1
|
Hou L, Li WC, Wang S, Lu AH. Multiscale Tunable Nanorings Based on Bi-Component Micellar-Configuration-Transformation Induced by Hydrophobicity. SMALL METHODS 2024; 8:e2400423. [PMID: 39129659 DOI: 10.1002/smtd.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ringy nanostructures are amazing materials, displaying unique optical, magnetic, and electronic properties highly related to their dimensions. A strategy capable of continuously tailoring the diameter of nanorings is the key to elucidating their structure-function relationship. Herein, a method of bi-component micellar-configuration-transformation induced by hydrophobicity for the synthesis of nanorings with diameters ranging from submicron (≈143 nm) to micron (≈4.8 µm) and their carbonaceous analogs is established. Remarkably, the nanorings fabricated with this liquid phase strategy achieve the record for the largest diameter span. Through varying the molecular lengths of fatty alcohols and copolymers, shortening the molecular length of fatty alcohol can swell the primary micelles, improve the exposure of hydrophobic component and boost the assembly kinetics for ultra-large nanorings is shown here. On the other hand, shortening the molecular length of the copolymer will give rise to ultra-small nanorings by reducing the size of primary micelles and shortening the assembly time. When assembling the nanorings into monolayer arrays and then depositing Au, such substrate displays enhanced surface-enhanced Raman scattering (SERS) performance. This research develops a facile method for the controllable synthesis of ringy materials with multiscale tunable diameters and may inspire more interesting applications in physics, optical, and sensors.
Collapse
Affiliation(s)
- Lu Hou
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Sijia Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
2
|
Han J, Xu H, Zhao B, Sun R, Chen G, Wu T, Zhong G, Gao Y, Zhang SL, Yamauchi Y, Guan B. "Hard" Emulsion-Induced Interface Super-Assembly: A General Strategy for Two-Dimensional Hierarchically Porous Metal-Organic Framework Nanoarchitectures. J Am Chem Soc 2024; 146:18979-18988. [PMID: 38950132 DOI: 10.1021/jacs.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Two-dimensional (2D) hierarchically porous metal-organic framework (MOF) nanoarchitectures with tailorable meso-/macropores hold great promise for enhancing mass transfer kinetics, augmenting accessible active sites, and thereby boosting performance in heterogeneous catalysis. However, achieving the general synthesis of 2D free-standing MOF nanosheets with controllable hierarchical porosity and thickness remains a challenging task. Herein, we present an ingenious "hard" emulsion-induced interface super-assembly strategy for preparing 2D hierarchically porous UiO-66-NH2 nanosheets with highly accessible pore channels, tunable meso-/macropore sizes, and adjustable thicknesses. The methodology relies on transforming the geometric shape of oil droplet templates within appropriate oil-in-water emulsions from conventional zero-dimensional (0D) "soft" liquid spheres to 2D "hard" solid sheets below the oil's melting/freezing point. Subsequent surfactant exchange on the surface of 2D "hard" emulsions facilitates the heterogeneous nucleation and interfacial super-assembly of in situ formed mesostructured MOF nanocomposites, serving as structural units, in a loosely packed manner to produce 2D MOF nanosheets with multimodal micro/meso-/macroporous systems. Importantly, this strategy can be extended to prepare other 2D hierarchically porous MOF nanosheets by altering metal-oxo clusters and organic ligands. Benefiting from fast mass transfer and highly accessible Lewis acidic sites, the resultant 2D hierarchically porous UiO-66-NH2 nanosheets deliver a fabulous catalytic yield of approximately 96% on the CO2 cycloaddition of glycidyl-2-methylphenyl ether, far exceeding the yield of approximately 29% achieved using conventional UiO-66-NH2 microporous crystals. This "hard" emulsion-induced interface super-assembly strategy paves a new path toward the rational construction of elaborate 2D nanoarchitecture of hierarchical MOFs with tailored physicochemical properties for diverse potential applications.
Collapse
Affiliation(s)
- Ji Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Haidong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Bin Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Ruigang Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Tianyu Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Guiyuan Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Yanjing Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Song Lin Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Liu Y, Liu S, Tian Y, Wang X. Dual/Triple Template-Induced Evolved Emulsion for Controllable Construction of Anisotropic Carbon Nanoparticles from Concave to Convex. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210963. [PMID: 36591699 DOI: 10.1002/adma.202210963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Anisotropic mesoporous carbon (AMC) nanoparticles with asymmetric external morphologies, topological internal structure, and superior performance of carbon species are attracting great attention because of their seductive features differentiating them from symmetric nanoparticles. However, a bewildering challenge but crucial desire remains to endow them with flexibly tunable morphology and pore structure. Herein, a dual/triple-templating evolved emulsion strategy for tunable fabrication of AMC nanoparticles with distinctive defined structure by interface-energy-induced self-assembly is first reported based on a brand-new mechanism. It describes the possible formation process of the concave-cavity structure and allows for manipulation of the longitudinal and lateral sizes systematically by adjusting emulsion polarity and sodium oleate dosage, respectively. Interestingly, the internal pore structure can be rearranged into radial channels and the external morphology can realize structural transformation from concave to convex by innovatively introducing the third template n-hexanol, which is unprecedented at nanoscale. Remarkably, due to the excellent properties of carbon species and unique structural characteristics, AMC nanoparticles not only demonstrate good biocompatibility but also exhibit splendid performance in improving the dissolution and release rates of insoluble drug and enhancing the enzyme catalytic efficiency. Generally, this approach provides new inspiration and insights for expanding exquisite anisotropic nanomaterials for many potential applications.
