1
|
Will V, Moynié L, Si Ahmed Charrier E, Le Bas A, Kuhn L, Volck F, Chicher J, Aksoy H, Madec M, Antheaume C, Mislin GLA, Schalk IJ. Structure of the Outer Membrane Transporter FemA and Its Role in the Uptake of Ferric Dihydro-Aeruginoic Acid and Ferric Aeruginoic Acid in Pseudomonas aeruginosa. ACS Chem Biol 2025; 20:690-706. [PMID: 40035455 DOI: 10.1021/acschembio.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Iron is essential for bacterial growth, and Pseudomonas aeruginosa synthesizes the siderophores pyochelin (PCH) and pyoverdine to acquire it. PCH contains a thiazolidine ring that aids in iron chelation but is prone to hydrolysis, leading to the formation of 2-(2-hydroxylphenyl)-thiazole-4-carbaldehyde (IQS). Using mass spectrometry, we demonstrated that PCH undergoes hydrolysis and oxidation in solution, resulting in the formation of aeruginoic acid (AA). This study used proteomic analyses and fluorescent reporters to show that AA, dihydroaeruginoic acid (DHA), and PCH induce the expression of femA, a gene encoding the ferri-mycobactin outer membrane transporter in P. aeruginosa. Notably, the induction by AA and DHA was observed only in strains unable to produce pyoverdine, suggesting their weaker iron-chelating ability compared to that of pyoverdine. 55Fe uptake assays demonstrated that both AA-Fe and DHA-Fe complexes are transported via FemA; however, no uptake was observed for PCH-Fe through this transporter. Structural studies revealed that FemA is able to bind AA2-Fe or DHA2-Fe complexes. Key interactions are conserved between FemA and these two complexes, with specificity primarily driven by one of the two siderophore molecules. Interestingly, although no iron uptake was noted for PCH through FemA, the transporter also binds PCH-Fe in a similar manner. These findings show that under moderate iron deficiency, when only PCH is produced by P. aeruginosa, degradation products AA and DHA enhance iron uptake by inducing femA expression and facilitating iron transport through FemA. This provides new insights into the pathogen's strategies for iron homeostasis.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Lucile Moynié
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Elise Si Ahmed Charrier
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Audrey Le Bas
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, United Kingdom
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Florian Volck
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, IBMC, 2 Allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Hava Aksoy
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, UMR 7357 (CNRS/University of Strasbourg), Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Cyril Antheaume
- Université de Strasbourg, Institut des Sciences et de L'Ingénieurie Supramoleculaire, Plateforme d'analyses Chimiques 8 allée Gaspard Monge, F-67000 Strasbourg, France
| | - Gaëtan L A Mislin
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
- University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Strasbourg, Illkirch, France
| |
Collapse
|
2
|
Wettstadt S, Marcos-Torres FJ, Otero-Asman JR, García-Puente A, Ortega Á, Llamas MA. Bacterial TonB-dependent transducers interact with the anti-σ factor in absence of the inducing signal protecting it from proteolysis. PLoS Biol 2024; 22:e3002920. [PMID: 39621812 PMCID: PMC11637429 DOI: 10.1371/journal.pbio.3002920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Competitive bacteria like the human pathogen Pseudomonas aeruginosa can acquire iron from different iron carriers, which are usually internalized via outer membrane TonB-dependent receptors (TBDRs). Production of TBDRs is promoted by the presence of the substrate. This regulation often entails a signal transfer pathway known as cell-surface signaling (CSS) that involves the TBDR itself that also functions as transducer (and is thus referred to as TBDT), a cytoplasmic membrane-bound anti-σ factor, and an extracytoplasmic function σ (σECF) factor. TBDTs contain an extra N-terminal domain known as signaling domain (SD) required for the signal transfer activity of these receptors. In the current CSS model, presence of the signal allows the interaction between the TBDT and the anti-σ factor in the periplasm, promoting the proteolysis of the anti-σ factor and in turn the σECF-dependent transcription of response genes, including the TBDT gene. However, recent evidence shows that σECF activity does not depend on this interaction, suggesting that the contact between these 2 proteins fulfills a different role. Using the P. aeruginosa Fox CSS system as model, we show here that the SD of the FoxA TBDT already interacts with the C-terminal domain of the FoxR anti-σ factor in absence of the signal. This interaction protects FoxR from proteolysis in turn preventing transcription of σFoxI-dependent genes. By structural modeling of the FoxR/FoxASD interaction, we have identified the interaction sites between these 2 proteins and provide the molecular details of this interaction. We furthermore show that to exert this protective role, FoxA undergoes proteolytic cleavage, denoting a change in the paradigm of the current CSS model.
