1
|
Li R, Huang X, Wang R, Ren Z, Zhu Y, Lu T, Sun Y, Cui H. Targeting KRAS G12C Mutation: Development of effective strategies to overcome drug resistance and limited efficacy. Eur J Med Chem 2025; 294:117718. [PMID: 40381222 DOI: 10.1016/j.ejmech.2025.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
The KRASG12C mutation causes the KRAS protein to remain in a constantly activated state, thereby promoting cell proliferation and cancer progression. As researchers have transitioned the KRASG12C mutation from being "undruggable" to "druggable", the development of KRASG12C inhibitors has reached a peak. However, some KRASG12C inhibitors have shown resistance in preclinical studies and clinical trials, resulting in poor clinical outcomes and limiting their application. This review summarizes emerging strategies to overcome resistance, including optimization strategies for KRASG12C mutation site inhibitors (including covalent inhibitors and degraders), as well as potential therapeutic strategies involving combination therapies and multi-target inhibition targeting major resistance mechanisms. Additionally, it discusses the potential issues and challenges that may arise in the development of treatments for KRASG12C mutation resistance. It is hoped that this review can provide insightful perspectives to help overcome KRASG12C inhibitor resistance.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xu Huang
- School of Pharmaceutical Sciences, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; National Health and Disease Human Brain Tissue Resource Center, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zhenhua Ren
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; National Health and Disease Human Brain Tissue Resource Center, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yan Sun
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; National Health and Disease Human Brain Tissue Resource Center, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hao Cui
- School of Pharmaceutical Sciences, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Chidambaram K, Rekha A, Goyal A, Rana M. Targeting KRAS-G12C in lung cancer: The emerging role of PROTACs in overcoming resistance. Pathol Res Pract 2025; 270:155954. [PMID: 40233529 DOI: 10.1016/j.prp.2025.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
In lung cancer, KRAS mutations, especially the G12C, favor aggressive tumor growth and resistance to standard therapies. Although first-generation inhibitors of KRAS G12C, such as sotorasib and adagrasib, are highly effective in early-phase studies, resistance invariably develops under selective inhibition pressure and rarely leads to sustained long-term treatment benefits. As a novel approach to targeting KRAS mutations in lung cancer, PROTAC (Proteolysis Targeting Chimera) technology is explored in this review. The PROTACs take advantage of the cell's ubiquitin-proteasome system to selectively degrade KRAS proteins, overcoming the dilemma of a lack of traditional binding sites and the means of resistance. We review recent progress with KRAS-specific PROTACs and their mechanisms, clinical application, and effectiveness at targeting primary KRAS oncogenes and secondary drivers and signaling pathways contributing to therapeutic resistance. Also, the synergies between PROTACs and immunotherapies or chemotherapies are further amplified. This review also underscores PROTAC technology's promise to advance precision medicine by providing durable treatment options for KRAS-driven lung cancers. It addresses future directions for optimizing PROTAC efficacy, bioavailability, and patient-specific applications.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - A Rekha
- Dr DY Patil Medical college , Hospital and Research Centre, Pimpri , Pune, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Zattoni J, Vottero P, Carena G, Uliveto C, Pozzati G, Morabito B, Gitari E, Tuszynski J, Aminpour M. A comprehensive primer and review of PROTACs and their In Silico design. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 264:108687. [PMID: 40058081 DOI: 10.1016/j.cmpb.2025.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
The cutting-edge technique of Proteolysis Targeting Chimeras, or PROTACs, has gained significant attention as a viable approach for specific protein degradation. This innovative technology has vast potential in fields such as cancer therapy and drug development. The development of effective and specific therapies for a range of diseases is within reach with PROTACs, which can target previously "undruggable" proteins while circumventing the off-target effects of conventional small molecule inhibitors. This manuscript aims to discuss the application of in silico techniques to the design of these groundbreaking molecules and develop PROTAC complexes, in order to identify potential PROTAC candidates with favorable drug-like properties. Additionally, this manuscript reviews the strengths and weaknesses of these methods to demonstrate their utility and highlights the challenges and future prospects of in silico PROTAC design. The present review provides a valuable and beginner-friendly resource for researchers and drug developers interested in using in silico methods for PROTAC design, specifically ternary structure prediction.
Collapse
Affiliation(s)
- Jacopo Zattoni
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Gea Carena
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Chiara Uliveto
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Pozzati
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Benedetta Morabito
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ebenezea Gitari
- Department of Biochemistry, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Jack Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, T6G 2M9, Canada
| | - Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, T6G 1Z2, Canada.
| |
Collapse
|
5
|
Sun Q, Wang H, Xie J, Wang L, Mu J, Li J, Ren Y, Lai L. Computer-Aided Drug Discovery for Undruggable Targets. Chem Rev 2025. [PMID: 40423592 DOI: 10.1021/acs.chemrev.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Undruggable targets are those of therapeutical significance but challenging for conventional drug design approaches. Such targets often exhibit unique features, including highly dynamic structures, a lack of well-defined ligand-binding pockets, the presence of highly conserved active sites, and functional modulation by protein-protein interactions. Recent advances in computational simulations and artificial intelligence have revolutionized the drug design landscape, giving rise to innovative strategies for overcoming these obstacles. In this review, we highlight the latest progress in computational approaches for drug design against undruggable targets, present several successful case studies, and discuss remaining challenges and future directions. Special emphasis is placed on four primary target categories: intrinsically disordered proteins, protein allosteric regulation, protein-protein interactions, and protein degradation, along with discussion of emerging target types. We also examine how AI-driven methodologies have transformed the field, from applications in protein-ligand complex structure prediction and virtual screening to de novo ligand generation for undruggable targets. Integration of computational methods with experimental techniques is expected to bring further breakthroughs to overcome the hurdles of undruggable targets. As the field continues to evolve, these advancements hold great promise to expand the druggable space, offering new therapeutic opportunities for previously untreatable diseases.
Collapse
Affiliation(s)
- Qi Sun
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Hanping Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Liying Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junxi Mu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junren Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhao Ren
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Frost GB, Liu Y, Kron SJ, Scheidt KA. Telomerase reverse transcriptase degradation via a rationally designed covalent proteolysis targeting chimera. Bioorg Med Chem Lett 2025:130286. [PMID: 40412449 DOI: 10.1016/j.bmcl.2025.130286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Expression of telomerase reverse transcriptase (TERT) is a hallmark of cancer, maintaining telomere integrity to enable replicative immortality. However, TERT also serves multiple enzyme-dependent and -independent functions to support cancer growth and survival, including enhanced DNA damage response. Agents that inhibit TERT reverse transcriptase activity prevent telomere elongation but may fail to limit other TERT functions that mediate cancer therapy resistance. Thus, we applied structure-based design, modular synthesis, and biochemical assays towards developing a proteolysis targeting chimera (PROTAC) to drive proteasomal degradation of TERT in cancer cells. This yielded NU-PRO-1, a PROTAC linking the TERT active site-targeted covalent inhibitor NU-1 to the VHL E3-ligase ligand (S,R,S)-AHPC. Applied to cancer cells, NU-PRO-1 induced transient VHL- and proteasome-dependent TERT degradation. NU-PRO-1 did not induce DNA damage on its own but acted to further delay DNA repair after irradiation compared to NU-1. TERT-degrading PROTACs provide novel chemical probes of TERT's non-catalytic functions and may overcome the limitations of current telomerase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - Yue Liu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Stephen J Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, United States of America.
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America; Robert. H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, United States of America.
| |
Collapse
|
7
|
Han Z, Wu Q, Rao H, Xu T, Zhou C. An overview of PROTACs targeting KRAS and SOS1 as antitumor agents. Bioorg Med Chem Lett 2025; 125-126:130283. [PMID: 40381703 DOI: 10.1016/j.bmcl.2025.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
KRAS is the most frequently mutated oncogene and its mutational activation drives approximately 25 % of human cancers. Son of Sevenless 1 (SOS1) plays a pivotal role in the KRAS signaling pathway through catalyzing the conversion of inactive GDP-bound KRAS to active GTP-bound KRAS, and is thus considered as a promising target for pan-KRAS inhibition. Currently, four KRASG12C-specific inhibitors, namely sotorasib, adagrasib, fulzerasib and garsorasib, have garnered regulatory approval. However, acquired resistance to KRASG12C inhibition rapidly emerges. In addition, the other prevalent KRAS mutations, including G12D and G12V, are still lacking effective therapeutic drugs. PROTAC-mediated KRAS and SOS1 degradation has been emerged as a promising strategy to overcome these issues, and achieved rapid progress in the recent years. This article provides an overview of the chemical structures, design strategies, structure-activity relationship (SAR) studies as well as in vitro and in vivo activities of the PROTACs degrading KRAS and SOS1, and sheds light on future challenges and opportunities to accelerate the development of new chemotherapies for KRAS-driven cancers.