Collapse
Affiliation(s)
- Yujie Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shilong Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yong Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiufang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Lv J, Xing Y, Li X, Du X. NIR light-propelled bullet-shaped carbon hollow nanomotors with controllable shell thickness for the enhanced dye removal. EXPLORATION (BEIJING, CHINA) 2022; 2:20210162. [PMID: 37324801 PMCID: PMC10191002 DOI: 10.1002/exp.20210162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Materials with asymmetric nanostructures have attracted tremendous research attention due to their unique structural characteristics, excellent physicochemical properties, and promising prospects. However, it is still difficult to design and fabricate bullet-shaped nanostructure due to its structural complexity. Herein, for the first time, we successfully constructed NIR light-propelled bullet-shaped hollow carbon nanomotors (BHCNs) with an open mouth on the bottom of nano-bullet for the enhanced dye removal, by employing bullet-shaped silica nanoparticles (B-SiO2 NPs) as a hard template. BHCNs were formed by the growth of polydopamine (PDA) layer on the heterogeneous surface of B-SiO2 NPs, followed by the carbonization of PDA and subsequent selective etching of SiO2. The shell thickness of BHCNs was able to be facilely controlled from ≈ 14 to 30 nm by tuning the added amount of dopamine. The combination of streamlined bullet-shaped nanostructure with good photothermal conversion efficiency of carbon materials facilitated the generation of asymmetric thermal gradient field around itself, thus driving the motion of BHCNs by self-thermophoresis. Noteworthily, the diffusion coefficient (De) and velocity of BCHNs with shell thickness of 15 nm (BHCNs-15) reached to 43.8 μm⋅cm-2 and 11.4 μm⋅s-1, respectively, under the illumination of 808 nm NIR laser with the power density of 1.5 W⋅cm-2. The NIR laser propulsion caused BCHNs-15 to enhance the removal efficiency (53.4% vs. 25.4%) of methylene blue (MB) as a typical dye because the faster velocity could produce the higher micromixing role between carbon adsorbent and MB. Such a smart design of the streamlined nanomotors may provide a promising potential in environmental treatment, biomedical and biosensing applications.
Collapse
Affiliation(s)
- Jinyang Lv
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Xiaoyu Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyKey Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academic of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| |
Collapse
|
5
|
Fu S, Pang A, Guo X, He Y, Song S, Ge J, Li J, Li W, Xiong Y, Wang L, Wang D, Tang BZ. Bioinspired Supramolecular Nanotoroids with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:12720-12726. [PMID: 35959972 DOI: 10.1021/acsnano.2c04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular toroids have attracted continuous attention because of their fascinating topological structure and important role in biological systems. However, it still remains a great challenge to construct supramolecular functional toroids and clarify the formation mechanism. Herein, we develop a strategy to prepare supramolecular helical fluorescent nanotoroids by cooperative self-assembly of an amino acid and a dendritic amphiphile (AIE-den-1) with aggregation-induced emission characteristics. Mechanistic investigation on the basis of fluorescence and circular dichroism analyses suggests that the toroid formation can be driven by the interactions of AIE-den-1 with amino acid and goes through a topological morphology transformation from nanofibers to left-handed nanotoroids by means of a twist-fused-loop process.
Collapse
Affiliation(s)
- Shuang Fu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Aimin Pang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Youling He
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanliang Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Li
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Yu Xiong
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Xu Y, Wang C, Wu T, Ran G, Song Q. Template-Free Synthesis of Porous Fluorescent Carbon Nanomaterials with Gluten for Intracellular Imaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21310-21318. [PMID: 35476911 DOI: 10.1021/acsami.2c00941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of carbon nanomaterials, including carbon dots, carbon nanorings (CNRs), and porous carbon nanoballs, were facilely prepared by a template-free hydrothermal treatment of gluten as the sole carbon source. Driven by the hydrophobicity interaction, a concentration-dependent self-assembly of gluten was observed in an aqueous solution, leading to the subsequent formation of different morphologies of carbon nanomaterials in a hydrothermal treatment. Among these carbon nanomaterials, the CNRs exhibit bright photoluminescence with a quantum yield of 47.0%. Furthermore, CNRs also have a large surface area and low toxicity, making them an excellent drug carrier for chemotherapeutics. A model drug molecule doxorubicin (DOX) was successfully loaded on the CNRs, and the CNRs-DOX complexes exhibit a pH-dependent DOX release behavior. Compared with free DOX, the CNRs-DOX complexes can induce a higher level of apoptosis and lower level of necrosis, showing promise as anticancer agents.
Collapse
Affiliation(s)
- Yalan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tao Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Chen C, Wang Y. The Precise Engineering of Nanostructured Carbon Materials. ACS CENTRAL SCIENCE 2021; 7:1470-1472. [PMID: 34584947 PMCID: PMC8461631 DOI: 10.1021/acscentsci.1c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Chunhong Chen
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yong Wang
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|