1
|
Gare CL, Palombi IR, White AM, Chavchich M, Edstein MD, Lock A, Avery VM, Craik DJ, McMorran BJ, Lawrence N, Malins LR. Exploring the Utility of Cell-Penetrating Peptides as Vehicles for the Delivery of Distinct Antimalarial Drug Cargoes. ChemMedChem 2025; 20:e202400637. [PMID: 39379289 DOI: 10.1002/cmdc.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
The devastating impact of malaria includes significant mortality and illness worldwide. Increasing resistance of the causative parasite, Plasmodium, to existing antimalarial drugs underscores a need for additional compounds with distinct modes of action in the therapeutic development pipeline. Here we showcase peptide-drug conjugates (PDCs) as an attractive compound class, in which therapeutic or lead antimalarials are chemically conjugated to cell-penetrating peptides. This approach aims to enhance selective uptake into Plasmodium-infected red blood cells and impart additional cytotoxic actions on the intraerythrocytic parasite, thereby enabling targeted drug delivery and dual modes of action. We describe the development of PDCs featuring four compounds with antimalarial activity-primaquine, artesunate, tafenoquine and methotrexate-conjugated to three cell-penetrating peptide scaffolds with varied antiplasmodial activity, including active and inactive analogues of platelet factor 4 derived internalization peptide (PDIP), and a cyclic polyarginine peptide. Development of this diverse set of PDCs featured distinct and adaptable conjugation strategies, to produce conjugates with in vitro antiplasmodial activities ranging from low nanomolar to low micromolar potencies according to the drug cargo and bioactivity of the partner peptide. Overall, this study establishes a strategic and methodological framework for the further development of dual mode of action peptide-drug antimalarial therapeutics.
Collapse
Affiliation(s)
- Caitlin L Gare
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Isabella R Palombi
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew M White
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, QLD, 4051, Australia
| | - Michael D Edstein
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, QLD, 4051, Australia
| | - Aaron Lock
- Discovery Biology, Centre for Cellular Phenomics, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brendan J McMorran
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lara R Malins
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Palombi IR, White AM, Koda Y, Craik DJ, Lawrence N, Malins LR. Synthesis and Investigation of Peptide-Drug Conjugates Comprising Camptothecin and a Human Protein-Derived Cell-Penetrating Peptide. Chem Biol Drug Des 2025; 105:e70051. [PMID: 39834140 PMCID: PMC11747586 DOI: 10.1111/cbdd.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Drug targeting strategies, such as peptide-drug conjugates (PDCs), have arisen to combat the issue of off-target toxicity that is commonly associated with chemotherapeutic small molecule drugs. Here we investigated the ability of PDCs comprising a human protein-derived cell-penetrating peptide-platelet factor 4-derived internalization peptide (PDIP)-as a targeting strategy to improve the selectivity of camptothecin (CPT), a topoisomerase I inhibitor that suffers from off-target toxicity. The intranuclear target of CPT allowed exploration of PDC design features required for optimal potency. A suite of PDCs with various structural characteristics, including alternative conjugation strategies (such as azide-alkyne cycloaddition and disulfide conjugation) and linker types (non-cleavable or cleavable), were synthesized and investigated for their anticancer activity. Membrane permeability and cytotoxicity studies revealed that intact PDIP-CPT PDCs can cross membranes, and that PDCs with disulfide- and protease-cleavable linkers liberated free CPT and killed melanoma cells with nanomolar potency. However, selectivity of the PDIP carrier peptide for melanoma compared to noncancerous epidermal cells was not maintained for the PDCs. This study emphasizes the distinct role of the peptide, linker, and drug for optimal PDC activity and highlights the need to carefully match components when assembling PDCs as targeted therapies.
Collapse
Affiliation(s)
- Isabella R. Palombi
- Research School of ChemistryAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Andrew M. White
- Research School of ChemistryAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Yasuko Koda
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - David J. Craik
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Nicole Lawrence
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Lara R. Malins
- Research School of ChemistryAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
3
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 PMCID: PMC11565579 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Philippe GJB, Huang YH, Mittermeier A, Brown CJ, Kaas Q, Ramlan SR, Wang CK, Lane D, Loewer A, Troeira Henriques S, Craik DJ. Delivery to, and Reactivation of, the p53 Pathway in Cancer Cells Using a Grafted Cyclotide Conjugated with a Cell-Penetrating Peptide. J Med Chem 2024; 67:1197-1208. [PMID: 38174919 DOI: 10.1021/acs.jmedchem.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.