Collapse
Affiliation(s)
- Zhiqiu Han
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qianping Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hongxin Rao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Tianfeng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
| | - Chuan Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
8
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
9
|
Zhou G, Tan J, Zhang P, Zhou Z, Zhang L, Zhang Z. Mechanistic Insights and Therapeutic Potentials of Ubiquitin-Proteasome System in Non-Small Cell Lung Cancer. Cell Prolif 2025:e70050. [PMID: 40313038 DOI: 10.1111/cpr.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality. Despite advancements in gene targeted therapies and immunotherapies, high heterogeneity contributes to limited efficacy and therapeutic resistance. Ubiquitination, a crucial post-translational modification that regulates protein stability and degradation, plays a significant role in cancer pathogenesis by influencing key oncogenic pathways and tumour progression. This review systematically explores the ubiquitin-proteasome system (UPS) and its potential as a therapeutic target for NSCLC. We highlight recent preclinical and clinical studies focusing on ubiquitination-related biomarkers, drug targets and emerging therapies like proteasome inhibitors and Proteolysis-targeting chimeras (PROTACs). By exploring the impact of the UPS on tumour biology, the progression of NSCLC and its response to therapy, we aim to underscore the potential of targeting the ubiquitination-deubiquitination system as a complementary or synergistic approach to existing therapeutic strategies in NSCLC, thereby enhancing patient outcomes and overcoming treatment resistance.
Collapse
Affiliation(s)
- Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiaxiong Tan
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
10
|
Shen Y, Chen JQ, Li XP. Differences between lung adenocarcinoma and lung squamous cell carcinoma: Driver genes, therapeutic targets, and clinical efficacy. Genes Dis 2025; 12:101374. [PMID: 40083325 PMCID: PMC11904499 DOI: 10.1016/j.gendis.2024.101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/22/2024] [Indexed: 03/16/2025] Open
Abstract
With the rapid advancements in second-generation gene sequencing technologies, a growing number of driver genes and associated therapeutic targets have been unveiled for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). While they are clinically classified as non-small cell lung cancer (NSCLC), they display distinct genomic features and substantial variations in clinical efficacy, underscoring the need for particular attention. Hence, this review provides a comprehensive overview of the latest advancements in driver genes, epigenetic targets, chemotherapy, targeted therapy, and immunotherapy for LUAD and LUSC. Additionally, it delves into the distinctions in signaling pathways and pivotal facets of clinical management specific to these two categories of lung cancer. Moreover, we furnish pertinent details regarding clinical trials pertaining to driver genes and epigenetics, thus establishing a theoretical foundation for the realization of precision treatments for LUAD and LUSC.
Collapse
Affiliation(s)
- Yue Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie-Qi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
11
|
Zieliński P, Stępień M, Chowaniec H, Kalyta K, Czerniak J, Borowczyk M, Dwojak E, Mroczek M, Dworacki G, Ślubowska A, Markiewicz H, Ałtyn R, Dobosz P. Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach. Cells 2025; 14:587. [PMID: 40277912 PMCID: PMC12026305 DOI: 10.3390/cells14080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Lung cancer with the highest number of new cases diagnosed in Europe and in Poland, remains an example of malignancy with a very poor prognosis despite the recent progress in medicine. Different treatment strategies are now available for cancer therapy based on its type, molecular subtype and other factors including overall health, the stage of disease and cancer molecular profile. Immunotherapy is emerging as a potential addition to surgery, chemotherapy, radiotherapy or other targeted therapies, but also considered a mainstay therapy mode. This combination is an area of active investigation in order to enhance efficacy and overcome resistance. Due to the complexity and dynamic of cancer's ecosystem, novel therapeutic targets and strategies need continued research into the cellular and molecular mechanisms within the tumour microenvironment. From the genetic point of view, several signatures ranging from a few mutated genes to hundreds of them have been identified and associated with therapy resistance and metastatic potential. ML techniques and AI can enhance the predictive potential of genetic signatures and model the prognosis. Here, we present the overview of already existing treatment approaches, the current findings of key aspects of immunotherapy, such as immune checkpoint inhibitors (ICIs), existing molecular biomarkers like PD-L1 expression, tumour mutation burden, immunoscore, and neoantigens, as well as their roles as predictive markers for treatment response and resistance.
Collapse
Affiliation(s)
- Paweł Zieliński
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Maria Stępień
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 94805 Versailles, France;
- Doctoral School, Medical University of Lublin, 20-954 Lublin, Poland
| | - Hanna Chowaniec
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Kateryna Kalyta
- Faculty of Biology, University of Basel, 4123 Basel, Switzerland;
| | - Joanna Czerniak
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Martyna Borowczyk
- Department of Endocrinology, Internal Medicine and Metabolism, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Ewa Dwojak
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
- Department of Pathomorphology, University Clinical Hospital, 61-701 Poznan, Poland
| | - Magdalena Mroczek
- Department of Neurology, University Hospital Basel, 4123 Basel, Switzerland;
| | - Grzegorz Dworacki
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Antonina Ślubowska
- Department of Biostatistics and Research Methodology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, 02-004 Warsaw, Poland;
| | - Hanna Markiewicz
- Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Methodology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Rafał Ałtyn
- IT Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Paula Dobosz
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| |
Collapse
|
12
|
Zhu Y, Dai Y, Tian Y. The Peptide PROTAC Modality: A New Strategy for Drug Discovery. MedComm (Beijing) 2025; 6:e70133. [PMID: 40135198 PMCID: PMC11933449 DOI: 10.1002/mco2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, proteolysis targeting chimera (PROTAC) technology has made significant progress in the field of drug development. Traditional drugs mainly focus on inhibiting or activating specific proteins, while PROTAC technology provides new ideas for treating various diseases by inducing the degradation of target proteins. Especially for peptide PROTACs, due to their unique structural and functional characteristics, they have become a hot research topic. This review provides a detailed description of the key components, mechanisms, and design principles of peptide PROTACs, elaborates on their applications in skin-related diseases, oncology, and other potential therapeutic fields, analyzes their advantages and challenges, and looks forward to their future development prospects. The development of peptide PROTAC technology not only opens up new paths for drug research and development, but also provides new ideas for solving the resistance and safety issues faced by traditional small-molecule drugs. Compared with small-molecule PROTACs, peptide PROTACs have advantages such as multitargeting, biodegradability, low toxicity, and flexibility in structural design. With the deepening of research and the continuous maturity of technology, peptide PROTACs are expected to become one of the important strategies for future drug discovery, providing new hope for the treatment of more intractable diseases. Peptide PROTACs are ushering in a new era of precision medicine.
Collapse
Affiliation(s)
- Youmin Zhu
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| | - Yu Dai
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
- School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yuncai Tian
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| |
Collapse
|
13
|
Racioppo B, Pechalrieu D, Abegg D, Dwyer B, Ramseier NT, Hu YS, Adibekian A. Chemoproteomics-Enabled De Novo Proteolysis Targeting Chimera Discovery Platform Identifies a Metallothionein Degrader to Probe Its Role in Cancer. J Am Chem Soc 2025; 147:7817-7828. [PMID: 39989026 DOI: 10.1021/jacs.4c17827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) represent powerful tools to modulate the activity of classically "undruggable" proteins, but their application has been limited to known ligands and a few select protein classes. Herein, we present our chemoproteomic strategy for simultaneous de novo discovery of novel degraders and ligands for challenging and previously "undruggable" targets. Using comparative PROTAC versus ligand global proteomics analyses, we rapidly identify proteins selectively downregulated by several "untargeted" PROTACs containing a VHL E3 ligase recruiter and various covalent and noncovalent ligands. We showcase our approach by identifying a first-in-class PROTAC for metallothionein 2A (MT2A), a small, cysteine-rich, metal-binding protein implicated in heavy metal detoxification, zinc homeostasis, and cellular invasion. Notably, isoform-specific MT overexpression has been shown to augment cellular migration and invasion across several cancer cell lines, although the precise mechanisms are unknown due to insufficient tools to study MTs. We show that optimized PROTAC AA-BR-157 covalently binds conserved C44, degrades overexpressed MT2A with nanomolar potency, and reduces the migration and invasion of MDA-MB-231 cells. We further demonstrate a time-dependent increase in intracellular zinc levels following MT2A degradation as well as downregulation of protein diaphanous homolog 3 (DIAPH3), a positive regulator of actin and cell motility. Super-resolution imaging of MDA-MB-231 cells shows that the downregulation of MT2A and DIAPH3 inhibits cell polarization and thereby migration, suggesting that MT2A may regulate motility via DIAPH3-dependent cytoskeletal remodeling. In summary, our strategy enables the de novo discovery of PROTACs and ligands for novel disease-related targets and lays the groundwork for expansion of the druggable proteome.
