1
|
Zhang B, Ge HM. Recent progresses in the cyclization and oxidation of polyketide biosynthesis. Curr Opin Chem Biol 2024; 81:102507. [PMID: 39098210 DOI: 10.1016/j.cbpa.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China.
| |
Collapse
|
2
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
3
|
Yang M, Li W, Zhou L, Lin X, Zhang W, Shen Y, Deng H, Lin HW, Zhou Y. Biosynthesis of trialkyl-substituted aromatic polyketide NFAT-133 involves unusual P450 monooxygenase-mediating aromatization and a putative metallo-beta-lactamase fold hydrolase. Synth Syst Biotechnol 2023; 8:349-356. [PMID: 37325182 PMCID: PMC10265476 DOI: 10.1016/j.synbio.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The bacterial trialkyl-substituted aromatic polyketides are structurally featured with the unusual aromatic core in the middle of polyketide chain such as TM-123 (1), veramycin A (2), NFAT-133 (3) and benwamycin I (4), which were discovered from Streptomyces species and demonstrated with antidiabetic and immunosuppressant activities. Though the biosynthetic pathway of 1-3 was reported as a type I polyketide synthase (PKS), the PKS assembly line was interpreted inconsistently, and it remains a mystery how the compound 3 was generated. Herein, the PKS assembly logic of 1-4 was revised by site-mutagenetic analysis of the PKS dehydratase domains. Based on gene deletion and complementation, the putative P450 monooxygenase nftE1 and metallo-beta-lactamase (MBL) fold hydrolase nftF1 were verified as essential genes for the biosynthesis of 1-4. The absence of nftE1 led to abolishment of 1-4 and accumulation of new products (5-8). Structural elucidation reveals 5-8 as the non-aromatic analogs of 1, suggesting the NftE1-catalyzed aromatic core formation. Deletion of nftF1 resulted in disappearance of 3 and 4 with the compounds 1 and 2 unaffected. As a rare MBL-fold hydrolase from type I PKSs, NftF1 potentially generates the compound 3 through two strategies: catalyze premature chain-offloading as a trans-acting thioesterase or hydrolyze the lactone-bond of compound 1 as an esterase.
Collapse
Affiliation(s)
- Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wanlu Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Drugs, Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Wenyu Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Zhang W, Yang M, Li W, Zhou L, Shen Y, Wang SP, Gao JM, Lin HW, Qi J, Zhou Y. Iterative-Acting Thioesterase from Polyketide Biosynthesis Accepts Diverse Nucleophilic Alcohols to Yield Oxazole-Containing Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7459-7467. [PMID: 37148255 DOI: 10.1021/acs.jafc.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biosynthesis of antitumor oxazole-containing conglobatin is directed by a multienzyme assembly line of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), in which an uncanonical iterative-acting C-terminal thioesterase domain, Cong-TE, ligated two fully elongated chains/conglobatin monomers on the terminal acylcarrier protein and subsequently cyclized the resulting dimer to a C2-symmetric macrodiolide. Screening of the conglobatin producer for secondary metabolites led to the discovery of two new compounds conglactones A (1) and B (2), possessing inhibitory activities to phytopathogenic microorganisms and cancer cells, respectively. The compounds 1 and 2 feature the ester bond-linked hybrid structures consisting of an aromatic polyketide benwamycin I (3) and one (for 1)/two (for 2) molecules of the conglobatin monomer (5). Genetic mutational analysis revealed that the production of 1 and 2 was correlated with the biosynthetic pathways of 3 and 5. Biochemical analysis indicated that 1 and 2 were produced by Cong-TE from 3 and an N-acetylcysteamine thioester form of 5 (7). Furthermore, the substrate compatibility of Cong-TE was demonstrated by enzymatically generating a bunch of ester products from 7 and 43 exotic alcohols. This property of Cong-TE was further validated by producing 36 hybrid esters in the fermentation of conglobatin producer fed with nonindigenous alcohols. This work shows a prospect of developing Cong-TE for green synthesis of valuable oxazole-containing esters, thus complementing the environmentally unfriendly chemosynthesis strategies.
Collapse
Affiliation(s)
- Wenyu Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wanlu Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
5
|
Yang YM, Zhao EJ, Wei W, Xu ZF, Shi J, Wu X, Zhang B, Igarashi Y, Jiao RH, Liang Y, Tan RX, Ge HM. Cytochrome P450 Catalyzes Benzene Ring Formation in the Biosynthesis of Trialkyl-Substituted Aromatic Polyketides. Angew Chem Int Ed Engl 2023; 62:e202214026. [PMID: 36458944 DOI: 10.1002/anie.202214026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Lorneic acid and related natural products are characterized by a trialkyl-substituted benzene ring. The formation of the aromatic core in the middle of the polyketide chain is unusual. We characterized a cytochrome P450 enzyme that can catalyze the hallmark benzene ring formation from an acyclic polyene substrate through genetic and biochemical analysis. Using this P450 as a beacon for genome mining, we obtained 12 homologous type I polyketide synthase (PKS) gene clusters, among which two gene clusters are activated and able to produce trialkyl-substituted aromatic polyketides. Quantum chemical calculations were performed to elucidate the plausible mechanism for P450-catalyzed benzene ring formation. Our work expands our knowledge of the catalytic diversity of cytochrome P450.
