline media. Ascertaining that, metal-organic-framework-derived freestanding, defect-rich, and in situ oxidized Fe-Co-O/Co metal@N-doped carbon (Co@NC) mesoporous nanosheet (mNS) heterostructure on Ni foam (Fe-Co-O/Co@NC-mNS/NF) is developed from the in situ oxidation of micropillar-like heterostructured Fe-Co-O/Co@NC/NF precatalyst. The in situ oxidized Fe-Co-O/Co@NC-mNS/NF exhibits excellent bifunctional properties by demanding only low overpotentials of 257 and 112 mV, respectively, for OER and HER at the current density of 10 mA cm-2 , with long-term durability, attributed to the existence of oxygen vacancies, higher specific surface area, increased electrochemical active surface area, and in situ generated new metal (oxyhydr)oxide phases. Further, Fe-Co-O/Co@NC-mNS/NF (+/-) electrolyzer requires only a low cell potential of 1.58 V to derive a current density of 10 mA cm-2 . Thus, the present work opens a new window for boosting the overall alkaline water splitting.
Collapse
Affiliation(s)
- Thangjam Ibomcha Singh
- Department of Nano Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Uday Narayan Pan
- Department of Nano Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Tolendra Kshetri
- Department of Nano Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Carbon Composite Research Centre, Department of Polymer - Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
20
|
Zheng Y, Gao R, Qiu Y, Zheng L, Hu Z, Liu X. Tuning Co 2+ Coordination in Cobalt Layered Double Hydroxide Nanosheets via Fe 3+ Doping for Efficient Oxygen Evolution. Inorg Chem 2021; 60:5252-5263. [PMID: 33724012 DOI: 10.1021/acs.inorgchem.1c00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inexpensive and efficient electrocatalysts are crucial for the development and practical application of energy conversion and storage technologies. Layered-double-hydroxide (LDH) materials have attracted much attention due to the special layered structure, but their electrocatalytic activity and stability are still limited. Herein, we propose to tune Co2+ occupancy and coordination in cobalt-based LDH nanosheets via Fe3+ doping for efficient and stable electrocatalysis for oxygen evolution reaction (OER). It is found that Fe doping regulates the occupancy and coordination of Co2+ in CoO4 tetrahedrons and CoO6 octahedrons of Co-LDHs. Through density functional theory calculation, we also clarified that Fe3+ not only modulated the Co2+ coordination but also functioned as an added catalytic active site. LDH nanosheets with a Co/Fe ratio of 5:1 show a low OER overpotential, much better than the commercial IrO2, owing to the modulation of Fe3+ doping on the crystal and electronic structures. After appropriate incorporation of Fe3+, the almost inactive octahedral coordinated Co2+ is significantly activated with a partial deletion of tetrahedral coordinated Co2+, which greatly boosts the overall electrocatalytic activity. This study offers some new insights into tuning the crystal and electronic structures of LDHs by lattice doping to achieve high-efficiency electrocatalysis for OER.
Collapse
Affiliation(s)
- Yue Zheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Gao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunsheng Qiu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbo Hu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
He B, Shen J, Wang B, Lu Z, Ma D. Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study. Phys Chem Chem Phys 2021; 23:15685-15692. [PMID: 34270659 DOI: 10.1039/d1cp01861b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) for water splitting is crucial for the sustainable production of clean hydrogen fuel, while the high cost of Pt catalysts impedes its commercialization. Herein, we have performed a systematic theoretical study on the electrocatalytic HER over single-atom catalysts (SACs) based on low-cost TiN. Specifically, the TiN(100) surface with a Ti or N vacancy has been considered as the support. 20 transition-metal (TM) atoms and 3 nonmetallic atoms are embedded into the Ti or N vacancy, accordingly denoted as M@Tiv or M@Nv. All the single atoms can be stabilized by the surface vacancies, controlled by the adjustable chemical potential. Interestingly, for TM-embedded TiN(100), the hydrogen binding is much stronger over M@Nv than M@Tiv, which can be attributed to the more localized d states of the TM atoms anchored by the N vacancies, indicating a strong coordination effect. Among 43 catalysts, 10 (Ni, Zn, Nb, Mo, Rh@Tiv, and Au, Pd, W, Mo, B@Nv) were predicted to have high HER catalytic activity with near-zero hydrogen adsorption free energy. For the further gaseous hydrogen evolution, Zn@Tiv can adopt both Tafel (with an energy barrier of 0.68 eV) and Heyrovsky mechanisms, while the others may prefer the Heyrovsky mechanism. This work provides a promising strategy to realize cost-efficient electrocatalysts for the HER, and highlights the important role of the local coordination environment for SACs.