Collapse
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Dany Pechalrieu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Brendan Dwyer
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Neal Thomas Ramseier
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Ying S Hu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- University of Illinois Cancer Center, 818 South Wolcott Avenue, Chicago, Illinois 60612, United States
- UICentre, University of Illinois Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood Street, Chicago, Illinois 60607, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois, 900 S Ashland Ave, Chicago, Illinois 60607, United States
| |
Collapse
|
14
|
Ge Z, Fan Z, He W, Zhou G, Zhou Y, Zheng M, Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med Chem 2025; 17:693-708. [PMID: 40065567 PMCID: PMC11938967 DOI: 10.1080/17568919.2025.2476387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
RAS (rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy. While RAS was historically considered an "undruggable" target, recent breakthroughs have yielded inhibitors specifically targeting KRASG12C and KRASG12D mutations, which have shown clinical efficacy in patients. However, these inhibitors face limitations due to rapid acquired resistance and the toxic effects of combination therapies in clinical settings. Targeted protein degradation (TPD) strategies, such as PROTACs and molecular glues, provide a novel approach by selectively degrading RAS proteins, or their upstream and downstream regulatory factors, to block aberrant signaling pathways. These degraders offer a promising alternative to traditional inhibitors by potentially circumventing resistance and enhancing therapeutic precision. This review discusses recent advancements in RAS pathway degraders, with an emphasis on targeting RAS mutations as well as their upstream regulators and downstream effectors for potential cancer treatments.
Collapse
Affiliation(s)
- Zhiming Ge
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yidi Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Hualong M, Liu J, Yin T, Cao X, Su Z, Zhao DG, Ma YY. Discovery of a Selective and Orally Bioavailable RET Degrader with Effectiveness in Various Mutations. J Med Chem 2025; 68:2657-2679. [PMID: 39772547 DOI: 10.1021/acs.jmedchem.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The rearranged during transfection (RET) mutation such as the G810C mutation has significantly restricted the clinical application of selective RET inhibitors in the treatment of RET-driven cancers. This study designed and evaluated RET proteolysis targeting chimeras (PROTACs) based on selpercatinib (LOXO-292), identifying RD-23 as a potent and selective RET PROTAC. RD-23 effectively inhibited the proliferation of BaF3 cells with various RET mutations, showing IC50 values of 2.4 to 6.5 nM. It selectively induced degradation of the RETG810C mutation via the ubiquitin-proteasome system, with a DC50 (concentration causing 50% of protein degradation) value of 11.7 nM. Additionally, RD-23 exhibited oral bioavailability and superior antitumor effects compared to LOXO-292 in a Ba/F3-KIF5B-RETG810C xenograft mouse model. These results suggested that RD-23 is a promising candidate for treating RET-driven cancers.
Collapse
Affiliation(s)
- Mo Hualong
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - JieYing Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Ting Yin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - XuXu Cao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - ZhengXi Su
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yan-Yan Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
16
|
Li Y, Wu Y, Gao S, Sun T, Jiang C. PROTAC delivery in tumor immunotherapy: Where are we and where are we going? J Control Release 2025; 378:116-144. [PMID: 39637991 DOI: 10.1016/j.jconrel.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Immunotherapy has emerged as a pioneering therapeutic modality, particularly within the realm of oncology, where Chimeric Antigen Receptor T-cell (CAR-T) therapy has manifested significant efficacy in the treatment of hematological malignancies. Nonetheless, the extension of immunotherapy to solid tumors poses a considerable challenge. This challenge is largely attributed to the intrinsic "cold" characteristics of certain tumors, which are defined by scant T-cell infiltration and a diminished immune response. Additionally, the impediment is exacerbated by the elusive nature of numerous targets within the tumor microenvironment, notably those deemed "undruggable" by small molecule inhibitors. This scenario underscores an acute necessity for the inception of innovative therapeutic strategies aimed at countering the resistance mechanisms underlying immune evasion in cold tumors, thereby amplifying the efficacy of cancer immunotherapy. Among the promising strategies is the deployment of Proteolysis Targeting Chimeras (PROTACs), which facilitate the targeted degradation of proteins. PROTACs present unique advantages and have become indispensable in oncology. However, they concurrently grapple with challenges such as solubility issues, permeability barriers, and the classical Hook effect. Notably, advanced delivery systems have been instrumental in surmounting these obstacles. This review commences with an analysis of the factors contributing to the suboptimal responses to immunotherapy in cold tumors. Subsequently, it delivers a thorough synthesis of immunotherapeutic concepts tailored for these tumors, clarifying the integral role of PROTACs in their management and delineating the trajectory of PROTAC technology from bench-side investigation to clinical utilization, facilitated by drug delivery systems. Ultimately, the review extrapolates the prospective future of this approach, aspiring to present novel insights that could catalyze progress in immunotherapy for the treatment of cold tumors.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yike Wu
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sihan Gao
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Quzhou Fudan Institute, Quzhou 324003, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
17
|
Saca VR, Huber T, Sakmar TP. G protein-coupled receptor-targeted proteolysis-targeting chimeras in cancer therapeutics. Mol Pharmacol 2025; 107:100013. [PMID: 40023512 DOI: 10.1016/j.molpha.2024.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 03/04/2025] Open
Abstract
G protein-coupled receptors (GPCRs) comprise a family of heptahelical membrane proteins that mediate intracellular and intercellular transmembrane signaling. Defects in GPCR signaling pathways are implicated in the pathophysiology of many diseases, including cardiovascular disease, endocrinopathies, immune disorders, and cancer. Although GPCRs are attractive drug targets, only a small number of Food and Drug Administration-approved anticancer therapeutics target GPCRs. Targeted protein degradation (TPD) technology allows for the direct modulation of the cellular expression level of a protein of interest. TPD methods such as proteolysis-targeting chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest selectively. Although the PROTAC system has not been widely applied to GPCRs and other membrane proteins, there is evidence that PROTACs or other TPD methods could be applied to the GPCRome. Current GPCR PROTACs show the feasibility of using PROTACs to degrade GPCRs; however, the degradation mechanism for some of these GPCR PROTACs is uncertain. Additional studies aimed at elucidating the degradation mechanism of GPCRs with PROTACs are necessary. Discovery of new allosteric intracellular small molecule binders of GPCRs will be required for the development of intracellularly oriented PROTACs. Promising early results in targeted degradation of GPCRs suggest that TPD drug discovery platforms will be useful in developing PROTACs targeting pathological GPCRs. SIGNIFICANCE STATEMENT: Aberrant signaling of G protein-coupled receptors (GPCRs) can contribute to the pathophysiology of cancer. Although GPCRs are generally highly attractive drug targets, many individual GPCRs are currently undrugged using traditional drug discovery approaches. Targeted protein degradation technologies, such as proteolysis-targeting chimeras, provide a new approach to drug discovery for targeting previously undruggable GPCRs relevant to the molecular pathophysiology of cancer.