Collapse
Affiliation(s)
- Grégoire Jean-Baptiste Philippe
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Mittermeier
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Christopher J Brown
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siti Radhiah Ramlan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lane
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Alexander Loewer
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
de Araujo AD, Hoang HN, Lim J, Mak JYW, Fairlie DP. Tuning Electrostatic and Hydrophobic Surfaces of Aromatic Rings to Enhance Membrane Association and Cell Uptake of Peptides. Angew Chem Int Ed Engl 2022; 61:e202203995. [PMID: 35523729 PMCID: PMC9543247 DOI: 10.1002/anie.202203995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Aromatic groups are key mediators of protein–membrane association at cell surfaces, contributing to hydrophobic effects and π‐membrane interactions. Here we show electrostatic and hydrophobic influences of aromatic ring substituents on membrane affinity and cell uptake of helical, cyclic and cell penetrating peptides. Hydrophobicity is important, but subtle changes in electrostatic surface potential, dipoles and polarizability also enhance association with phospholipid membranes and cell uptake. A combination of fluorine and sulfur substituents on an aromatic ring induces microdipoles that enhance cell uptake of 12‐residue peptide inhibitors of p53‐HDM2 interaction and of cell‐penetrating cyclic peptides. These aromatic motifs can be readily inserted into peptide sidechains to enhance their cell uptake.
Collapse
Affiliation(s)
- Aline D. de Araujo
- Division of Chemistry and Structural Biology ARC Centre of Excellence for Innovations in Peptide & Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology ARC Centre of Excellence for Innovations in Peptide & Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology ARC Centre of Excellence for Innovations in Peptide & Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Jeffrey Y. W. Mak
- Division of Chemistry and Structural Biology ARC Centre of Excellence for Innovations in Peptide & Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology ARC Centre of Excellence for Innovations in Peptide & Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
7
|
de Araujo AD, Hoang HN, Lim J, Mak J, Fairlie DP. Tuning Electrostatic and Hydrophobic Surfaces of Aromatic Rings to Enhance Membrane Association and Cell Uptake of Peptides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aline Dantes de Araujo
- The University of Queensland Institute for Molecular Bioscience Institute for Molecular Bioscience Institute for Molecular Bioscience, The University of Queensland 4072 Brisbane AUSTRALIA
| | - Huy N Hoang
- The University of Queensland Institute for Molecular Bioscience Institute for Molecular Bioscience Institute for Molecular Bioscience, The University of Queensland 4072 Brisbane AUSTRALIA
| | - Junxian Lim
- The University of Queensland Institute for Molecular Bioscience Institute for Molecular Bioscience Institute for Molecular Bioscience, The University of Queensland 4072 Brisbane AUSTRALIA
| | - Jeffrey Mak
- The University of Queensland Institute for Molecular Bioscience Institute for Molecular Bioscience Institute for Molecular Bioscience, The University of Queensland 4072 Brisbane AUSTRALIA
| | - David P Fairlie
- Institute for Molecular Bioscience Division of Chemistry and Structural Biology The University of Queensland 4072 Brisbane AUSTRALIA
| |
Collapse
|
8
|
Gu Q, Hou W, Shi L, Zhu Z, Liu H, He X. CircMCTP2 (has-circ-0000658) facilitates the proliferation and metastasis of bladder carcinoma through modulating the miR-498/murine double minute-2 axis. Bioengineered 2022; 13:10734-10748. [PMID: 35475453 PMCID: PMC9208511 DOI: 10.1080/21655979.2022.2054161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CircMCTP2 is a novel circRNA, which is associated with various kinds of malignant tumors progression, such as gastric cancer. However, the function of circMCTP2 in bladder carcinoma (BC) has no idea. The purpose of this study was tantamount to functionally dissect circMCTP2 in the progression of BC. In our study, circMCTP2 expression was strongly increased in BC tissues and cell lines. High expression of circMCTP2 predicted a poor prognosis of BC patients. CircMCTP2 deficiency impaired the cell growth, migration as well as invasive ability of BC cell lines (J82 and T24). In vivo, circMCTP2 deficiency cut the tumor growth rates and the tumor weight. In BC cells, circMCTP2 deficiency enhanced the translation of E-cadherin, while diminishing the translation of N-cadherin, Vimentin, and Snail. Moreover, circMCTP2 acted as a sponge of miR-498 to regulate murine double minute-2 (MDM2) expression. In BC tissues, a negative correlation was observed between the expression levels of circMCTP2 and miR-498. Additionally, either miR-498 silencing or MDM2 over-expression augmented the carcinogenic action of circMCTP2 on BC. In conclusion, our study showed that circMCTP2 regulates the expression of MDM2 by sponging miR-498 to promote the development of BC. These findings offer a new strategy for early diagnosis of BC and its therapeutics.