Collapse
Affiliation(s)
- Sarah Wettstadt
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J. Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Joaquín R. Otero-Asman
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alicia García-Puente
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
3
|
Faucon A, Renault J, Josts I, Couchot J, Renaud JL, Hoegy F, Plésiat P, Tidow H, Gaillard S, Mislin GLA. Synthesis and antibacterial properties under blue LED light of conjugates between the siderophore desferrioxamine B (DFOB) and an Iridium(III) complex. Bioorg Med Chem 2024; 112:117842. [PMID: 39173538 DOI: 10.1016/j.bmc.2024.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
The decline of antibiotics efficacy worldwide has recently reached a critical point urging for the development of new strategies to regain upper hand on multidrug resistant bacterial strains. In this context, the raise of photodynamic therapy (PDT), initially based on organic photosensitizers (PS) and more recently on organometallic PS, offers promising perspectives. Many PS exert their biological effects through the generation of reactive oxygen species (ROS) able to freely diffuse into and to kill surrounding bacteria. Hijacking of the bacterial iron-uptake systems with siderophore-PS conjugates would specifically target pathogens. Here, we report the synthesis of unprecedented conjugates between the siderophore desferrioxamine B (DFOB) and an antibacterial iridium(III) PS. Redox properties of the new conjugates have been determined at excited states and compared to that of an antibacterial iridium PS previously reported by our groups. Tested on nosocomial pathogen Pseudomonas aeruginosa and other bacteria, these conjugates demonstrated significant inhibitory activity when activated with blue LED light. Ir(III) conjugate and iridium free DFOB-2,2'-dipyridylamine ligands were crystallized in complex with FoxA, the outer membrane transporter involved in DFOB uptake in P. aeruginosa and revealed details of the binding mode of these unprecedented conjugates.
Collapse
Affiliation(s)
- Aline Faucon
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Julien Renault
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), 22761 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 22761 Hamburg, Germany
| | - Julie Couchot
- Université de Franche-Comté, UMR6249 CNRS Chrono-environnement, F-25000 Besançon, France
| | - Jean-Luc Renaud
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Françoise Hoegy
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Patrick Plésiat
- Université de Franche-Comté, UMR6249 CNRS Chrono-environnement, F-25000 Besançon, France
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), 22761 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 22761 Hamburg, Germany
| | - Sylvain Gaillard
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France.
| |
Collapse
|
4
|
Will V, Frey C, Normant V, Kuhn L, Chicher J, Volck F, Schalk IJ. The role of FoxA, FiuA, and FpvB in iron acquisition via hydroxamate-type siderophores in Pseudomonas aeruginosa. Sci Rep 2024; 14:18795. [PMID: 39138320 PMCID: PMC11322547 DOI: 10.1038/s41598-024-69152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Siderophores are specialized molecules produced by bacteria and fungi to scavenge iron, a crucial nutrient for growth and metabolism. Catecholate-type siderophores are mainly produced by bacteria, while hydroxamates are mostly from fungi. This study investigates the capacity of nine hydroxamate-type siderophores from fungi and Streptomyces to facilitate iron acquisition by the human pathogen Pseudomonas aeruginosa. Growth assays under iron limitation and 55Fe incorporation tests showed that all nine siderophores promoted bacterial growth and iron transport. The study also aimed to identify the TonB-dependent transporters (TBDTs) involved in iron import by these siderophores. Using mutant strains lacking specific TBDT genes, it was found that iron is imported into P. aeruginosa cells by FpvB for coprogen, triacetylfusarinine, fusigen, ferrirhodin, and ferrirubin. Iron complexed by desferioxamine G is transported by FpvB and FoxA, ferricrocin-Fe and ferrichrycin-Fe by FpvB and FiuA, and rhodotoluric acid-Fe by FpvB, FiuA, and another unidentified TBDT. These findings highlight the effectiveness of hydroxamate-type siderophores in iron transport into P. aeruginosa and provide insights into the complex molecular mechanisms involved, which are important for understanding microbial interactions and ecological balance.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Chloé Frey
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Vincent Normant
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Institut de Biologie Moléculaire Et Cellulaire, CNRS, UAR1589, Plateforme Proteomique Strasbourg - Esplanade, 2 Allée Konrad Roentgen, 67084, Strasbourg Cedex, France
| | - Johana Chicher
- Institut de Biologie Moléculaire Et Cellulaire, CNRS, UAR1589, Plateforme Proteomique Strasbourg - Esplanade, 2 Allée Konrad Roentgen, 67084, Strasbourg Cedex, France
| | - Florian Volck
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Isabelle J Schalk
- CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
- UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| |
Collapse
|
5
|
He HP, Zhao MZ, Jiao WH, Liu ZQ, Zeng XH, Li QL, Hu TY, Cheng BH. Nocardamine mitigates cellular dysfunction induced by oxidative stress in periodontal ligament stem cells. Stem Cell Res Ther 2024; 15:247. [PMID: 39113140 PMCID: PMC11305061 DOI: 10.1186/s13287-024-03812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. β-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted β-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce β-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.