Collapse
Affiliation(s)
- Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Tri-Institutional PhD Program in Chemical Biology, New York, New York
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
18
|
Ibrahim S, Umer Khan M, Khurram I, Rehman R, Rauf A, Ahmad Z, Aljohani ASM, Al Abdulmonem W, Quradha MM. Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons. Food Sci Nutr 2025; 13:e70011. [PMID: 39898116 PMCID: PMC11786021 DOI: 10.1002/fsn3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) have revolutionized cancer therapy by offering a selective and innovative approach to degrade key oncogenic proteins associated with various malignancies. These hybrid molecules exploit the ubiquitin-proteasome system, facilitating the degradation of target proteins through an event-driven mechanism, thereby overcoming drug resistance and enhancing selectivity. With diverse targets including androgen receptors, BTK, estrogen receptors, BET proteins, and BRAF, PROTACs offer a versatile strategy for personalized cancer treatment. Advantages of PROTACs over traditional small molecule inhibitors include their ability to operate at lower concentrations, catalyzing the degradation of multiple proteins of interest with reduced cytotoxicity. Notably, PROTACs address challenges associated with traditionally "undruggable" targets, expanding the therapeutic landscape of cancer therapy. Ongoing preclinical and clinical studies highlight the transformative potential of PROTACs, with promising results in prostate, breast, lung, melanoma, and colorectal cancers. Despite their potential, challenges persist in optimizing physicochemical properties and enhancing bioavailability. Further research is needed to refine PROTAC design and address complexities in molecule development. Nevertheless, the development of oral androgen receptor PROTACs represents a significant milestone, demonstrating the feasibility and efficacy of this innovative therapeutic approach. This review provides a comprehensive overview of PROTACs in cancer therapy, emphasizing their mechanism of action, advantages, and challenges. As PROTAC research progresses, continued exploration in both preclinical and clinical settings will be crucial to unlocking their full therapeutic potential and shaping the future of personalized cancer treatment.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Iqra Khurram
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Raima Rehman
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Zubair Ahmad
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Abdullah S. M. Aljohani
- Department of Medical BiosciencesCollege of Veterinary Medicine, Qassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
19
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
20
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
21
|
London N. Covalent Proximity Inducers. Chem Rev 2025; 125:326-368. [PMID: 39692621 PMCID: PMC11719315 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Ruffilli C, Röth S, Zelcer N, Moreau K. Orthogonal validation of PROTAC mediated degradation of the integral membrane proteins EGFR and c-MET. Sci Rep 2025; 15:504. [PMID: 39748066 PMCID: PMC11696238 DOI: 10.1038/s41598-024-84217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Dysregulation of integral membrane proteins (IMPs) has been linked to a myriad of diseases, making these proteins an attractive target in drug research. Whilst PROTAC technology has had a significant impact in scientific research, its application to IMPs is still limited. Limitations of the traditional approach of immunoblotting in PROTAC research include the low throughput compared to other methods, as well as a lack of spatial information for the target. Here we compare orthogonal antibody based approaches, i.e. immunoblotting, flow cytometry and immunofluorescence, to measure PROTAC mediated degradation of two established, endogenous targets, epidermal growth factor receptor (EGFR) and hepatocyte growth-factor receptor (c-MET). We discuss advantages and limitations of each methodology for the assessment of PROTAC efficacy on IMPs. Overall, we recommend the use of immunofluorescence and flow cytometry, for an increased accuracy with both a qualitative and quantitative insight into degradation efficacy and a critical distinction between cell membrane-localized and intracellular IMP protein pools.
Collapse
Affiliation(s)
- Camilla Ruffilli
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Sascha Röth
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Kevin Moreau
- Safety Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, CB2 0SL, UK.
| |
Collapse
|
23
|
Chen Y, Yin Z, Westover KD, Zhou Z, Shu L. Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia. Mol Cancer Ther 2025; 24:33-46. [PMID: 39404173 DOI: 10.1158/1535-7163.mct-24-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025]
Abstract
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhenghao Yin
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Kenneth D Westover
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Zhiwei Zhou
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Liping Shu
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| |
Collapse
|
24
|
Higgins JP, Carlisle JW, Moniri NH, Gupta S, Oduah EI, Leal T. Sotorasib for the treatment of locally advanced/metastatic non-small cell lung cancer. Future Oncol 2025; 21:63-71. [PMID: 39601038 PMCID: PMC11789721 DOI: 10.1080/14796694.2024.2430172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation is prognostic of poor survival for patients with non-small cell lung cancer (NSCLC). KRAS G12C mutations occur in 13% of NSCLC cases and despite the frequency of this mutation, advances in drug development against KRAS have historically been impeded due to the extremely high affinity of KRAS for guanosine triphosphate (GTP) and the lack of a binding pocket on the surface of KRAS that is suitable for drug binding. Sotorasib, a first-in-class, highly selective KRAS G12C inhibitor overcomes this issue by irreversibly binding in the switch-II pocket. Sotorasib was granted accelerated FDA approval for the treatment of KRASG12C-mutated locally advanced/metastatic NSCLC who have received at least one prior systemic therapy. This review summarizes the pharmacology, clinical efficacy, adverse effects, and clinical considerations of sotorasib.
Collapse
Affiliation(s)
| | - Jennifer W. Carlisle
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Shruti Gupta
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eziafa I. Oduah
- Division of Medical Oncology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
26
|
Li D, Geng K, Hao Y, Gu J, Kumar S, Olson AT, Kuismi CC, Kim HM, Pan Y, Sherman F, Williams AM, Li Y, Li F, Chen T, Thakurdin C, Ranieri M, Meynardie M, Levin DS, Stephens J, Chafitz A, Chen J, Donald-Paladino MS, Powell JM, Zhang ZY, Chen W, Ploszaj M, Han H, Gu SS, Zhang T, Hu B, Nacev BA, Kaiza ME, Berger AH, Wang X, Li J, Sun X, Liu Y, Zhang X, Bruno TC, Gray NS, Nabet B, Wong KK, Zhang H. Targeted degradation of oncogenic KRASG12V triggers antitumor immunity in lung cancer models. J Clin Invest 2024; 135:e174249. [PMID: 39718828 PMCID: PMC11735103 DOI: 10.1172/jci174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with the G12C mutation and advanced our understanding of the function of this mutation. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors. Here, we leverage the degradation tag (dTAG) system to develop a KRASG12V-transgenic mouse model. We explored the therapeutic potential of KRASG12V degradation and characterized its effect on the tumor microenvironment (TME). Our study reveals that degradation of KRASG12V abolished lung and pancreatic tumors in mice and caused a robust inhibition of KRAS-regulated cancer-intrinsic signaling. Importantly, targeted degradation of KRASG12V reprogrammed the TME toward a stimulatory milieu and drove antitumor immunity, elicited mainly by effector and cytotoxic CD8+ T cells. Our work provides insights into the effect of KRASG12V degradation on both tumor progression and the immune response, highlighting degraders as a powerful strategy for targeting KRAS-mutant cancers.
Collapse
Affiliation(s)
- Dezhi Li
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Ke Geng
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, New York, USA
| | - Jiajia Gu
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Saurav Kumar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Annabel T. Olson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Christina C. Kuismi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hye Mi Kim
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuanwang Pan
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Fiona Sherman
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Asia M. Williams
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiting Li
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, and
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Chen
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Cassandra Thakurdin
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Mary Meynardie
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Daniel S. Levin
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Janaye Stephens
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Alison Chafitz
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Joy Chen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Jaylen M. Powell
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Ze-Yan Zhang
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Magdalena Ploszaj
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Han Han
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Shengqing Stan Gu
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Baoli Hu
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery
| | - Benjamin A. Nacev
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Hematology/Oncology, and
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Medard Ernest Kaiza
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alice H. Berger
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Xuerui Wang
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jing Li
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Sun
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Yang Liu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Tullia C. Bruno
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Kwok-Kin Wong
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Hua Zhang
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Hematology/Oncology, and
| |
Collapse
|
27
|
Kidane M, Hoffman RM, Wolfe-Demarco JK, Huang TY, Teng CL, Samanta S, Gonzalez Lira LM, Lin-Jones J, Pallares G, Lamerdin JE, Servant NB, Lee CY, Yang CT, Bernatchez JA. Suite of Biochemical and Cell-Based Assays for the Characterization of Kirsten Rat Sarcoma (KRAS) Inhibitors and Degraders. ACS Pharmacol Transl Sci 2024; 7:3921-3934. [PMID: 39698278 PMCID: PMC11651172 DOI: 10.1021/acsptsci.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
KRAS is an important oncogenic driver which is mutated in numerous cancers. Recent advances in the selective targeting of KRAS mutants via small molecule inhibitors and targeted protein degraders have generated an increase in research activity in this area in recent years. As such, there is a need for new assay platforms to profile next generation inhibitors which improve on the potency and selectivity of existing drug candidates, while evading the emergence of resistance. Here, we describe the development of a new panel of biochemical and cell-based assays to evaluate the binding and function of known chemical entities targeting mutant KRAS. Our assay panels generated selectivity profiles and quantitative binding interaction dissociation constants for small molecules and degraders against wild type, G12C, G12D, and G12V KRAS, which were congruent with published data. These assays can be leveraged for additional mutants of interest beyond those described in this study, using both overexpressed cell-free systems and cell-based systems with endogenous protein levels.
