1
|
Habault J, Franco JL, Ha S, Schneider JA, Voisin M, Wise DR, Wong KK, Garabedian MJ, Kirshenbaum K, Logan SK. In Vivo Efficacy of a Macrocyclic Peptoid-Peptide Hybrid That Selectively Modulates the Beta-Catenin/TCF Interaction to Inhibit Prostate Cancer. Prostate 2025; 85:646-658. [PMID: 39956770 DOI: 10.1002/pros.24868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Prostate cancer is the most common form of male cancer and can initially be treated as a localized disease. Although the 5-year survival rate at diagnosis approaches 100 percent, a subset of patients will subsequently develop resistance to treatment. This may ultimately lead to metastatic castration resistant prostate cancer (mCRPC), for which the prognosis is much less favorable. The importance of the Wnt/β-catenin pathway in treatment-resistant prostate cancer has inspired efforts to exploit the interaction of β-catenin with its transcription binding partners as a therapeutic strategy for prostate cancer. METHODS Peptoid-peptide macrocycles are attractive design scaffolds for disrupting protein-protein interactions. In this study, we evaluate a library of these macrocycles and demonstrate their selectivity for the β-catenin/TCF (T Cell Factor) interaction. RESULTS Importantly, we show that the macrocycles do not significantly alter the binding of β-catenin to cell surface protein, E-cadherin. Our lead sequence, Macrocycle 13, (MC13) was also tolerant of modifications aimed to improve aqueous solubility while retaining activity. Herein, we demonstrate in vivo proof of principle for using peptidomimetic macrocycles to target the β-catenin/TCF interaction. Treated prostate cancer mouse xenografts show markedly diminished tumor growth and decreased levels of myc protein. MC13 also inhibits growth in an organoid model with genetic alterations frequently found in prostate cancer. Transcriptome analysis of prostate cancer cells treated with MC13 reveals downregulation of key pathways, including Wnt/β-catenin and c-myc. Furthermore, chromatin immunoprecipitation (ChIP) analysis shows reduced β-catenin at its target genes, axin2 and c-myc. CONCLUSION Our findings underscore the therapeutic potential of peptoid-peptide macrocycle inhibition of β-catenin in prostate cancer.
Collapse
Affiliation(s)
- Justine Habault
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, New York, New York, USA
| | - Jeffry A Schneider
- Department of Urology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| | - Maud Voisin
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - David R Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Kwok-Kin Wong
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael J Garabedian
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Urology, NYU Grossman School of Medicine, New York, New York, USA
| | - Kent Kirshenbaum
- Chemistry Department, New York University, New York, New York, USA
| | - Susan K Logan
- Department of Urology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Emanuelson C, Naro Y, Shade O, Liu M, Khare SD, Deiters A. Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus. ACS Chem Biol 2025; 20:746-757. [PMID: 40063062 PMCID: PMC11934087 DOI: 10.1021/acschembio.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Human Papillomavirus (HPV) is linked to multiple cancers, most significantly cervical cancer, for which HPV infection is associated with nearly all cases. Essential to the oncogenesis of HPV is the function of the viral protein E6 and its role in degrading the cell cycle regulator p53. Degradation of p53, and the resultant loss of cell cycle control, is mediated by E6 recruitment of the E3 ubiquitin ligase E6AP and subsequent ubiquitination of p53. Here, we report the design of a stapled peptide that mimics the LxxLL α-helical domain of E6AP to bind and covalently label a cysteine residue specific to HPV-16 E6. Several acrylamide- and haloacetamide-based warheads were evaluated for reactivity and specificity, and a panel of hydrocarbon-stapled peptides was evaluated for enhanced binding affinity and increased proteolytic stability. Structure-based modeling was used to rationalize the observed trends in the reactivity of the warheads and the impact of the hydrocarbon staple position on the binding affinity of the stapled peptides. The development of a proteolytically stable and reactive peptide represents a new class of peptide-based inhibitors of protein-protein interactions with a potential therapeutic value toward HPV-derived cancers.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuta Naro
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melinda Liu
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Fujita M, Demizu Y. Advances in the development of Wnt/β-catenin signaling inhibitors. RSC Med Chem 2024:d4md00749b. [PMID: 39691403 PMCID: PMC11647577 DOI: 10.1039/d4md00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a critical role in various biological processes, including cell proliferation, differentiation, and tissue homeostasis. Aberrant activation of this pathway is strongly associated with the development of various cancers, including colorectal, pancreatic, and gastric cancers, making it a promising therapeutic target. In recent years, inhibitors targeting different components of the Wnt/β-catenin pathway, including small molecules, peptides, and nucleic acid-based therapies, have been developed to suppress cancer cell growth. These inhibitors work by disrupting key interactions within the pathway, thereby preventing tumor progression. Antibody-based therapies have also emerged as potential strategies to block ligand-receptor interactions within this pathway. Despite these advancements, challenges such as the complexity of the pathway and toxicity concerns remain. Innovative approaches, including allosteric inhibitors, proteolysis-targeting chimeras (PROTACs), and peptide-based inhibitors, offer new opportunities to address these challenges. This review provides an overview of the latest progress in the development of Wnt/β-catenin pathway inhibitors and explores future directions in cancer therapy.