Collapse
Affiliation(s)
- Hai-Peng He
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China
| | - Mei-Zhen Zhao
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Microbial Metabolism, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhi-Qiang Liu
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China
| | - Xian-Hai Zeng
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China
| | - Quan-Li Li
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China
| | - Tian-Yong Hu
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China.
| | - Bao-Hui Cheng
- Department of Dentistry, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, Shenzhen, 518172, China.
| |
Collapse
|
6
|
Mular A, Hubmann I, Petrik M, Bendova K, Neuzilova B, Aguiar M, Caballero P, Shanzer A, Kozłowski H, Haas H, Decristoforo C, Gumienna-Kontecka E. Biomimetic Analogues of the Desferrioxamine E Siderophore for PET Imaging of Invasive Aspergillosis: Targeting Properties and Species Specificity. J Med Chem 2024; 67:12143-12154. [PMID: 38907990 DOI: 10.1021/acs.jmedchem.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
Collapse
Affiliation(s)
- Andrzej Mular
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Katerina Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Barbora Neuzilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Mario Aguiar
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Patricia Caballero
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Abraham Shanzer
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
- Public Higher Medical Professional School in Opole, Katowicka 68, 45-060 Opole, Poland
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
7
|
Hussein SM, Sofoluwe A, Paleja A, Duhme-Klair A, Thomas MS. Identification of a system for hydroxamate xenosiderophore-mediated iron transport in Burkholderia cenocepacia. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001425. [PMID: 38189440 PMCID: PMC10866019 DOI: 10.1099/mic.0.001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.
Collapse
Affiliation(s)
- Syakira Mohammed Hussein
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Ameya Paleja
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Mark S. Thomas
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
8
|
Will V, Gasser V, Kuhn L, Fritsch S, Heinrichs DE, Schalk IJ. Siderophore specificities of the Pseudomonas aeruginosa TonB-dependent transporters ChtA and ActA. FEBS Lett 2023; 597:2963-2974. [PMID: 37758521 DOI: 10.1002/1873-3468.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Iron is an essential nutrient for the survival and virulence of Pseudomonas aeruginosa. The pathogen expresses at least 15 different iron-uptake pathways, the majority involving small iron chelators called siderophores. P. aeruginosa produces two siderophores, but can also use many produced by other microorganisms. This implies that the bacterium expresses appropriate TonB-dependent transporters (TBDTs) at the outer membrane to import the ferric form of each of the siderophores used. Here, we show that the two α-carboxylate-type siderophores rhizoferrin-Fe and staphyloferrin A-Fe are transported into P. aeruginosa cells by the TBDT ActA. Among the mixed α-carboxylate/hydroxamate-type siderophores, we found aerobactin-Fe to be transported by ChtA and schizokinen-Fe and arthrobactin-Fe by ChtA and another unidentified TBDT. Our findings enhance the understanding of the adaptability of P. aeruginosa and hold significant implications for developing novel strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, Strasbourg Cedex, France
| | - Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
9
|
Ni J, Wood JL, White MY, Lihi N, Markham TE, Wang J, Chivers PT, Codd R. Reduction-cleavable desferrioxamine B pulldown system enriches Ni(ii)-superoxide dismutase from a Streptomyces proteome. RSC Chem Biol 2023; 4:1064-1072. [PMID: 38033724 PMCID: PMC10685849 DOI: 10.1039/d3cb00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
Two resins with the hydroxamic acid siderophore desferrioxamine B (DFOB) immobilised as a free ligand or its Fe(iii) complex were prepared to screen the Streptomyces pilosus proteome for proteins involved in siderophore-mediated Fe(iii) uptake. The resin design included a disulfide bond to enable the release of bound proteins under mild reducing conditions. Proteomics analysis of the bound fractions did not identify proteins associated with siderophore-mediated Fe(iii) uptake, but identified nickel superoxide dismutase (NiSOD), which was enriched on the apo-DFOB-resin but not the Fe(iii)-DFOB-resin or the control resin. While DFOB is unable to sequester Fe(iii) from sites deeply buried in metalloproteins, the coordinatively unsaturated Ni(ii) ion in NiSOD is present in a surface-exposed loop region at the N-terminus, which might enable partial chelation. The results were consistent with the notion that the apo-DFOB-resin formed a ternary complex with NiSOD, which was not possible for either the coordinatively saturated Fe(iii)-DFOB-resin or the non-coordinating control resin systems. In support, ESI-TOF-MS measurements from a solution of a model Ni(ii)-SOD peptide and DFOB showed signals that correlated with a ternary Ni(ii)-SOD peptide-DFOB complex. Although any biological implications of a DFOB-NiSOD complex are unclear, the work shows that the metal coordination properties of siderophores might influence an array of metal-dependent biological processes beyond those established in iron uptake.
Collapse
Affiliation(s)
- Jenny Ni
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - James L Wood
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - Melanie Y White
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
- Charles Perkins Centre, The University of Sydney New South Wales 2006 Australia
| | - Norbert Lihi
- ELKH-DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen Debrecen H-4032 Hungary
| | - Todd E Markham
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - Joseph Wang
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - Peter T Chivers
- Department of Chemistry, Durham University Durham DH1 3LE UK
- Department of Biosciences, Durham University Durham DH1 3LE UK
| | - Rachel Codd
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| |
Collapse
|
10
|
Pang M, He W, Lu X, She Y, Xie L, Kong R, Chang S. CoDock-Ligand: combined template-based docking and CNN-based scoring in ligand binding prediction. BMC Bioinformatics 2023; 24:444. [PMID: 37996806 PMCID: PMC10668353 DOI: 10.1186/s12859-023-05571-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
For ligand binding prediction, it is crucial for molecular docking programs to integrate template-based modeling with a precise scoring function. Here, we proposed the CoDock-Ligand docking method that combines template-based modeling and the GNINA scoring function, a Convolutional Neural Network-based scoring function, for the ligand binding prediction in CASP15. Among the 21 targets, we obtained successful predictions in top 5 submissions for 14 targets and partially successful predictions for 4 targets. In particular, for the most complicated target, H1114, which contains 56 metal cofactors and small molecules, our docking method successfully predicted the binding of most ligands. Analysis of the failed systems showed that the predicted receptor protein presented conformational changes in the backbone and side chains of the binding site residues, which may cause large structural deviations in the ligand binding prediction. In summary, our hybrid docking scheme was efficiently adapted to the ligand binding prediction challenges in CASP15.