Collapse
Affiliation(s)
- Yu Meng Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Er Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wanqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Zhou W, Alharbi HA, Hummingbird E, Keatinge-Clay AT, Mahmud T. Functional Studies and Revision of the NFAT-133/TM-123 Biosynthetic Pathway in Streptomyces pactum. ACS Chem Biol 2022; 17:2039-2045. [PMID: 35904416 PMCID: PMC9391300 DOI: 10.1021/acschembio.2c00454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthetic gene cluster of NFAT-133, an inhibitor of the nuclear factor of activated T cells, was recently identified in Streptomyces pactum ATCC 27456. This cluster is conspicuous by its highly disordered noncollinear type I modular polyketide synthase (PKS) genes that encode PKSs with one module more than those expected for the heptaketide NFAT-133 biosynthesis. Thus, the major metabolite NFAT-133 was proposed to derive from an octaketide analogue, TM-123. Here, we report that further bioinformatic analysis and gene inactivation studies suggest that NFAT-133 is not derived from TM-123 but rather a product of programmed KS7 extension skipping of a nascent heptaketide from the PKS assembly line that produces TM-123. Furthermore, identification of NFAT-133/TM-123 analogues from mutants of the ATCC 27456 strain suggests that NftN (a putative dehydrogenase), NftE (a cytochrome P450), and NftG (a putative hydrolase/decarboxylase) function "in trans" during the polyketide chain assembly processes.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Hattan A. Alharbi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Eshe Hummingbird
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | | | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| |
Collapse
|
7
|
Bergstrom BD, Merrill AT, Fettinger JC, Tantillo DJ, Shaw JT. Divergent Asymmetric Synthesis of Panowamycins, TM‐135, and Veramycin F Using C−H Insertion with Donor/Donor Carbenes. Angew Chem Int Ed Engl 2022; 61:e202203072. [DOI: 10.1002/anie.202203072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin D. Bergstrom
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95161 USA
| | - Amy T. Merrill
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95161 USA
| | - James C. Fettinger
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95161 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95161 USA
| | - Jared T. Shaw
- Department of Chemistry University of California, Davis One Shields Ave. Davis CA 95161 USA
| |
Collapse
|
8
|
Divergent Asymmetric Synthesis of Panowamycins, TM‐135, and Veramycin F Using C−H Insertion with Donor/Donor Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Dardić D, Böhringer N, Plaza A, Zubeil F, Pohl J, Sommer S, Padva L, Becker J, Patras MA, Bill MK, Kurz M, Toti L, Görgens SW, Schuler SMM, Billion A, Schwengers O, Wohlfart P, Goesmann A, Tennagels N, Vilcinskas A, Hammann PE, Schäberle TF, Bauer A. Antidiabetic profiling of veramycins, polyketides accessible by biosynthesis, chemical synthesis and precursor-directed modification. Org Chem Front 2022. [DOI: 10.1039/d1qo01652k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New polyketides, termed veramycins, were isolated along with their known congeners NFAT-133 and TM-123. Total synthesis from a central building block was accomplished, the BGC identified and a biosynthetic pathway for this molecule class proposed.
Collapse
Affiliation(s)
- Denis Dardić
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Nils Böhringer
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
- German Center of Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35392 Gießen, Germany
| | - Alberto Plaza
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Florian Zubeil
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Juliane Pohl
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Svenja Sommer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Leo Padva
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | | | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Mona-Katharina Bill
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
| | - Luigi Toti
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | - Sven W. Görgens
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
| | - Sören M. M. Schuler
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | - André Billion
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
| | | | - Paulus Wohlfart
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | | | - Norbert Tennagels
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Peter E. Hammann
- Sanofi-Aventis Deutschland GmbH, R&D German Hub, 65926 Frankfurt am Main, Germany
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Gießen, Germany
- Justus-Liebig-University Gießen, 35392 Gießen, Germany
- German Center of Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, 35392 Gießen, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Yeppoonic acids A - D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp. J Antibiot (Tokyo) 2021; 75:108-112. [PMID: 34880415 DOI: 10.1038/s41429-021-00493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Streptomyces sp. MST-91080 was isolated from a soil sample collected in Queensland, Australia. From this strain, yeppoonic acids A - D were purified and spectroscopically characterised. The yeppoonic acids are a family of diene enecarboxylic acids on a 1,2,4-trisubstituted benzene scaffold, structurally related to other Streptomyces secondary metabolites MF-EA-705α/β, NFAT-133 and the lorneic acids. Yeppoonic acids B and C show strong cytotoxicity against the NS-1 mouse myeloma cell line (IC50 2.3 µg ml-1 and 3.8 µg ml-1, respectively) and moderate activity against the DU 145 human prostate cancer cell line (IC50 32.8 µg ml-1 and 49.6 µg ml-1, respectively).