Collapse
Affiliation(s)
- Minami Fujita
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita Okayama 700-8530 Japan
| |
Collapse
|
4
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Yeste-Vázquez A, Paulussen FM, Wendt M, Klintrot R, Schulte C, Wallraven K, van Gijzel L, Simeonov B, van der Gaag M, Gerber A, Maric HM, Hennig S, Grossmann TN. Structure-Based Design of Bicyclic Helical Peptides That Target the Oncogene β-Catenin. Angew Chem Int Ed Engl 2024; 63:e202411749. [PMID: 39167026 DOI: 10.1002/anie.202411749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The inhibition of intracellular protein-protein interactions is challenging, in particular, when involved interfaces lack pronounced cavities. The transcriptional co-activator protein and oncogene β-catenin is a prime example of such a challenging target. Despite extensive targeting efforts, available high-affinity binders comprise only large molecular weight inhibitors. This hampers the further development of therapeutically useful compounds. Herein, we report the design of a considerably smaller peptidomimetic scaffold derived from the α-helical β-catenin-binding motif of Axin. Sequence maturation and bicyclization provided a stitched peptide with an unprecedented crosslink architecture. The binding mode and site were confirmed by a crystal structure. Further derivatization yielded a β-catenin inhibitor with single-digit micromolar activity in a cell-based assay. This study sheds light on how to design helix mimetics with reduced molecular weight thereby improving their biological activity.
Collapse
Affiliation(s)
- Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mathias Wendt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rasmus Klintrot
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lieke van Gijzel
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Boris Simeonov
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maurice van der Gaag
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of, Wuerzburg, Germany
| | - Sven Hennig
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 PMCID: PMC11565579 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Chen Z, Li Y, Wang X, Qiu X, Wang C, Wang Z, Chen X, Wang J. A high-throughput molecular dynamics screening (HTMDS) approach to the design of novel cyclopeptide inhibitors of ATAD2B based on the non-canonical combinatorial library. J Biomol Struct Dyn 2024; 42:2809-2824. [PMID: 37194299 DOI: 10.1080/07391102.2023.2212796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Cyclic peptides (CPs) are a promising class of drugs because of their high biological activity and specificity. However, the design of CP remains challenging due to their conformational flexibility and difficulties in designing stable binding conformation. Herein, we present a high-throughput MD screening (HTMDS) process for the iterative design of stable CP binders with a combinatorial CP library composed of canonical and non-canonical amino acids. As a proof of concept, we apply our methods to design CP inhibitors for the bromodomain (BrD) of ATAD2B. 698,800 CP candidates with a total of 25,570 ns MD simulations were performed to study the protein-ligand binding interactions. The binding free energies (ΔGbind) estimated by MM/PBSA approach for eight lead CP designs were found to be low. CP-1st.43 was the best CP candidate with an estimated ΔGbind of -28.48 kcal/mol when compared to the standard inhibitor C-38 which has been experimentally validated and shown to exhibit ΔGbind of -17.11 kcal/mol. The major contribution of binding sites for BrD of ATAD2B involved the hydrogen-bonding anchor within the Aly-binding pocket, salt bridging, and hydrogen-bonding mediated stabilization of the ZA loop and BC loop, and the complementary Van der Waals attraction. Our methods demonstrate encouraging results by yielding conformationally stable and high-potential CP binders that should have potential applicability in future CP drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd, Shenzhen, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Chen S, Lin T, Basu R, Ritchey J, Wang S, Luo Y, Li X, Pei D, Kara LB, Cheng X. Design of target specific peptide inhibitors using generative deep learning and molecular dynamics simulations. Nat Commun 2024; 15:1611. [PMID: 38383543 PMCID: PMC10882002 DOI: 10.1038/s41467-024-45766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