Collapse
Affiliation(s)
- Mingwei Pang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Wangqiu He
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Xufeng Lu
- Primary Biotechnology Inc., Changzhou, 213125, Jiangsu, China
| | - Yuting She
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| |
Collapse
|
11
|
Hubert T, Madec M, Schalk IJ. Experimental and computational methods to highlight behavioural variations in TonB-dependent transporter expression in Pseudomonas aeruginosa versus siderophore concentration. Sci Rep 2023; 13:20015. [PMID: 37974013 PMCID: PMC10654771 DOI: 10.1038/s41598-023-46585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Iron is a key nutrient for bacterial growth. The source can be either heme or siderophore-Fe complexes. Siderophores are small molecules synthesized by bacteria to scavenge iron from the bacterial environment. The pathogen Pseudomonas aeruginosa can express at least 15 different iron uptake pathways and all but one involve a TonB-dependent transporter (TBDT) for the uptake of iron across the outer membrane. Little is known about how bacteria modulate and adapt the expression of their different iron import pathways according to their environment. Here, we have developed fluorescent reporters between the promoter region of genes encoding a TBDT and the fluorescent reporter mCherry. With these constructs, we can follow the expression of TBDTs under different growth conditions. Mathematical modelling of the data obtained showed the transcription and expression of the gene encoding the TBDT PfeA to have a sigmoidal shape, whereas it was logarithmic for the TBDT gene foxA. Maximum transcription for pfeA was reached in the presence of 3 µM enterobactin, the siderophore recognized by PfeA, whereas the maximum was not reached for foxA with 100 µM nocardamine, the siderophore of FoxA.
Collapse
Affiliation(s)
- Thibaut Hubert
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France
| | - Morgan Madec
- ICube Laboratory, CNRS, UMR 7357, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
| |
Collapse
|
12
|
Olshvang E, Fritsch S, Scholtyssek OC, Schalk IJ, Metzler-Nolte N. Vectorization via Siderophores Increases Antibacterial Activity of K(RW) 3 Peptides against Pseudomonas aeruginosa. Chemistry 2023; 29:e202300364. [PMID: 37541431 DOI: 10.1002/chem.202300364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/06/2023]
Abstract
A series of new conjugates comprised from a small synthetic antimicrobial peptide (AMP) and a siderophore-type vector component was designed and tested for activity on P. aeruginosa PAO1 and several genetically modified strains. As AMP, the well-established arginine-tryptophane combination K(RW)3 (P1) was chosen with an added lysine for siderophore attachment. This peptide is easy to prepare, modify, and possesses good anti-bacterial activity. On the vector part, we examined several moieties: (i) the natural siderophore deferoxamine (DFO); (ii) bidentate iron chelators based on the hydroxamate building block (4 a-c) ; (iii) the non-siderophore chelators deferasirox (DFX) and deferiprone-carboxylate (DFP-COOH). All conjugates were prepared by solid phase synthesis techniques and fully characterized by HPLC and mass spectrometry (including HR-MS). 55 Fe uptake assays indicate a receptor-mediated uptake for 4 a-c, DFP-COOH and DFO, which is dependent on the outer membrane transporter FoxA in the case of DFO. All conjugates showed increased antibacterial activity against P. aeruginosa compared to the parent peptide P1 alone when investigated in iron-depleted medium. MIC values were as low as 2 μM (for P1-DFP) on wild type P. aeruginosa. The activity of P1-DFO and P1-DFP was even better on genetically mutated strains unable to produce siderophores (down to 0.5 μM). Although the DFX vector on its own was not able to transport iron inside the bacterial cell as shown by 55 Fe uptake studies, the P1-DFX conjugate had excellent antibacterial activity compared to P1 (2 μM, and as low as 0.25 μM on a receptor-deficient strain unable to produce siderophores), suggesting that the conjugates were indeed recognized and internalized by an (unknown) transporter. Control experiments with an equimolar mixture of P1 and DFX confirm that the observed activity is intrinsic to vectorization. This work thus demonstrates the power of linking small AMPs covalently to siderophores for a new class of Trojan Horse antibiotics, with P1-DFP and P1-DFX being the most potent conjugates.
