1
|
Türkez H, Özdemir Tozlu Ö, Saraçoğlu M, Yıldız E, Baba C, Bayram C, Çınar B, Yıldırım S, Kılıçlıoğlu M, Gözegir B, Çadırcı K. Colemanite and biological disruptions: Behavioral, neurological, and physiological findings. Regul Toxicol Pharmacol 2025; 161:105840. [PMID: 40324558 DOI: 10.1016/j.yrtph.2025.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Colemanite (COL), a boron-containing mineral, has shown potential therapeutic applications, particularly in the fields of drug delivery and bone health. However, despite its promising bioactive properties, there is a lack of comprehensive toxicological data on its safety, especially regarding its potential medical use. Previous studies have primarily focused on its industrial applications, with limited investigation into its biological effects. This gap in knowledge prompted the current study, which aimed to investigate the subacute toxicity of colemanite in rats using behavioral, hematological, biochemical, genotoxic, and histopathological analyses. Over a 7-day period, rats were treated with doses of 10, 30, and 300 mg/kg. Behavioral assessments, including locomotor activity and elevated plus maze tests, indicated enhanced exploratory behaviors, indicating heightened curiosity or activity and no alterations in motor coordination or anxiety-like behaviors. Hematological findings revealed dose-dependent reductions in hematocrit, hemoglobin, and red blood cell counts, while biochemical analyses showed elevated aspartate aminotransferase, lactate dehydrogenase, and cholesterol levels at higher doses, suggesting hepatotoxicity and lipid metabolism disruption. Genotoxicity analysis demonstrated increased micronucleus formation at 30 and 300 mg/kg, indicative of chromosomal instability possibly linked to oxidative stress. Histopathological evaluations revealed mild hepatocyte degeneration and hyperemia in the liver and brain tissues at the highest dose. Importantly, no significant toxic effects were observed at the 10 mg/kg dose. These findings highlight the dose-dependent toxicity of colemanite, with low doses exhibiting a favorable safety profile. This study underscores the need for dose optimization and further research to elucidate the molecular mechanisms underlying colemanite's toxicological effects, including its impact on various organs over both short-term and long-term exposures. Additionally, future studies should focus on assessing the human relevance of these effects to ensure its safe and effective therapeutic application.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Melik Saraçoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çınar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey; Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
| | - Metin Kılıçlıoğlu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Berrah Gözegir
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| |
Collapse
|
2
|
Karaman E, Onder GO, Goktepe O, Karakas E, Mat OC, Bolat D, Koseoglu E, Tur K, Baran M, Ermis M, Balcioglu E, Yay A. Protective Effects of Boric Acid Taken in Different Ways on Experimental Ovarian İschemia and Reperfusion. Biol Trace Elem Res 2024; 202:2730-2743. [PMID: 37743417 DOI: 10.1007/s12011-023-03871-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Ovarian ischemia is a gynecological emergency that occurs as a result of ovarian torsion, affects women of reproductive age, and reduces ovarian reserve. The current study was designed to investigate the effect of boric acid taken in different ways on histopathological changes, autophagy, oxidative stress, and DNA damage caused by ischemia and reperfusion in the ovary of adult female rats. We established seven groups of 70 adult female rats: untreated control, intraperitoneal boric acid group (IpBA), oral boric acid group (OBA), ischemia/reperfusion group (ischemia/2 h reperfusion; OIR), ischemia/reperfusion and local boric acid group (OIR + LBA), ischemia/reperfusion and intraperitoneal boric acid group (OIR + IpBA), and ischemia/reperfusion and oral boric acid group (OIR + OBA). On the 31st day of the experimental procedure, both ovaries were harvested for histologic (hematoxylen and eosin and Masson trichrom), biochemical (ELISA and AMH, MDA, SOD, and CAT analyses), and comet evaluation. In the OIR group, hemorrhage, edema, inflammation, and diminished follicle reserve were seen in the ovary. Boric acid treatment reduced the ovarian ischemia/reperfusion damage, and the follicles exhibited similar morphological features to the control group. Moreover, boric acid treatment decreased the levels of Hsp70, NF-KB, COX-2, and CD31, which increased as a result of OIR. On the other hand, SCF and AMH levels, which decreased as a result of OIR, increased with boric acid treatment. The levels of autophagy markers (Beclin-1, LC3, and p62) reached values close to those of the control group. According to the biochemical findings, it was concluded that boric acid is also effective on oxidative stress, and the AMH level was particularly high in the OIR + OBA group, consistent with the immunohistochemical staining result. In addition, it was observed that the DNA damage caused by OIR reached values close to those of the control group, especially in the OBA after OIR. This study showed the therapeutic effects of boric acid on OIR injuries; thus, boric acid may be a potential therapeutic agent for ovarian protection and fertility preservation in cases that may cause ovarian torsion.