We introduce a computational approach for the design of target-specific peptides. Our method integrates a Gated Recurrent Unit-based Variational Autoencoder with Rosetta FlexPepDock for peptide sequence generation and binding affinity assessment. Subsequently, molecular dynamics simulations are employed to narrow down the selection of peptides for experimental assays. We apply this computational strategy to design peptide inhibitors that specifically target β-catenin and NF-κB essential modulator. Among the twelve β-catenin inhibitors, six exhibit improved binding affinity compared to the parent peptide. Notably, the best C-terminal peptide binds β-catenin with an IC50 of 0.010 ± 0.06 μM, which is 15-fold better than the parent peptide. For NF-κB essential modulator, two of the four tested peptides display substantially enhanced binding compared to the parent peptide. Collectively, this study underscores the successful integration of deep learning and structure-based modeling and simulation for target specific peptide design.
Collapse
Affiliation(s)
- Sijie Chen
- College of Pharmacy, The Ohio State University, 281 W Lane Ave, Columbus, OH, USA
| | - Tong Lin
- Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
- Machine Learning Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Ruchira Basu
- Department of Chemistry and Biochemistry, The Ohio State University, 281 W Lane Ave, Columbus, OH, USA
| | - Jeremy Ritchey
- Department of Chemistry and Biochemistry, The Ohio State University, 281 W Lane Ave, Columbus, OH, USA
| | - Shen Wang
- College of Pharmacy, The Ohio State University, 281 W Lane Ave, Columbus, OH, USA
| | - Yichuan Luo
- Electrical and Computer Engineering Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Xingcan Li
- Department of Radiology, Affiliated Hospital and Medical School of Nantong University, 20 West Temple Road, Nantong, Jiangsu, China
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 281 W Lane Ave, Columbus, OH, USA.
| | - Levent Burak Kara
- Mechanical Engineering Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA.
| | - Xiaolin Cheng
- College of Pharmacy, The Ohio State University, 281 W Lane Ave, Columbus, OH, USA.
- Translational Data Analytics Institute, The Ohio State University, 1760 Neil Ave, Columbus, OH, USA.
| |
Collapse
|
9
|
Nazzaro A, Lu B, Sawyer N, Watkins AM, Arora PS. Macrocyclic β-Sheets Stabilized by Hydrogen Bond Surrogates. Angew Chem Int Ed Engl 2023; 62:e202303943. [PMID: 37170337 PMCID: PMC10592574 DOI: 10.1002/anie.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Mimics of protein secondary and tertiary structure offer rationally-designed inhibitors of biomolecular interactions. β-Sheet mimics have a storied history in bioorganic chemistry and are typically designed with synthetic or natural turn segments. We hypothesized that replacement of terminal inter-β-strand hydrogen bonds with hydrogen bond surrogates (HBS) may lead to conformationally-defined macrocyclic β-sheets without the requirement for natural or synthetic β-turns, thereby providing a minimal mimic of a protein β-sheet. To access turn-less antiparallel β-sheet mimics, we developed a facile solid phase synthesis protocol. We surveyed a dataset of protein β-sheets for naturally observed interstrand side chain interactions. This bioinformatics survey highlighted an over-abundance of aromatic-aromatic, cation-π and ionic interactions in β-sheets. In correspondence with natural β-sheets, we find that minimal HBS mimics show robust β-sheet formation when specific amino acid residue pairings are incorporated. In isolated β-sheets, aromatic interactions endow superior conformational stability over ionic or cation-π interactions. Circular dichroism and NMR spectroscopies, along with high-resolution X-ray crystallography, support our design principles.