Collapse
Affiliation(s)
- Evgenia Olshvang
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Sarah Fritsch
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Oliver C Scholtyssek
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Isabelle J Schalk
- UMR7242, ESBS, University of Strasbourg, 67413, Illkirch, Strasbourg, France
- UMR7242, ESBS, CNRS, 67413, Illkirch, Strasbourg, France
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
13
|
Anne F, Gwenaëlle G, Isabelle S, Pierre F. Improved engineering of Pseudomonas aeruginosa to study the adaptation of pyoverdine production under intra- or inter- specific bacterial competition. J Microbiol Methods 2023; 210:106753. [PMID: 37271375 DOI: 10.1016/j.mimet.2023.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Pseudomonas aeruginosa (PA) is a common cause of chronic infections, particularly feared by cystic fibrosis patients. PA colonizes the lung where it adapts to the local environment, and/or to treatments by drugs. This genotypic and phenotypic adaptation, in turns, influences its interaction with its environment, like bacteria from the microbiota. As an example, to access iron, PA produces and secretes two siderophores, pyoverdine and pyochelin that are iron chelators scavenging iron from the environment and bringing it back into the bacterial cells. Siderophores production depends on the level of iron starvation, on the presence of other bacteria, etc. this latter component being less well investigated. Even if studies on bacterial interactions, and their evolution, have been increasing since several years, we are still facing a lack of tools, for example, to specifically follow the growth of PA isolates in such competitive environments. We thus improved a cloning method to gain time in the cloning steps, to lower the polar effects, and to accurately follow the interactions of any PA isolate with other bacteria. For that, a fluorescent reporter gene was inserted between two genes, the glutamine-fructose-6-phosphate transaminase (glmS) and PA5548. This reporter was efficiently produced either from an inducible or a house-keeping promoter, and its expression did not lead to polar effects. We used this strain to study intra and inter-specific bacterial competitions for iron between different lung pathogens. We thus grew wild-type PA together either with an isogenic PA ΔpvdS variant, that does not produce the most efficient siderophore pyoverdine, or with Klebsiella pneumoniae or Acinetobacter baumanii, two other lung pathogens. We finally monitored the effect of the loss of pvdS on the competition between PA and the other bacterial species. These studies enabled us to differentiate intra from inter specific competitions, both arising in the lung environment, and pinpoint the importance of the bacterial specie for the adaptation of pyoverdine production.
Collapse
Affiliation(s)
- Forster Anne
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Graulier Gwenaëlle
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Schalk Isabelle
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Fechter Pierre
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France; CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg, France.
| |
Collapse
|
14
|
Chan DCK, Josts I, Koteva K, Wright GD, Tidow H, Burrows LL. Interactions of TonB-dependent transporter FoxA with siderophores and antibiotics that affect binding, uptake, and signal transduction. Proc Natl Acad Sci U S A 2023; 120:e2221253120. [PMID: 37043535 PMCID: PMC10120069 DOI: 10.1073/pnas.2221253120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.
Collapse
Affiliation(s)
- Derek C. K. Chan
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Lori L. Burrows
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
15
|
Dolan SK. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics. mBio 2023; 14:e0332622. [PMID: 36946760 PMCID: PMC10128021 DOI: 10.1128/mbio.03326-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is a leading cause of infections and mortality in immunocompromised patients. This organism can overcome iron deprivation during infection via the synthesis of two iron-chelating siderophores, pyoverdine and pyochelin, which scavenge iron from host proteins. P. aeruginosa can also uptake xenosiderophores produced by other bacteria or fungi using dedicated transporter systems. The precise substrate specificity of these siderophore transporters remains to be determined. The thiopeptide antibiotic thiostrepton exploits the pyoverdine transporters FpvA and FpvB to cross the outer membrane and reach intracellular targets. Using a series of intricate biochemical experiments, a recent study by Chan and Burrows capitalized on the specificity of thiostrepton to uncover that FpvB transports the xenosiderophores ferrichrome and ferrioxamine B with higher affinity than pyoverdine. This surprising result highlights an alternative uptake pathway for these siderophores and has significant implications for our understanding of iron acquisition in this organism.
Collapse
Affiliation(s)
- Stephen K Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B. mBio 2023; 14:e0314922. [PMID: 36507834 PMCID: PMC9973354 DOI: 10.1128/mbio.03149-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for many biological functions in bacteria, but its poor solubility is a limiting factor for growth. Bacteria produce siderophores, soluble natural products that bind iron with high affinity, to overcome this challenge. Siderophore-iron complexes return to the cell through specific outer membrane transporters. The opportunistic pathogen Pseudomonas aeruginosa makes multiple transporters that recognize its own siderophores, pyoverdine and pyochelin, and xenosiderophores produced by other bacteria or fungi, which gives it a competitive advantage. Some antibiotics exploit these transporters to bypass the membrane to reach their intracellular targets-including the thiopeptide antibiotic, thiostrepton (TS), which uses the pyoverdine transporters FpvA and FpvB to cross the outer membrane. Here, we assessed TS susceptibility in the presence of various siderophores and discovered that ferrichrome and ferrioxamine B antagonized TS uptake via FpvB. Unexpectedly, we found that FpvB transports ferrichrome and ferrioxamine B with higher affinity than pyoverdine. Site-directed mutagenesis of FpvB coupled with competitive growth inhibition and affinity label quenching studies suggested that the siderophores and antibiotic share a binding site in an aromatic pocket formed by the plug and barrel domains but have differences in their binding mechanism and molecular determinants for uptake. This work describes an alternative uptake pathway for ferrichrome and ferrioxamine B in P. aeruginosa and emphasizes the promiscuity of siderophore transporters, with implications for Gram-negative antibiotic development via the Trojan horse approach. IMPORTANCE Gram-negative bacteria express a variety of outer membrane transporters to import critical nutrients such as iron. Due to its insolubility, iron is taken up while bound to small-molecule chelators called siderophores. Pseudomonas aeruginosa takes up its own siderophores pyoverdine and pyochelin but can also steal siderophores produced by other bacteria and fungi, giving it a competitive advantage in iron-limited environments. Here, we used whole-cell reporter assays to show that FpvB, originally identified as a secondary transporter for pyoverdine, transports the chemically distinct fungal siderophore ferrichrome and the bacterial siderophore ferrioxamine B with high affinity. FpvB is also used by thiopeptide antibiotic thiostrepton for uptake. We predicted that all of these ligands bind to a common hydrophobic pocket in FpvB and used site-directed mutagenesis coupled with phenotypic assays to identify residues required for uptake. These analyses showed that siderophore and antibiotic uptake could be uncoupled. Our data show that FpvB is a promiscuous transporter of multiple chemically distinct ligands and fills in missing details of ferrichrome transport by P. aeruginosa. A clearer picture of the spectrum of outer membrane transporter substrate specificity is useful for the design of novel siderophore-antibiotic conjugates that can exploit nutrient uptake pathways to kill challenging Gram-negative pathogens.