Collapse
Affiliation(s)
- Enes Karaman
- Department of Gynecology and Obstetrics, Savur Prof Dr Aziz Sancar District State Hospital, Mardin, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Erol Karakas
- Department of Gynecology and Obstetrics, Kayseri State Hospital, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Demet Bolat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kardelen Tur
- Department of Biophysics, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mustafa Ermis
- Experimental Researches and Application Center, Erciyes University, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Adamczyk-Woźniak A, Tarkowska M, Lazar Z, Kaczorowska E, Madura ID, Maria Dąbrowska A, Lipok J, Wieczorek D. Synthesis, structure, properties and antimicrobial activity of para trifluoromethyl phenylboronic derivatives. Bioorg Chem 2021; 119:105560. [PMID: 34942467 DOI: 10.1016/j.bioorg.2021.105560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 01/16/2023]
Abstract
The [2-formyl-4-(trifluoromethyl)phenyl]boronic acid as well as its benzoxaborole and bis(benzoxaborole) derivatives were obtained and their properties studied. The 2-formyl compound displays an unusual structure in the crystalline state, with a significant twist of the boronic group, whereas in DMSO solution it tautomerizes with formation of a cyclic isomer. All the studied compounds exhibit relatively high acidity as well as a reasonable antimicrobial activity. Docking studies showed interactions of all the investigated compounds with the binding pocket of Candida albicans LeuRS. High activity against Bacillus cereus was determined for the 2-formyl compound as well as for the novel bis(benzoxaborole), whereas the studied benzoxaborole shows high antifungal action with MIC values equal to 7.8and 3.9 μg/mL against C. albicans and A. niger respectively. None of the studied compounds exhibits reasonable activity against E. coli.
Collapse
Affiliation(s)
| | - Magdalena Tarkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Zofia Lazar
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Izabela D Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Anna Maria Dąbrowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| |
Collapse
|
4
|
Turkez H, Arslan ME, Tatar A, Mardinoglu A. Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies. Neurochem Int 2021; 149:105137. [PMID: 34293392 DOI: 10.1016/j.neuint.2021.105137] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GB) is the most common and aggressive primary malignant astrocytoma correlated with poor patient survival. There are no curative treatments for GB, and it becomes resistant to chemotherapy, radiation therapy, and immunotherapy. Resistance in GB cells is closely related to their states of redox imbalance, and the role of reactive oxygen species and its impact on cancer cell survival is still far from elucidation. Boron-containing compounds, especially boric acid (BA) and borax (BX) exhibited interesting biological effects involving antibacterial, antiviral, anti-cancerogenic, anti-mutagenic, anti-inflammatory as well as anti-oxidative features. Recent studies indicated that certain boron compounds could be cytotoxic on human GB. Nevertheless, there is gap of knowledge in the literature on exploring the underlying mechanisms of anti-GB action by boron compounds. Here, we identified and compared the potential anti-GB effect of both BA and BX, and revealed their underlying anti-GB mechanism. We performed cell viability, oxidative alterations, oxidative DNA damage potential assays, and explored the inflammatory responses and gene expression changes by real-time PCR using U-87MG cells. We found that BA and BX led to a remarkable reduction in U-87MG cell viability in a concentration-dependent manner. We also found that boron compounds increased the total oxidative status and MDA levels along with the SOD and CAT enzyme activities and