Collapse
|
11
|
Ju Z, Zhou W, Alharbi HA, Howell DC, Mahmud T. Modulation of Specialized Metabolite Production in Genetically Engineered Streptomyces pactum. ACS Chem Biol 2021; 16:2641-2650. [PMID: 34723462 PMCID: PMC8604789 DOI: 10.1021/acschembio.1c00718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Filamentous soil bacteria are known to produce diverse specialized metabolites. Despite having enormous potential as a source of pharmaceuticals, they often produce bioactive metabolites at low titers. Here, we show that inactivation of the pactamycin, NFAT-133, and conglobatin biosynthetic pathways in Streptomyces pactum ATCC 27456 significantly increases the production of the mitochondrial electron transport inhibitors piericidins. Similarly, inactivation of the pactamycin, NFAT-133, and piericidin pathways significantly increases the production of the heat-shock protein (Hsp) 90 inhibitor conglobatin. In addition, four new conglobatin analogues (B2, B3, F1, and F2) with altered polyketide backbones, together with the known analogue conglobatin B1, were identified in this mutant, indicating that the conglobatin biosynthetic machinery is promiscuous toward different substrates. Among the new conglobatin analogues, conglobatin F2 showed enhanced antitumor activity against HeLa and NCI-H460 cancer cell lines compared to conglobatin. Conglobatin F2 also inhibits colony formation of HeLa cells in a dose-dependent manner. Molecular modeling studies suggest that the new conglobatins bind to human Hsp90 and disrupt Hsp90/Cdc37 chaperone/co-chaperone interactions in the same manner as conglobatin. The study also showed that genes that are involved in piericidin biosynthesis are clustered in two different loci located distantly in the S. pactum genome.
Collapse
Affiliation(s)
- Zhiran Ju
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Hattan A Alharbi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Daniel C Howell
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| |
Collapse
|
12
|
Zhou W, Posri P, Liu XJ, Ju Z, Lan WJ, Mahmud T. Identification and Biological Activity of NFAT-133 Congeners from Streptomyces pactum. JOURNAL OF NATURAL PRODUCTS 2021; 84:2411-2419. [PMID: 34519213 PMCID: PMC8577183 DOI: 10.1021/acs.jnatprod.1c00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The soil bacterium Streptomyces pactum ATCC 27456 produces a number of polyketide natural products. Among them is NFAT-133, an inhibitor of the nuclear factor of activated T cells (NFAT) that suppresses interleukin-2 (IL-2) expression and T cell proliferation. Biosynthetic gene inactivation in the ATCC 27456 strain revealed the ability of this strain to produce other polyketide compounds including analogues of NFAT-133. Consequently, seven new derivatives of NFAT-133, TM-129-TM-135, together with a known compound, panowamycin A, were isolated from the culture broth of S. pactum ATCC 27456 ΔptmTDQ. Their chemical structures were elucidated on the basis of their HRESIMS, 1D and 2D NMR spectroscopy, and ECD calculation and spectral data. NFAT-133, TM-132, TM-135, and panowamycin A showed no antibacterial activity or cytotoxicity, but weakly reduced the production of LPS-induced nitric oxide in RAW264.7 cells in a dose-dependent manner. A revised chemical structure of panowamycin A and proposed modes of formation of the new NFAT-133 analogues are also presented.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Priyapan Posri
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Xiao-Jing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhiran Ju
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
13
|
Zhou W, Posri P, Mahmud T. Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in Streptomyces pactum. ACS Chem Biol 2021; 16:270-276. [PMID: 33601889 DOI: 10.1021/acschembio.0c00982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature has always been seemingly limitless in its ability to create new chemical entities. It provides vastly diverse natural compounds through a biomanufacturing process that involves myriads of biosynthetic machineries. Here we report a case of unusual formations of hybrid natural products that are derived from two distinct polyketide biosynthetic pathways, the NFAT-133 and conglobatin pathways, in Streptomyces pactum ATCC 27456. Their chemical structures were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. Genome sequence analysis and gene inactivation experiments uncovered the biosynthetic gene cluster of conglobatin in S. pactum. Biochemical studies of the recombinant thioesterase (TE) domain of the conglobatin polyketide synthase (PKS) as well as its S74A mutant revealed that the formation of these hybrid compounds requires an active TE domain. We propose that NFAT-133 can interfere with conglobatin biosynthesis by reacting with the TE-domain-bound intermediates in the conglobatin PKS assembly line to form hybrid NFAT-133/conglobatin products.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Priyapan Posri
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
14
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pedrolide from Euphorbia pedroi.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|