Collapse
Affiliation(s)
- Medhanie Kidane
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Rene M. Hoffman
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Jennifer K. Wolfe-Demarco
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Ting-Yu Huang
- Eurofins
Panlabs Discovery Services Taiwan, Ltd., 25 Wugong Sixth Road, Wugu District, New Taipei City 24891, Taiwan
| | - Chi-Ling Teng
- Eurofins
Panlabs Discovery Services Taiwan, Ltd., 25 Wugong Sixth Road, Wugu District, New Taipei City 24891, Taiwan
| | - Saheli Samanta
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Luis M. Gonzalez Lira
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Jennifer Lin-Jones
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Gabriel Pallares
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Jane E. Lamerdin
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Nicole B. Servant
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Chun-Yao Lee
- Eurofins
Panlabs Discovery Services Taiwan, Ltd., 25 Wugong Sixth Road, Wugu District, New Taipei City 24891, Taiwan
| | - Chao-Tsung Yang
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Jean A. Bernatchez
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| |
Collapse
|
28
|
Adhikari B, Schneider K, Diebold M, Sotriffer C, Wolf E. Identification of suitable target/E3 ligase pairs for PROTAC development using a rapamycin-induced proximity assay (RiPA). eLife 2024; 13:RP98450. [PMID: 39641357 PMCID: PMC11623929 DOI: 10.7554/elife.98450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest. As more and more ligands for novel E3 ligases are discovered, the chemical effort to identify the best E3 ligase for a given target is exploding. Therefore, a genetic system to identify degradation-causing E3 ligases and suitable target/E3 ligase pairs is urgently needed. Here, we used the well-established dimerization of the FKBP12 protein and FRB domain by rapamycin to bring the target protein WDR5 into proximity with candidate E3 ligases. Strikingly, this rapamycin-induced proximity assay (RiPA) revealed that VHL, but not Cereblon, is able to induce WDR5 degradation - a finding previously made by PROTACs, demonstrating its predictive power. By optimizing the steric arrangement of all components and fusing the target protein with a minimal luciferase, RiPA can identify the ideal E3 for any target protein of interest in living cells, significantly reducing and focusing the chemical effort in the early stages of PROTAC development.
Collapse
Affiliation(s)
| | | | - Mathias Diebold
- Institute of Biochemistry, University of KielKielGermany
- Institut für Pharmazie und Lebensmittelchemie, University of WürzburgWürzburgGermany
| | - Christoph Sotriffer
- Institut für Pharmazie und Lebensmittelchemie, University of WürzburgWürzburgGermany
| | - Elmar Wolf
- Institute of Biochemistry, University of KielKielGermany
| |
Collapse
|
29
|
Liu J, Liu Y, Tang J, Gong Q, Yan G, Fan H, Zhang X, Pu C. Recent advances in dual PROTACs degrader strategies for disease treatment. Eur J Med Chem 2024; 279:116901. [PMID: 39341095 DOI: 10.1016/j.ejmech.2024.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) is regarded as an emerging therapeutic strategy with unlimited potential because of its mechanism of inducing target protein degradation though harnessing ubiquitin-proteasome system (UPS). Recently, researchers are combining the advantages of PROTACs and dual-targeted drugs to explore some new types of dual PROTACs degraders. The utilization of dual PROTACs not only enhances the efficiency of selective degradation for two or more distinct proteins, but also facilitates synergistic interactions between target proteins to optimize therapeutic efficacy as well as overcome resistance. In this review, we briefly investigate the innovative strategies of dual degraders based on bivalent or trivalent "Y-type" PROTACs in recent years, outline their design principles, degradation effects, and anticancer activities. Moreover, their advantages and limitations compared with traditional PROTACs will be discussed and provide the outlook on the associated challenges. Meaningfully, the development and application of these dual-targeted PROTACs may point out new directions for replacing numerous combination regimens in the future.
Collapse
Affiliation(s)
- Jianyu Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yanzhuo Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jiao Tang
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan, 610500, China
| | - Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Guoyi Yan
- School of pharmacy, Xinxiang University, Xinxiang, Henan, 453003, China
| | - Hengrui Fan
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xueping Zhang
- Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610041, China.
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
30
|
Pravin N, Jóźwiak K. PROTAC unleashed: Unveiling the synthetic approaches and potential therapeutic applications. Eur J Med Chem 2024; 279:116837. [PMID: 39305635 DOI: 10.1016/j.ejmech.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are a novel class of bifunctional small molecules that alter protein levels by targeted degradation. This innovative approach uses the ubiquitin-proteasome system to selectively eradicate disease-associated proteins, providing a novel therapeutic strategy for a wide spectrum of diseases. This review delineates detailed synthetic approaches involved in PROTAC building blocks, including the ligand and protein binding parts, linker attached structural components of PROTACs and the actual PROTAC molecules. Furthermore, the recent advancements in PROTAC-mediated degradation of specific oncogenic and other disease-associated proteins, such as those involved in neurodegenerative, antiviral, and autoimmune diseases, were also discussed. Additionally, we described the current landscape of PROTAC clinical trials and highlighted key studies that underscore the translational potential of this emerging therapeutic modality. These findings demonstrate the versatility of PROTACs in modulating the levels of key proteins involved in various severe diseases.
Collapse
Affiliation(s)
- Narayanaperumal Pravin
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Ul.W.Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
31
|
Wang Y, Zhang Y, Luo H, Wei W, Liu W, Wang W, Wu Y, Peng C, Ji Y, Zhang J, Zhu C, Bai W, Xia L, Lei H, Xu H, Yin L, Weng W, Yang L, Liu L, Zhou A, Wei Y, Zhu Q, Zhu W, Yang Y, Xu Z, Wu Y. Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells. Acta Pharm Sin B 2024; 14:5235-5248. [PMID: 39807309 PMCID: PMC11725127 DOI: 10.1016/j.apsb.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 01/16/2025] Open
Abstract
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity. Inactivation or knockdown of USP2 leads to the degradation of KRAS, resulting in the suppression of MM cell proliferation in vitro and in vivo. Conversely, overexpressing USP2 stabilizes KRAS and partially abrogates GA-induced apoptosis in MM cells. Furthermore, elevated USP2 levels may be associated with poorer prognoses in MM patients. These findings highlight the potential of the USP2/KRAS axis as a therapeutic target in MM, suggesting that strategically inducing KRAS degradation via USP2 inhibition could be a promising approach for treating cancers with KRAS mutations.
Collapse
Affiliation(s)
- Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Luo
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wei Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wanting Liu
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Cheng Peng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfang Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chujiao Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Bai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xia
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leimiao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aiwu Zhou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueyue Wei
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongqing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Schwalm MP, Dopfer J, Kumar A, Greco FA, Bauer N, Löhr F, Heering J, Cano-Franco S, Lechner S, Hanke T, Jaser I, Morasch V, Lenz C, Fearon D, Marples PG, Tomlinson CWE, Brunello L, Saxena K, Adams NBP, von Delft F, Müller S, Stolz A, Proschak E, Kuster B, Knapp S, Rogov VV. Critical assessment of LC3/GABARAP ligands used for degrader development and ligandability of LC3/GABARAP binding pockets. Nat Commun 2024; 15:10204. [PMID: 39587067 PMCID: PMC11589570 DOI: 10.1038/s41467-024-54409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Recent successes in developing small molecule degraders that act through the ubiquitin system have spurred efforts to extend this technology to other mechanisms, including the autophagosomal-lysosomal pathway. Therefore, reports of autophagosome tethering compounds (ATTECs) have received considerable attention from the drug development community. ATTECs are based on the recruitment of targets to LC3/GABARAP, a family of ubiquitin-like proteins that presumably bind to the autophagosome membrane and tether cargo-loaded autophagy receptors into the autophagosome. In this work, we rigorously tested the target engagement of the reported ATTECs to validate the existing LC3/GABARAP ligands. Surprisingly, we were unable to detect interaction with their designated target LC3 using a diversity of biophysical methods. Intrigued by the idea of developing ATTECs, we evaluated the ligandability of LC3/GABARAP by in silico docking and large-scale crystallographic fragment screening. Data based on approximately 1000 crystal structures revealed that most fragments bound to the HP2 but not to the HP1 pocket within the LIR docking site, suggesting a favorable ligandability of HP2. Through this study, we identified diverse validated LC3/GABARAP ligands and fragments as starting points for chemical probe and ATTEC development.
Collapse
Affiliation(s)
- Martin P Schwalm
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
- German Cancer Consortium (DKTK) / German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120, Heidelberg, Germany
| | - Johannes Dopfer
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Adarsh Kumar
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Francesco A Greco
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Nicolas Bauer
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute for Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Sara Cano-Franco
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Thomas Hanke
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Ivana Jaser
- NanoTemper Technologies GmbH, Flößergasse 4, 81369, Munich, Germany
| | - Viktoria Morasch
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Christopher Lenz
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Peter G Marples
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Charles W E Tomlinson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Lorene Brunello
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Krishna Saxena
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Nathan B P Adams
- NanoTemper Technologies GmbH, Flößergasse 4, 81369, Munich, Germany
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany.
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany.
- German Cancer Consortium (DKTK) / German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120, Heidelberg, Germany.
| | - Vladimir V Rogov
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany.