decreased total antioxidant capacity and GSH levels in U-87MG cells without inducing DNA damage. The cytokine levels of cancer cells were also altered. We verified the selectivity of the compounds using a normal cell line, HaCaT and found an exact opposite condition after treating HaCaT cells with BA and BX. BA applications were more effective than BX on U-87MG cell line in terms of increasing MDA levels, SOD and CAT enzyme activities, and decreasing Interleukin-1α, Interleukin-6 and Tumor necrosis factor- α (TNF- α) levels. We finally observed that anticancer effect of BA and BX were associated with the BRAF/MAPK, PTEN and PI3K/AKT signaling pathways in respect of downregulatory manner. Especially, BA application was found more favorable because of its inhibitory effect on PIK3CA, PIK3R1, PTEN and RAF1 genes. In conclusion, our analysis indicated that boron compounds may be safe and promising for effective treatment of GB.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Ataturk University, 25240; Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
5
|
Liu C, Steere L, McGregor C, Frederick BH, Pastoor T, Zhou Y, Liu CT, Cai Y, Zhou H, Xu M, Wang J, Kim SH, Whitesell L, Cowen LE, Zhang YK. Exploring boron applications in modern agriculture: A structure-activity relationship study of a novel series of multi-substitution benzoxaboroles for identification of potential fungicides. Bioorg Med Chem Lett 2021; 43:128089. [PMID: 33964438 DOI: 10.1016/j.bmcl.2021.128089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Several boron-containing small molecules have been approved by the US FDA to treat human diseases. We explored potential applications of boron-containing compounds in modern agriculture by pursuing multiple research and development programs. Here, we report a novel series of multi-substitution benzoxaboroles (1-36), a compound class that we recently reported as targeting geranylgeranyl transferase I (GGTase I) and thereby inhibiting protein prenylation (Kim et al., 2020). These compounds were designed, synthesized, and tested against the agriculturally important fungal pathogens Mycosphaerella fijiensis and Colletotrichum sublineolum in a structure-activity relationship (SAR) study. Compounds 13, 28, 30, 34 and 36 were identified as active leads with excellent antifungal MIC95 values in the range of 1.56-3.13 ppm against M. fijiensis and 0.78-3.13 ppm against C. sublineolum.
Collapse
Affiliation(s)
- Chunliang Liu
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| | - Luke Steere
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| | - Cari McGregor
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| | - Brittany H Frederick
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| | - Timothy Pastoor
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA.
| | - Yasheen Zhou
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| | - C Tony Liu
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| | - Yan Cai
- Bellen Chemistry Co., Ltd., Number 1, Caida 3rd Street, MaoHua Garden, ShunYi District, Beijing 101300, China
| | - Haibo Zhou
- Bellen Chemistry Co., Ltd., Number 1, Caida 3rd Street, MaoHua Garden, ShunYi District, Beijing 101300, China
| | - Musheng Xu
- WuXi Apptec (Tianjin), Co., Ltd, #168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Jiangong Wang
- WuXi Apptec (Tianjin), Co., Ltd, #168 Nanhai Road, TEDA, Tianjin 300457, China
| | - Sang Hu Kim
- University of Toronto, Department of Molecular Genetics, Toronto, Ontario M5G 1M1, Canada
| | - Luke Whitesell
- University of Toronto, Department of Molecular Genetics, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- University of Toronto, Department of Molecular Genetics, Toronto, Ontario M5G 1M1, Canada
| | - Yong-Kang Zhang
- Boragen, Inc., 5 Laboratory Drive, Suite 2150, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
6
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|