Collapse
|
17
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
18
|
Exploring Micromonospora as Phocoenamicins Producers. Mar Drugs 2022; 20:md20120769. [PMID: 36547916 PMCID: PMC9782249 DOI: 10.3390/md20120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, new technological and scientific advances have reinforced the field of natural product discovery. The spirotetronate class of natural products has recently grown with the discovery of phocoenamicins, natural actinomycete derived compounds that possess different antibiotic activities. Exploring the MEDINA's strain collection, 27 actinomycete strains, including three marine-derived and 24 terrestrial strains, were identified as possible phocoenamicins producers and their taxonomic identification by 16S rDNA sequencing showed that they all belong to the Micromonospora genus. Using an OSMAC approach, all the strains were cultivated in 10 different media each, resulting in 270 fermentations, whose extracts were analyzed by LC-HRMS and subjected to High-throughput screening (HTS) against methicillin-resistant Staphylococcus aureus (MRSA), Mycobacterium tuberculosis H37Ra and Mycobacterium bovis. The combination of LC-UV-HRMS analyses, metabolomics analysis and molecular networking (GNPS) revealed that they produce several related spirotetronates not disclosed before. Variations in the culture media were identified as the most determining factor for phocoenamicin production and the best producer strains and media were established. Herein, we reported the chemically diverse production and metabolic profiling of Micromonospora sp. strains, including the known phocoenamicins and maklamicin, reported for the first time as being related to this family of compounds, as well as the bioactivity of their crude extracts. Although our findings do not confirm previous statements about phocoenamicins production only in unique marine environments, they have identified marine-derived Micromonospora species as the best producers of phocoenamicins in terms of both the abundance in their extracts of some major members of the structural class and the variety of molecular structures produced.
Collapse
|
19
|
Saldaña-Ahuactzi Z, Knodler LA. FoxR is an AraC-like transcriptional regulator of ferrioxamine uptake in Salmonella enterica. Mol Microbiol 2022; 118:369-386. [PMID: 35970762 DOI: 10.1111/mmi.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
Salmonella enterica spp. produce siderophores to bind iron with high affinity and can also use three xenosiderophores secreted by other microorganisms, ferrichrome, coprogen, and ferrioxamine. Here we focused on FoxA, a TonB-dependent transporter of ferrioxamines. Adjacent to foxA is a gene annotated as a helix-turn-helix (HTH) domain-containing protein, SL0358 (foxR), in the Salmonella enterica serovar Typhimurium SL1344 genome. FoxR shares homology with transcriptional regulators belonging to the AraC/XylS family. foxR is syntenic with foxA in the Enterobacteriaceae family, suggesting their functional relatedness. Both foxA and foxR are repressed by the ferric uptake regulator (Fur) under iron-rich growth conditions. When iron is scarce, FoxR acts as a transcriptional activator of foxA by directly binding to its upstream regulatory region. A point mutation in the HTH domain of FoxR abolished this binding, as did mutation of a direct repeat motif in the foxA upstream regulatory region. Desferrioxamine (DFOE) enhanced FoxR protein stability and foxA transcription but did not affect the affinity of FoxR binding to the foxA regulatory region. In summary, we have identified FoxR as a new member of the AraC/XylS family that regulates xenosiderophore-mediated iron uptake by S. Typhimurium and likely other Enterobacteriaceae members.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates. mBio 2022; 13:e0149822. [PMID: 35770947 PMCID: PMC9426570 DOI: 10.1128/mbio.01498-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for acute and chronic infections in immunocompromised hosts. This organism is known to compete efficiently against coinfecting microorganisms, due in part to the secretion of antimicrobial molecules and the synthesis of siderophore molecules with high affinity for iron. P. aeruginosa possess a large repertoire of TonB-dependent transporters for the uptake of its own, as well as xenosiderophores released from other bacteria or fungi. Here, we show that P. aeruginosa is also capable of utilizing plant-derived polyphenols as an iron source. We found that exclusively plant-derived phenols containing a catechol group (i.e., chlorogenic acid, caffeic acid, quercetin, luteolin) induce the expression of the TonB-dependent transporters PiuA or PirA. This induction requires the two-component system PirR-PirS. Chlorogenic acid in its Fe(III)-loaded form was actively transported by PiuA and PirA and supported growth under iron-limiting conditions. Coincidentally, PiuA and PirA are also the main TonB transporters for the recently approved siderophore-drug conjugate cefiderocol. Surprisingly, quercetin supplementation increased the susceptibility of P. aeruginosa to siderophore-drug conjugates, due to induction of piuA and pirA expression mediated by the PirR-PirS two-component system. These findings suggest a potential novel therapeutic application for these biologically active dietary polyphenols.