Collapse
Affiliation(s)
- Bingling He
- College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China and Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Jiansheng Shen
- College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China
| | - Bin Wang
- College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China
| | - Zhansheng Lu
- College of Physics, Henan Normal University, Xinxiang 453007, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
He J, Hu Z, Deng K, Zhao R, Lv X, Tian W, Zhang YX, Ji J. A triple-layered PPy@NiCo LDH/FeCo2O4 hybrid crystalline structure with high electron conductivity and abundant interfaces for supercapacitors and oxygen evolution. CrystEngComm 2021. [DOI: 10.1039/d1ce00076d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PPy@NiCo LDH/FeCo2O4 triple-layer hybrid with bi-continuous conductive networks is fabricated via a novel one-step hydrothermal reaction and in situ polymerization.
Collapse
Affiliation(s)
- Jing He
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zhufeng Hu
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kuan Deng
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Renjun Zhao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingbin Lv
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Wen Tian
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yu Xin Zhang
- College of Material Science and Engineering
- Chongqing University
- Chongqing
- P. R. China
| | - Junyi Ji
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
23
|
Mondal B, Chattopadhyay S, Dey S, Mahammed A, Mittra K, Rana A, Gross Z, Dey A. Elucidation of Factors That Govern the 2e -/2H + vs 4e -/4H + Selectivity of Water Oxidation by a Cobalt Corrole. J Am Chem Soc 2020; 142:21040-21049. [PMID: 33259190 DOI: 10.1021/jacs.0c08654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Considering the importance of water splitting as the best solution for clean and renewable energy, the worldwide efforts for development of increasingly active molecular water oxidation catalysts must be accompanied by studies that focus on elucidating the mode of actions and catalytic pathways. One crucial challenge remains the elucidation of the factors that determine the selectivity of water oxidation by the desired 4e-/4H+ pathway that leads to O2 rather than by 2e-/2H+ to H2O2. We now show that water oxidation with the cobalt-corrole CoBr8 as electrocatalyst affords H2O2 as the main product in homogeneous solutions, while heterogeneous water oxidation by the same catalyst leads exclusively to oxygen. Experimental and computation-based investigations of the species formed during the process uncover the formation of a Co(III)-superoxide intermediate and its preceding high-valent Co-oxyl complex. The competition between the base-catalyzed hydrolysis of Co(III)-hydroperoxide [Co(III)-OOH]- to release H2O2 and the electrochemical oxidation of the same to release O2 via [Co(III)-O2•]- is identified as the key step determining the selectivity of water oxidation.
Collapse
Affiliation(s)
- Biswajit Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subal Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Kaustuv Mittra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Atanu Rana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
24
|
Wan W, Triana CA, Lan J, Li J, Allen CS, Zhao Y, Iannuzzi M, Patzke GR. Bifunctional Single Atom Electrocatalysts: Coordination-Performance Correlations and Reaction Pathways. ACS NANO 2020; 14:13279-13293. [PMID: 33048543 DOI: 10.1021/acsnano.0c05088] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single atom catalysts (SACs) are ideal model systems in catalysis research. Here we employ SACs to address the fundamental catalytic challenge of generating well-defined active metal centers to elucidate their interactions with coordinating atoms, which define their catalytic performance. We introduce a soft-landing molecular strategy for tailored SACs based on metal phthalocyanines (MPcs, M = Ni, Co, Fe) on graphene oxide (GO) layers to generate well-defined model targets for mechanistic studies. The formation of electronic channels through π-π conjugation with the graphene sheets enhances the MPc-GO performance in both oxygen evolution and reduction reactions (OER and ORR). Density functional theory (DFT) calculations unravel that the outstanding ORR activity of FePc-GO among the series is due to the high affinity of Fe atoms toward O2 species. Operando X-ray absorption spectroscopy and DFT studies demonstrate that the OER performance of the catalysts relates to thermodynamic or kinetic control at low- or high-potential ranges, respectively. We furthermore provide evidence that the participation of ligating N and C atoms around the metal centers provides a wider selection of active OER sites for both NiPc-GO and CoPc-GO. Our strategy promotes the understanding of coordination-activity relationships of high-performance SACs and their optimization for different processes through tailored combinations of metal centers and suitable ligand environments.
Collapse
Affiliation(s)
- Wenchao Wan
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jinggang Lan
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jingguo Li
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Department of Materials, University of Oxford, Oxford OX1 3HP, United Kingdom
| | - Yonggui Zhao
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marcella Iannuzzi
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Wang W, Heggen M, Cui W, Probst B, Alberto R, Cui C. Synergizing hole accumulation and transfer on composite Ni/CoO x for photoelectrochemical water oxidation. Chem Commun (Camb) 2020; 56:10179-10182. [PMID: 32748920 DOI: 10.1039/d0cc03717f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ni/CoOx sites were supported on an around 2 nm-TiOx modified hematite photoanode for water oxidation. TiOx demonstrates insignificant hole accumulation and a catalytically inactive surface that serves as an ideal platform. We reveal that the NiOx favors the extraction of holes from the TiOx surface, which are efficiently transferred to active CoOx for water oxidation.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Marc Heggen
- Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Wei Cui
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Benjamin Probst
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|