Collapse
Affiliation(s)
- Qiao Gu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wenjie Hou
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University), Suzhou, P.R. China
| | - Lijuan Shi
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Zonghao Zhu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Huan Liu
- Department of Pathology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, P.R. China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| |
Collapse
|
9
|
Li H, Chen X, Wu M, Song P, Zhao X. Bicyclic stapled peptides based on p53 as dual inhibitors for the interactions of p53 with MDM2 and MDMX. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Ershov PV, Mezentsev YV, Ivanov AS. Interfacial Peptides as Affinity Modulating Agents of Protein-Protein Interactions. Biomolecules 2022; 12:106. [PMID: 35053254 PMCID: PMC8773757 DOI: 10.3390/biom12010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/25/2022] Open
Abstract
The identification of disease-related protein-protein interactions (PPIs) creates objective conditions for their pharmacological modulation. The contact area (interfaces) of the vast majority of PPIs has some features, such as geometrical and biochemical complementarities, "hot spots", as well as an extremely low mutation rate that give us key knowledge to influence these PPIs. Exogenous regulation of PPIs is aimed at both inhibiting the assembly and/or destabilization of protein complexes. Often, the design of such modulators is associated with some specific problems in targeted delivery, cell penetration and proteolytic stability, as well as selective binding to cellular targets. Recent progress in interfacial peptide design has been achieved in solving all these difficulties and has provided a good efficiency in preclinical models (in vitro and in vivo). The most promising peptide-containing therapeutic formulations are under investigation in clinical trials. In this review, we update the current state-of-the-art in the field of interfacial peptides as potent modulators of a number of disease-related PPIs. Over the past years, the scientific interest has been focused on following clinically significant heterodimeric PPIs MDM2/p53, PD-1/PD-L1, HIF/HIF, NRF2/KEAP1, RbAp48/MTA1, HSP90/CDC37, BIRC5/CRM1, BIRC5/XIAP, YAP/TAZ-TEAD, TWEAK/FN14, Bcl-2/Bax, YY1/AKT, CD40/CD40L and MINT2/APP.
Collapse
Affiliation(s)
- Pavel V. Ershov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.V.M.); (A.S.I.)
| | | | | |
Collapse
|
12
|
de Araujo AD, Lim J, Wu KC, Hoang HN, Nguyen HT, Fairlie DP. Landscaping macrocyclic peptides: stapling hDM2-binding peptides for helicity, protein affinity, proteolytic stability and cell uptake. RSC Chem Biol 2022; 3:895-904. [PMID: 35866171 PMCID: PMC9257625 DOI: 10.1039/d1cb00231g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
Abstract
Surveying macrocycles for mimicking a helical tumor suppressor protein, resisting breakdown by proteases, and entering cancer cells.
Collapse
Affiliation(s)
- Aline D. de Araujo
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huy T. Nguyen
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Schneider AFL, Kallen J, Ottl J, Reid PC, Ripoche S, Ruetz S, Stachyra TM, Hintermann S, Dumelin CE, Hackenberger CPR, Marzinzik AL. Discovery, X-ray structure and CPP-conjugation enabled uptake of p53/MDM2 macrocyclic peptide inhibitors. RSC Chem Biol 2021; 2:1661-1668. [PMID: 34977581 PMCID: PMC8637822 DOI: 10.1039/d1cb00056j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mouse double minute 2 homolog (MDM2, Hdm2) is an important negative regulator of the tumor suppressor p53. Using a mRNA based display technique to screen a library of >1012 in vitro-translated cyclic peptides, we have identified a macrocyclic ligand that shows picomolar potency on MDM2. X-Ray crystallography reveals a novel binding mode utilizing a unique pharmacophore to occupy the Phe/Trp/Leu pockets on MDM2. Conjugation of a cyclic cell-penetrating peptide (cCPP) to the initially non cell-permeable ligand enables cellular uptake and a pharmacodynamic response in SJSA-1 cells. The demonstrated enhanced intracellular availability of cyclic peptides that are identified by a display technology exemplifies a process for the application of intracellular tools for drug discovery projects.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10 Berlin 13125 Germany
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Patrick C Reid
- PeptiDream, 3-25-23 Tonomachi Kawasaki-Ku Kanagawa 210-0821 Japan
| | - Sebastien Ripoche
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Stephan Ruetz
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | | | - Samuel Hintermann
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Christoph E Dumelin
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10 Berlin 13125 Germany .,Humboldt Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Andreas L Marzinzik
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| |
Collapse
|
14
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
15
|
|