Collapse
Affiliation(s)
- Alex Nazzaro
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | - Brandon Lu
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | - Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| | | | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, NY 10013, New York, USA
| |
Collapse
|
10
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
11
|
Li NZ, Yu CH, Wu JY, Huang SJ, Huang SL, Cheng RP. Diagonal Interactions between Glutamate and Arginine Analogs with Varying Side-Chain Lengths in a β-Hairpin. Molecules 2023; 28:molecules28072888. [PMID: 37049652 PMCID: PMC10096425 DOI: 10.3390/molecules28072888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Cross-strand interactions are important for the stability of β-sheet structures. Accordingly, cross-strand diagonal interactions between glutamate and arginine analogs with varying side-chain lengths were studied in a series of β-hairpin peptides. The peptides were analyzed by homonuclear two-dimensional nuclear magnetic resonance methods. The fraction folded population and folding free energy of the peptides were derived from the chemical shift data. The fraction folded population trends could be rationalized using the strand propensity of the constituting residues, which was not the case for the peptides with lysine analogs, highlighting the difference between the arginine analogs and lysine analogs. Double-mutant cycle analysis was used to derive the diagonal ion-pairing interaction energetics. The most stabilizing diagonal cross-strand interaction was between the shortest residues (i.e., Asp2-Agp9), most likely due to the least side-chain conformational penalty for ion-pair formation. The diagonal interaction energetics in this study involving the arginine analogs appears to be consistent with and extend beyond our understanding of diagonal ion-pairing interactions involving lysine analogs. The results should be useful for designing β-strand-containing molecules to affect biological processes such as amyloid formation and protein-protein interactions.
Collapse
Affiliation(s)
- Nian-Zhi Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Hsu Yu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jhuan-Yu Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shou-Ling Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Richard P Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Pal S. Impact of Hydrogen‐Bond Surrogate Model on Helix Stabilization and Development of Protein‐Protein Interaction Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| |
Collapse
|
13
|
Paulussen FM, Grossmann TN. Peptide-based covalent inhibitors of protein-protein interactions. J Pept Sci 2023; 29:e3457. [PMID: 36239115 PMCID: PMC10077911 DOI: 10.1002/psc.3457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.
Collapse
Affiliation(s)
- Felix M Paulussen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Li X, Craven TW, Levine PM. Cyclic Peptide Screening Methods for Preclinical Drug Discovery. J Med Chem 2022; 65:11913-11926. [PMID: 36074956 DOI: 10.1021/acs.jmedchem.2c01077] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic peptides are among the most diverse architectures for current drug discovery efforts. Their size, stability, and ease of synthesis provide attractive scaffolds to engage and modulate some of the most challenging targets, including protein-protein interactions and those considered to be "undruggable". With a variety of sophisticated screening technologies to produce libraries of cyclic peptides, including phage display, mRNA display, split intein circular ligation of peptides, and in silico screening, a new era of cyclic peptide drug discovery is at the forefront of modern medicine. In this perspective, we begin by discussing cyclic peptides approved for clinical use in the past two decades. Particular focus is placed around synthetic chemistries to generate de novo libraries of cyclic peptides and novel methods to screen them. The perspective culminates with future prospects for generating cyclic peptides as viable therapeutic options and discusses the advantages and disadvantages currently being faced with bringing them to market.