Collapse
|
21
|
Zhu J, Wang J, Chen YP, Qing T, Zhang P, Feng B. Quantitative proteomics and phosphoproteomics elucidate the molecular mechanism of nanostructured TiO 2-stimulated biofilm formation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128709. [PMID: 35325859 DOI: 10.1016/j.jhazmat.2022.128709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
With the increasing concerns regarding bacterial adaption to nanomaterials, it is critical to explore the main mechanism behind the adaptive morphogenesis of microorganisms. In this work, the biofilms formed from activated sludge exposed to 5 and 50 mg/L nTiO2 in the dark had increased biomass and selectively enriched pathogens. To further elaborate adaptive mechanism of biofilm formation induced by nTiO2, the protein response and protein phosphorylation modification of Escherichia coli K12 were determined using integrative systems biology analyses of proteomics and phosphoproteomics. Results identified that E. coli cultivated with nTiO2 considerably upregulated iron acquisition, and regulated protein phosphorylation states associated with of transcription and translation and biofilm formation relative to unexposed controls. Accordingly, bacteria increased siderophores and exopolysaccharide content (increased by about 57% and 231%, respectively), and enhanced resistance to transcriptional inhibitory antibiotics. Moreover, a dose of an iron chelator, i.e., deferoxamine mesylate salt, effectively retarded the biofilm development of bacteria exposed to 50 mg/L nTiO2. Overall, this work will provide a new insight for biofouling control, and contribute to an improved understanding of microbial adaption to nanomaterials.
Collapse
Affiliation(s)
- Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingyu Wang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
22
|
Fritsch S, Gasser V, Peukert C, Pinkert L, Kuhn L, Perraud Q, Normant V, Brönstrup M, Schalk IJ. Uptake Mechanisms and Regulatory Responses to MECAM- and DOTAM-Based Artificial Siderophores and Their Antibiotic Conjugates in Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1134-1146. [PMID: 35500104 DOI: 10.1021/acsinfecdis.2c00049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new antibiotics against Gram-negative bacteria has to deal with the low permeability of the outer membrane. This obstacle can be overcome by utilizing siderophore-dependent iron uptake pathways as entrance routes for antibiotic uptake. Iron-chelating siderophores are actively imported by bacteria, and their conjugation to antibiotics allows smuggling the latter into bacterial cells. Synthetic siderophore mimetics based on MECAM (1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene) and DOTAM (1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane) cores, both chelating iron via catechol groups, have been recently applied as versatile carriers of functional cargo. In the present study, we show that MECAM and the MECAM-ampicillin conjugate 3 transport iron into Pseudomonas aeruginosa cells via the catechol-type outer membrane transporters PfeA and PirA and DOTAM solely via PirA. Differential proteomics and quantitative real-time polymerase chain reaction (qRT-PCR) showed that MECAM import induced the expression of pfeA, whereas 3 led to an increase in the expression of pfeA and ampc, a gene conferring ampicillin resistance. The presence of DOTAM did not induce the expression of pirA but upregulated the expression of two zinc transporters (cntO and PA0781), pointing out that bacteria become zinc starved in the presence of this compound. Iron uptake experiments with radioactive 55Fe demonstrated that import of this nutrient by MECAM and DOTAM was as efficient as with the natural siderophore enterobactin. The study provides a functional validation for DOTAM- and MECAM-based artificial siderophore mimetics as vehicles for the delivery of cargo into Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex F-67084, France
| | - Quentin Perraud
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Vincent Normant
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig 38124, Germany
- Center of Biomolecular Drug Research (BMWZ), Leibniz Universität, Hannover 30159, Germany
| | - Isabelle J. Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg 67070, France
| |
Collapse
|
23
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
24
|
Roche B, Garcia-Rivera MA, Normant V, Kuhn L, Hammann P, Brönstrup M, Mislin GLA, Schalk IJ. A role for PchHI as the ABC transporter in iron acquisition by the siderophore pyochelin in Pseudomonas aeruginosa. Environ Microbiol 2021; 24:866-877. [PMID: 34664350 DOI: 10.1111/1462-2920.15811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
Iron is an essential nutrient for bacterial growth but poorly bioavailable. Bacteria scavenge ferric iron by synthesizing and secreting siderophores, small compounds with a high affinity for iron. Pyochelin (PCH) is one of the two siderophores produced by the opportunistic pathogen Pseudomonas aeruginosa. After capturing a ferric iron molecule, PCH-Fe is imported back into bacteria first by the outer membrane transporter FptA and then by the inner membrane permease FptX. Here, using molecular biology, 55 Fe uptake assays, and LC-MS/MS quantification, we first find a role for PchHI as the heterodimeric ABC transporter involved in the siderophore-free iron uptake into the bacterial cytoplasm. We also provide the first evidence that PCH is able to reach the bacterial periplasm and cytoplasm when both FptA and FptX are expressed. Finally, we detected an interaction between PchH and FptX, linking the ABC transporter PchHI with the inner permease FptX in the PCH-Fe uptake pathway. These results pave the way for a better understanding of the PCH siderophore pathway, giving future directions to tackle P. aeruginosa infections.