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438, Frankfurt, Germany.
| |
Collapse
|
33
|
Li T, Gu C, Zhou C, Mao C, Yang K, Xu J, Lu T, Chen J. Insights into direct KRAS inhibition strategies for cancer treatment. Future Med Chem 2024; 16:2411-2429. [PMID: 39569642 PMCID: PMC11622815 DOI: 10.1080/17568919.2024.2424149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
KRAS is the most commonly mutated isoform in RAS-driven cancers. In the early stage, KRAS was deemed as an "undruggable" cancer target due to the lack of suitable binding pockets. With the development of KRAS inhibitors in recent years, strategies that directly suppress oncogenic KRAS have achieved significant breakthroughs. In this review, we summarize recent advances in direct small-molecule KRAS inhibitors used for cancer therapy, highlighting their medicinal chemistry optimization processes. Moreover, new PROTACs targeting the KRAS mutation are also presented. Additionally, we put forward the challenges and prospects for the development of future KRAS inhibitors.
Collapse
Affiliation(s)
- Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL32610, United States
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines & Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
34
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
35
|
Whaby M, Ketavarapu G, Koide A, Mazzei M, Mintoo M, Glasser E, Patel U, Nasarre C, Sale MJ, McCormick F, Koide S, O'Bryan JP. Inhibition and degradation of NRAS with a pan-NRAS monobody. Oncogene 2024; 43:3489-3497. [PMID: 39379700 PMCID: PMC11584388 DOI: 10.1038/s41388-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
The RAS family GTPases are the most frequently mutated oncogene family in human cancers. Activating mutations in either of the three RAS isoforms (HRAS, KRAS, or NRAS) are found in nearly 20% of all human tumors with NRAS mutated in ~25% of melanomas. Despite remarkable advancements in therapies targeted against mutant KRAS, NRAS-specific pharmacologics are lacking. Thus, development of inhibitors of NRAS would address a critical unmet need to treating primary tumors harboring NRAS mutations as well as BRAF-mutant melanomas, which frequently develop resistance to clinically approved BRAF inhibitors through NRAS mutation. Building upon our previous studies with the monobody NS1 that recognizes HRAS and KRAS but not NRAS, here we report the development of a monobody that specifically binds to both GDP and GTP-bound states of NRAS and inhibits NRAS-mediated signaling in a mutation-agnostic manner. Further, this monobody can be formatted into a genetically encoded NRAS-specific degrader. Our study highlights the feasibility of developing NRAS selective inhibitors for therapeutic efforts.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Megan Mazzei
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mubashir Mintoo
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eliezra Glasser
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Unnatiben Patel
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Cecile Nasarre
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew J Sale
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
36
|
Movahed F, Ourang Z, Neshat R, Hussein WS, Saihood AS, Alarajy MS, Zareii D. PROTACs in gynecological cancers: Current knowledge and future potential as a treatment strategy. Pathol Res Pract 2024; 263:155611. [PMID: 39357191 DOI: 10.1016/j.prp.2024.155611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cancer continues to threaten human health regardless of novel therapeutic options. Over the last two decades, targeted therapy has emerged as a significant advancement in treating malignancies, surpassing standard chemoradiotherapy and surgical procedures. Gynecological malignancies, including cervical, endometrial, and ovarian carcinoma, have a bad prognosis in advanced or metastatic stages and are difficult to treat. The advancements in understanding the molecular pathways behind cancer development offer valuable insights into promising targeted medicines, and researchers have always searched for a superior and safe technique to target cancer-related oncoproteins because of the limited therapeutic benefit, drug resistance, and off-target effects of current targeted treatments. Recently, proteolysis-targeting chimeras (PROTACs) have been developed to selectively degrade proteins using the natural ubiquitin-proteasome system (UPS). These approaches have garnered significant attention in the field of cancer research. The rapid progress in PROTACs has also eased the targeting of various oncoproteins in gynecological cancer. Therefore, this review aims to elucidate the mechanism and research advancements of PROTACs and provide a comprehensive overview of their use in gynecological tumors.
Collapse
Affiliation(s)
- Fatemeh Movahed
- Department of Gynecology and Obstetrics, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ourang
- M.D, Arak University of Medical Sciences, Arak, Iran
| | - Razieh Neshat
- Department of Biological Sciences, Faculty of Food Biotechnology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Wael Sheet Hussein
- Dental Prosthetics Techniques Department, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Anwar Salih Saihood
- Department of Microbiology, College of Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Maythum Shallan Alarajy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon 51001, Iraq
| | - Donya Zareii
- Department of Biology, Islamic Azad University of Sanandaj, Kurdistan, Iran.
| |
Collapse
|
37
|
Qiu Y, Wiewiora RP, Izaguirre JA, Xu H, Sherman W, Tang W, Huang X. Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design. JACS AU 2024; 4:3857-3868. [PMID: 39483225 PMCID: PMC11522902 DOI: 10.1021/jacsau.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Targeted protein degradation (TPD) is emerging as a promising therapeutic approach for cancer and other diseases, with an increasing number of programs demonstrating its efficacy in human clinical trials. One notable method for TPD is Proteolysis Targeting Chimeras (PROTACs) that selectively degrade a protein of interest (POI) through E3-ligase induced ubiquitination followed by proteasomal degradation. PROTACs utilize a warhead-linker-ligand architecture to bring the POI (bound to the warhead) and the E3 ligase (bound to the ligand) into proximity. The resulting non-native protein-protein interactions (PPIs) formed between the POI and E3 ligase lead to the formation of a stable ternary complex, enhancing cooperativity for TPD. A significant challenge in PROTAC design is the screening of the linkers to induce favorable non-native PPIs between POI and E3 ligase. Here, we present a physics-based computational protocol to predict noncanonical and metastable PPI interfaces between an E3 ligase and a given POI, aiding in the design of linkers to stabilize the ternary complex and enhance degradation. Specifically, we build the non-Markovian dynamic model using the Integrative Generalized Master equation (IGME) method from ∼1.5 ms all-atom molecular dynamics simulations of linker-less encounter complex, to systematically explore the inherent PPIs between the oncogene homologue protein and the von Hippel-Lindau E3 ligase. Our protocol revealed six metastable states each containing a different PPI interface. We selected three of these metastable states containing promising PPIs for linker design. Our selection criterion included thermodynamic and kinetic stabilities of PPIs and the accessibility between the solvent-exposed sites on the warheads and E3 ligand. One selected PPIs closely matches a recent cocrystal PPI interface structure induced by an experimentally designed PROTAC with potent degradation efficacy. We anticipate that our protocol has significant potential for widespread application in predicting metastable POI-ligase interfaces that can enable rational design of PROTACs.
Collapse
Affiliation(s)
- Yunrui Qiu
- Department
of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Data
Science Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | - Huafeng Xu
- Atommap
Corporation, NY, New York 10013, United
States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210, United States
| | - Weiping Tang
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xuhui Huang
- Department
of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Data
Science Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Krygier K, Wijetunge AN, Srayeddin A, Mccann H, Rullo AF. Leveraging Covalency to Stabilize Ternary Complex Formation For Cell-Cell "Induced Proximity". ACS Chem Biol 2024; 19:2103-2117. [PMID: 39325690 DOI: 10.1021/acschembio.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Recent advances in the field of translational chemical biology use diverse "proximity-inducing" synthetic modalities to elicit new modes of "event driven" pharmacology. These include mechanisms of targeted protein degradation and immune clearance of pathogenic cells. Heterobifunctional "chimeric" compounds like Proteolysis TArgeting Chimeras (PROTACs) and Antibody Recruiting Molecules (ARMs) leverage these mechanisms, respectively. Both systems function through the formation of reversible "ternary" or higher-order biomolecular complexes. Critical to function are key parameters, such as bifunctional molecule affinity for endogenous proteins, target residence time, and turnover. To probe the mechanism and enhance function, covalent chemical approaches have been developed to kinetically stabilize ternary complexes. These include electrophilic PROTACs and Covalent Immune Recruiters (CIRs), the latter designed to uniquely enforce cell-cell induced proximity. Inducing cell-cell proximity is associated with key challenges arising from a combination of steric and/or mechanical based destabilizing forces on the ternary complex. These factors can attenuate the formation of ternary complexes driven by high affinity bifunctional/proximity inducing molecules. This Account describes initial efforts in our lab to address these challenges using the CIR strategy in antibody recruitment or receptor engineered T cell model systems of cell-cell induced proximity. ARMs form ternary complexes with serum antibodies and surface protein antigens on tumor cells that subsequently engage immune cells via Fc receptors. Binding and clustering of Fc receptors trigger immune cell killing of the tumor cell. We applied the CIR strategy to convert ARMs to covalent chimeras, which "irreversibly" recruit serum antibodies to tumor cells. These covalent chimeras leverage electrophile preorganization and kinetic effective molarity to achieve fast and selective covalent engagement of the target ternary complex protein, e.g., serum antibody. Importantly, covalent engagement can proceed via diverse binding site amino acids beyond cysteine. Covalent chimeras demonstrated striking functional enhancements compared to noncovalent ARM analogs in functional immune assays. We revealed this enhancement was in fact due to the increased kinetic stability and not concentration, of ternary complexes. This finding was recapitulated using analogous CIR modalities that integrate peptidic or carbohydrate binding ligands with Sulfur(VI) Fluoride Exchange (SuFEx) electrophiles to induce cell-cell proximity. Mechanistic studies in a distinct model system that uses T cells engineered with receptors that recognize covalent chimeras or ARMs, revealed covalent receptor engagement uniquely enforces downstream activation signaling. Finally, this Account discusses potential challenges and future directions for adapting and optimizing covalent chimeric/bifunctional molecules for diverse applications in cell-cell induced proximity.
Collapse
Affiliation(s)
- Karolina Krygier
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Anjalee N Wijetunge
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Arthur Srayeddin
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Harrison Mccann
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Anthony F Rullo
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| |
Collapse
|
39
|
Cordani N, Nova D, Sala L, Abbate MI, Colonese F, Cortinovis DL, Canova S. Proteolysis Targeting Chimera Agents (PROTACs): New Hope for Overcoming the Resistance Mechanisms in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:11214. [PMID: 39456995 PMCID: PMC11508910 DOI: 10.3390/ijms252011214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in early and advanced stages. While the introduction of powerful TKIs increases the ratio of potentially curable patients, the disease does develop resistance over time through either secondary mutations or bypass activating tracks. Therefore, new treatment strategies are being developed to either overcome this inevitable resistance or to prevent it, and proteolysis targeting chimera agents (PROTACs) are among them. They consist of two linked molecules that bind to a target protein and an E3 ubiquitin ligase that causes ubiquitination and degradation of proteins of interest. In this paper, we review the rationale for PROTAC therapy and the current development of PROTACs for oncogene-addicted lung cancer. Moreover, we critically analyze the strengths and limitations of this promising technique that may help pave the way for future perspectives.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniele Nova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Luca Sala
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Maria Ida Abbate
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Francesca Colonese
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Diego Luigi Cortinovis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Stefania Canova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| |
Collapse
|
40
|
Liang L, Zhang Z, You Q, Guo X. Recent advances in the design of small molecular drugs with acrylamides covalent warheads. Bioorg Med Chem 2024; 112:117902. [PMID: 39236467 DOI: 10.1016/j.bmc.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
In the development of covalent inhibitors, acrylamides warhead is one of the most popular classes of covalent warheads. In recent years, researchers have made different structural modifications to acrylamides warheads, resulting in the creation of fluorinated acrylamide warheads and cyano acrylamide warheads. These new warheads exhibit superior selectivity, intracellular accumulation, and pharmacokinetic properties. Additionally, although ketoamide warheads have been applied in the design of covalent inhibitors for viral proteins, it has not received sufficient attention. Combined with the studies in kinase inhibitors and antiviral drugs, this review presents the structural features and the progression of acrylamides warheads, offering a perspective on future research and development in this field.
Collapse
Affiliation(s)
- Luxia Liang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ze Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
41
|
Piech S, Brüschweiler S, Westphalen J, Siess KM, García Murias J, Konrat R, Bigenzahn JW, Superti-Furga G. Identification and Characterization of Novel Small-Molecule Enhancers of the CUL3 LZTR1 E3 Ligase KRAS Complex. ACS Chem Biol 2024; 19:1942-1952. [PMID: 39194017 PMCID: PMC11420953 DOI: 10.1021/acschembio.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
The RAS family of GTPases is among the most frequently mutated proteins in human cancer, creating a high clinical demand for therapies that counteract their signaling activity. An important layer of regulation that could be therapeutically exploited is the proteostatic regulation of the main RAS GTPases KRAS, NRAS, and HRAS, as well as the closely related members, MRAS and RIT1, by the leucine zipper-like transcriptional regulator 1 cullin 3 RING E3 ubiquitin ligase complex (CUL3LZTR1). Genetic inactivation of LZTR1, as observed in different cancer entities and Noonan syndrome leads to enhanced RAS GTPase abundance and altered MAPK pathway activation state. Novel therapeutic approaches to interfere with hyperactive RAS signaling, thereby complementing existing treatments, are highly sought after. Motivated by the growing arsenal of molecular glue degraders, we report the identification of novel chemical fragments that enhance the protein-protein interaction (PPI) of the KRAS-LZTR1 complex. We established a split-luciferase-based reporter assay that monitors the RAS GTPase-LZTR1 interaction in a scalable format, capable of capturing chemical, as well as mutational perturbations. Using this screening system, in combination with a small fragment library, we identified two fragments, C53 and Z86, that enhance the interaction of the KRAS-LZTR1 complex in a dose-dependent manner. Further orthogonal validation experiments using proximity biotinylation (BioID), thermal shift assays, and NMR spectroscopy demonstrated fragment-dependent enhanced recruitment of endogenous LZTR1 and physical engagement of KRAS. The two fragments, which potentiate the KRAS-LZTR1 interaction, serve as starting points for fragment-based drug discovery. Additionally, the assay we introduced is amenable to high-throughput screening to further explore the pharmacological modulation of the CUL3LZTR1-RAS GTPase complex.
Collapse
Affiliation(s)
- Sophie Piech
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | | | - Josepha Westphalen
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | | | - Julio García Murias
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Robert Konrat
- MAG-LAB
GmbH, 1030 Vienna, Austria
- Department
of Structural and Computational Biology, University of Vienna, 1030 Vienna, Austria
| | - Johannes W. Bigenzahn
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Department
of Laboratory Medicine, Medical University
of Vienna, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna Austria
| |
Collapse
|
42
|
Popow J, Farnaby W, Gollner A, Kofink C, Fischer G, Wurm M, Zollman D, Wijaya A, Mischerikow N, Hasenoehrl C, Prokofeva P, Arnhof H, Arce-Solano S, Bell S, Boeck G, Diers E, Frost AB, Goodwin-Tindall J, Karolyi-Oezguer J, Khan S, Klawatsch T, Koegl M, Kousek R, Kratochvil B, Kropatsch K, Lauber AA, McLennan R, Olt S, Peter D, Petermann O, Roessler V, Stolt-Bergner P, Strack P, Strauss E, Trainor N, Vetma V, Whitworth C, Zhong S, Quant J, Weinstabl H, Kuster B, Ettmayer P, Ciulli A. Targeting cancer with small-molecule pan-KRAS degraders. Science 2024; 385:1338-1347. [PMID: 39298590 DOI: 10.1126/science.adm8684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) protein are highly prevalent in cancer. However, small-molecule concepts that address oncogenic KRAS alleles remain elusive beyond replacing glycine at position 12 with cysteine (G12C), which is clinically drugged through covalent inhibitors. Guided by biophysical and structural studies of ternary complexes, we designed a heterobifunctional small molecule that potently degrades 13 out of 17 of the most prevalent oncogenic KRAS alleles. Compared with inhibition, KRAS degradation results in more profound and sustained pathway modulation across a broad range of KRAS mutant cell lines, killing cancer cells while sparing models without genetic KRAS aberrations. Pharmacological degradation of oncogenic KRAS was tolerated and led to tumor regression in vivo. Together, these findings unveil a new path toward addressing KRAS-driven cancers with small-molecule degraders.