Collapse
Affiliation(s)
- Béatrice Roche
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France.,Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France
| | - Mariel A Garcia-Rivera
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Vincent Normant
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France.,Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 2 allée Konrad Roentgen, Strasbourg Cedex, F-67084, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 2 allée Konrad Roentgen, Strasbourg Cedex, F-67084, France
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Gaëtan L A Mislin
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France.,Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France
| | - Isabelle J Schalk
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France.,Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412, France
| |
Collapse
|
25
|
Structural insights into a novel family of integral membrane siderophore reductases. Proc Natl Acad Sci U S A 2021; 118:2101952118. [PMID: 34417315 DOI: 10.1073/pnas.2101952118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.
Collapse
|
26
|
Mahajan SG, Nandre VS, Kodam KM, Kulkarni MV. Desferrioxamine E produced by an indigenous salt tolerant Pseudomonas stutzeri stimulates iron uptake of Triticum aestivum L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Perraud Q, Kuhn L, Fritsch S, Graulier G, Gasser V, Normant V, Hammann P, Schalk IJ. Opportunistic use of catecholamine neurotransmitters as siderophores to access iron by Pseudomonas aeruginosa. Environ Microbiol 2020; 24:878-893. [PMID: 33350053 DOI: 10.1111/1462-2920.15372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Iron is an essential nutrient for bacterial growth and the cause of a fierce battle between the pathogen and host during infection. Bacteria have developed several strategies to access iron from the host, the most common being the production of siderophores, small iron-chelating molecules secreted into the bacterial environment. The opportunist pathogen Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a wide panoply of xenosiderophores, siderophores produced by other microorganisms. Here, we demonstrate that catecholamine neurotransmitters (dopamine, l-DOPA, epinephrine and norepinephrine) are able to chelate iron and efficiently bring iron into P. aeruginosa cells via TonB-dependent transporters (TBDTs). Bacterial growth assays under strong iron-restricted conditions and with numerous mutants showed that the TBDTs involved are PiuA and PirA. PiuA exhibited more pronounced specificity for dopamine uptake than for norepinephrine, epinephrine and l-DOPA, whereas PirA specificity appeared to be higher for l-DOPA and norepinephrine. Proteomic and qRT-PCR approaches showed pirA transcription and expression to be induced in the presence of all four catecholamines. Finally, the oxidative properties of catecholamines enable them to reduce iron, and we observed ferrous iron uptake via the FeoABC system in the presence of l-DOPA.
Collapse
Affiliation(s)
- Quentin Perraud
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Sarah Fritsch
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Gwenaëlle Graulier
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Vincent Normant
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, Strasbourg Cedex, F-67084, France
| | - Isabelle J Schalk
- Université de Strasbourg, InnoVec, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France.,CNRS, UMR7242, ESBS, Bld Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| |
Collapse
|
28
|
Phenotypic Adaptation of Pseudomonas aeruginosa in the Presence of Siderophore-Antibiotic Conjugates during Epithelial Cell Infection. Microorganisms 2020; 8:microorganisms8111820. [PMID: 33218210 PMCID: PMC7699141 DOI: 10.3390/microorganisms8111820] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
Iron acquisition pathways have often been considered to be gateways for the uptake of antibiotics into bacteria. Bacteria excrete chelators, called siderophores, to access iron. Antibiotic molecules can be covalently attached to siderophores for their transport into pathogens during the iron-uptake process. P. aeruginosa produces two siderophores and is also able to use many siderophores produced by other bacteria. We investigated the phenotypic plasticity of iron-uptake pathway expression in an epithelial cell infection assay in the presence of two different siderophore-antibiotic conjugates, one with a hydroxamate siderophore and the second with a tris-catechol. Proteomic and RT-qPCR approaches showed that P. aeruginosa was able to sense the presence of both compounds in its environment and adapt the expression of its iron uptake pathways to access iron via them. Moreover, the catechol-type siderophore-antibiotic was clearly more efficient in inducing the expression of its corresponding transporter than the hydroxamate compound when both were simultaneously present. In parallel, the expression of the proteins of the two iron uptake pathways using siderophores produced by P. aeruginosa was significantly repressed in the presence of both conjugates. Altogether, the data indicate that catechol-type siderophores are more promising vectors for antibiotic vectorization using a Trojan-horse strategy.
Collapse
|