Collapse
Affiliation(s)
- Johannes Popow
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - David Zollman
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Andre Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | | | - Polina Prokofeva
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | | | | | - Sammy Bell
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Georg Boeck
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Emelyne Diers
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Aileen B Frost
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Jake Goodwin-Tindall
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | - Shakil Khan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Arnel A Lauber
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Ross McLennan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Sabine Olt
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Daniel Peter
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | | | - Patrick Strack
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Eva Strauss
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Nicole Trainor
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Vesna Vetma
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Claire Whitworth
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Siying Zhong
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Jens Quant
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
43
|
Zhao C, Zhang J, Zhou H, Setroikromo R, Poelarends GJ, Dekker FJ. Exploration of Hydrazide-Based HDAC8 PROTACs for the Treatment of Hematological Malignancies and Solid Tumors. J Med Chem 2024; 67:14016-14039. [PMID: 39089850 PMCID: PMC11345830 DOI: 10.1021/acs.jmedchem.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
HDAC8 can mediate signals by using its enzymatic or nonenzymatic functions, which are expected to be critical for various types of cancer. Herein, we employed proteolysis targeting chimera (PROTAC) technology to target the enzymatic as well as the nonenzymatic functions of HDAC8. A potent and selective HDAC8 PROTAC Z16 (CZH-726) with low nanomolar DC50 values in various cell lines was identified. Interestingly, Z16 induced structural maintenance of chromosomes protein 3 (SMC3) hyperacetylation at low concentrations and histone hyperacetylation at high concentrations, which can be explained by HDAC8 degradation and off-target HDAC inhibition, respectively. Notably, Z16 potently inhibited proliferation of various cancer cell lines and the antiproliferative mechanisms proved to be cell-type-dependent, which, to a large extent, is due to off-target HDAC inhibition. In conclusion, we report a hydrazide-based HDAC8 PROTAC Z16, which can be used as a probe to investigate the biological functions of HDAC8.
Collapse
Affiliation(s)
| | | | - Hangyu Zhou
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
44
|
Li Y, Yang L, Li X, Zhang X. Inhibition of GTPase KRAS G12D: a review of patent literature. Expert Opin Ther Pat 2024; 34:701-721. [PMID: 38884569 DOI: 10.1080/13543776.2024.2369630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION KRAS is a critical oncogenic protein intricately involved in tumor progression, and the difficulty in targeting KRAS has led it to be classified as an 'undruggable target.' Among the various KRAS mutations, KRASG12D is highly prevalent and represents a promising therapeutic target, yet there are currently no approved inhibitors for it. AREA COVERED This review summarizes numerous patents and literature featuring inhibitors or degraders of KRASG12D through searching relevant information in PubMed, SciFinder and Web of Science databases from 2021 to February 2024, providing an overview of the research progress on inhibiting KRASG12D in terms of design strategies, chemical structures, biological activities, and clinical advancements. EXPERT OPINION Since the approval of AMG510 (Sotorasib), there has been an increasing focus on the inhibition of KRASG12D, leading to numerous reports of related inhibitors and degraders. Among them, MRTX1133, as the first KRASG12D inhibitor to enter clinical trials, has demonstrated excellent tumor suppression in various KRASG12D-bearing human tumor xenograft models. It is important to note, however, that understanding the mechanisms of acquired resistance caused by KRAS inhibition and developing additional combination therapies is crucial. Moreover, seeking covalent inhibition of KRASG12D also holds significant potential.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Le Yang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xiaoran Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
45
|
Agarwal P, Reid DL, Amiji M. CNS delivery of targeted protein degraders. J Control Release 2024; 372:661-673. [PMID: 38936742 DOI: 10.1016/j.jconrel.2024.06.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Heterobifunctional small molecule degraders are a subset of targeted protein degraders (TPDs), consisting of two ligands joined by a linker to induce proteasomal degradation of a target protein. As compared to traditional small molecules these compounds generally demonstrate inflated physicochemical properties, which may require innovative formulation strategies to enable their delivery and exert pharmacodynamic effect. The blood brain barrier (BBB) serves an essential function in human physiology, but its presence requires advanced approaches for treating central nervous system (CNS) diseases. By integrating emerging modalities like TPDs with conventional concepts of drug delivery, novel strategies to overcome the BBB can be developed. Amongst the available routes, lipid and polymer-based long-acting delivery seems to be the most amenable to TPDs, due to their ability to encapsulate lipophilic cargo and potential to be functionalized for targeted delivery. Another key consideration will be understanding E3 ligase expression in the different regions of the brain. Discovery of new brain or CNS disease specific E3 ligases could help overcome some of the barriers currently associated with CNS delivery of TPDs. This review discusses the current strategies that exist to overcome and improve therapeutic delivery of TPDs to the CNS.
Collapse
Affiliation(s)
- Prashant Agarwal
- Drug Product Technologies, Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States of America
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
46
|
Kanbar K, El Darzi R, Jaalouk DE. Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed. Front Genet 2024; 15:1434002. [PMID: 39144725 PMCID: PMC11321987 DOI: 10.3389/fgene.2024.1434002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Cancer continues to present a substantial global health challenge, with its incidence and mortality rates persistently reflecting its significant impact. The emergence of precision oncology has provided a breakthrough in targeting oncogenic drivers previously deemed "undruggable" by conventional therapeutics and by limiting off-target cytotoxicity. Two groundbreaking technologies that have revolutionized the field of precision oncology are primarily CRISPR-Cas9 gene editing and more recently PROTAC (PROteolysis TArgeting Chimeras) targeted protein degradation technology. CRISPR-Cas9, in particular, has gained widespread recognition and acclaim due to its remarkable ability to modify DNA sequences precisely. Rather than editing the genetic code, PROTACs harness the ubiquitin proteasome degradation machinery to degrade proteins of interest selectively. Even though CRISPR-Cas9 and PROTAC technologies operate on different principles, they share a common goal of advancing precision oncology whereby both approaches have demonstrated remarkable potential in preclinical and promising data in clinical trials. CRISPR-Cas9 has demonstrated its clinical potential in this field due to its ability to modify genes directly and indirectly in a precise, efficient, reversible, adaptable, and tissue-specific manner, and its potential as a diagnostic tool. On the other hand, the ability to administer in low doses orally, broad targeting, tissue specificity, and controllability have reinforced the clinical potential of PROTAC. Thus, in the field of precision oncology, gene editing using CRISPR technology has revolutionized targeted interventions, while the emergence of PROTACs has further expanded the therapeutic landscape by enabling selective protein degradation. Rather than viewing them as mutually exclusive or competing methods in the field of precision oncology, their use is context-dependent (i.e., based on the molecular mechanisms of the disease) and they potentially could be used synergistically complementing the strengths of CRISPR and vice versa. Herein, we review the current status of CRISPR and PROTAC designs and their implications in the field of precision oncology in terms of clinical potential, clinical trial data, limitations, and compare their implications in precision clinical oncology.
Collapse
Affiliation(s)
- Karim Kanbar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Roy El Darzi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
47
|
HAMILTON GERHARD, EGGERSTORFER MARIETHERESE, STICKLER SANDRA. Development of PROTACS degrading KRAS and SOS1. Oncol Res 2024; 32:1257-1264. [PMID: 39055890 PMCID: PMC11267056 DOI: 10.32604/or.2024.051653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 07/28/2024] Open
Abstract
The Kirsten rat sarcoma virus-son of sevenless 1 (KRAS-SOS1) axis drives tumor growth preferentially in pancreatic, colon, and lung cancer. Now, KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS. However, the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%, lasting for a mean period of 8 months. One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras (PROTACs), which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity. Accordingly, PROTACs have been developed based on KRAS- or SOS1-directed inhibitors coupled to either von Hippel-Lindau (VHL) or Cereblon (CRBN) ligands that invoke the proteasomal degradation. Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear. The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals. Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase. Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.
Collapse
Affiliation(s)
- GERHARD HAMILTON
- Institute of Pharmacology, Medical University of Vienna, Vienna, 1090, Austria
| | | | - SANDRA STICKLER
- Institute of Pharmacology, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
48
|
Oya Y, Imaizumi K, Mitsudomi T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 2024; 194:107886. [PMID: 39047616 DOI: 10.1016/j.lungcan.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed 'undruggable' for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of KRAS mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C KRAS mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.
Collapse
Affiliation(s)
- Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Japan
| | | | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Izumi City General Hospital, Japan; Kindai University, Faculty of Medicine, Japan.
| |
Collapse
|
49
|
Koldenhof P, Bemelmans MP, Ghosh B, Damm-Ganamet KL, van Vlijmen HWT, Pande V. Application of AlphaFold models in evaluating ligandable cysteines across E3 ligases. Proteins 2024; 92:819-829. [PMID: 38337153 DOI: 10.1002/prot.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.
Collapse
Affiliation(s)
- Patrick Koldenhof
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| | | | - Brahma Ghosh
- Discovery Chemistry, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | | | | | - Vineet Pande
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| |
Collapse
|
50
|
Ni D, Qi Z, Wang Y, Man Y, Pang J, Tang W, Chen J, Li J, Li G. KLF15-activated MARCH2 boosts cell proliferation and epithelial-mesenchymal transition and presents diagnostic significance for hepatocellular carcinoma. Exp Cell Res 2024; 440:114117. [PMID: 38848952 DOI: 10.1016/j.yexcr.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown. METHODS Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter. RESULTS Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression. CONCLUSION KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.
Collapse
Affiliation(s)
- Dongsheng Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Zhaolai Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Yuefeng Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|