Collapse
Affiliation(s)
- Xinting Li
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Timothy W Craven
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Paul M Levine
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Paulussen FM, Schouten GK, Moertl C, Verheul J, Hoekstra I, Koningstein GM, Hutchins GH, Alkir A, Luirink RA, Geerke DP, van Ulsen P, den Blaauwen T, Luirink J, Grossmann TN. Covalent Proteomimetic Inhibitor of the Bacterial FtsQB Divisome Complex. J Am Chem Soc 2022; 144:15303-15313. [PMID: 35945166 PMCID: PMC9413201 DOI: 10.1021/jacs.2c06304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The use of antibiotics is threatened by the emergence
and spread
of multidrug-resistant strains of bacteria. Thus, there is a need
to develop antibiotics that address new targets. In this respect,
the bacterial divisome, a multi-protein complex central to cell division,
represents a potentially attractive target. Of particular interest
is the FtsQB subcomplex that plays a decisive role in divisome assembly
and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of
a macrocyclic covalent inhibitor derived from a periplasmic region
of FtsB that mediates its binding to FtsQ. The bioactive conformation
of this motif was stabilized by a customized cross-link resulting
in a tertiary structure mimetic with increased affinity for FtsQ.
To increase activity, a covalent handle was incorporated, providing
an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer
membrane-permeable E. coli strain,
concurrent with the expected loss of FtsB localization, and also affected
the infection of zebrafish larvae by a clinical E.
coli strain. This first-in-class inhibitor of a divisome
protein–protein interaction highlights the potential of proteomimetic
molecules as inhibitors of challenging targets. In particular, the
covalent mode-of-action can serve as an inspiration for future antibiotics
that target protein–protein interactions.
Collapse
Affiliation(s)
- Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gina K Schouten
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location VUmc, De Boelelaan 1108, Amsterdam 1081 HZ, Netherlands
| | - Carolin Moertl
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Jolanda Verheul
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Irma Hoekstra
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gregory M Koningstein
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - George H Hutchins
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Aslihan Alkir
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Rosa A Luirink
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Peter van Ulsen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tanneke den Blaauwen
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Joen Luirink
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
16
|
Koelman EMR, Yeste-Vázquez A, Grossmann TN. Targeting the interaction of β-catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorg Med Chem 2022; 70:116920. [PMID: 35841828 DOI: 10.1016/j.bmc.2022.116920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
The Wnt/β-catenin signaling pathway is crucially involved in embryonic development, stem cell maintenance and tissue renewal. Hyperactivation of this pathway is associated with the development and progression of various types of cancers. The transcriptional coactivator β-catenin represents a pivotal component of the pathway and its interaction with transcription factors of the TCF/LEF family is central to pathway activation. Inhibition of this crucial protein-protein interaction via direct targeting of β-catenin is considered a promising strategy for the inactivation of oncogenic Wnt signaling. This review summarizes advances in the development of Wnt antagonists that have been shown to directly bind β-catenin.
Collapse
Affiliation(s)
- Emma M R Koelman
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands; Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands; Amsterdam Institute of Molecular and Life Sciences, VU University Amsterdam, Amsterdam, NL, The Netherlands.
| |
Collapse
|
17
|
The Effects of Charged Amino Acid Side-Chain Length on Diagonal Cross-Strand Interactions between Carboxylate- and Ammonium-Containing Residues in a β-Hairpin. Molecules 2022; 27:molecules27134172. [PMID: 35807421 PMCID: PMC9268152 DOI: 10.3390/molecules27134172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/02/2023] Open
Abstract
The β-sheet is one of the common protein secondary structures, and the aberrant aggregation of β-sheets is implicated in various neurodegenerative diseases. Cross-strand interactions are an important determinant of β-sheet stability. Accordingly, both diagonal and lateral cross-strand interactions have been studied. Surprisingly, diagonal cross-strand ion-pairing interactions have yet to be investigated. Herein, we present a systematic study on the effects of charged amino acid side-chain length on a diagonal ion-pairing interaction between carboxylate- and ammonium-containing residues in a β-hairpin. To this end, 2D-NMR was used to investigate the conformation of the peptides. The fraction folded population and the folding free energy were derived from the chemical shift data. The fraction folded population for these peptides with potential diagonal ion pairs was mostly lower compared to the corresponding peptide with a potential lateral ion pair. The diagonal ion-pairing interaction energy was derived using double mutant cycle analysis. The Asp2-Dab9 (Asp: one methylene; Dab: two methylenes) interaction was the most stabilizing (−0.79 ± 0.14 kcal/mol), most likely representing an optimal balance between the entropic penalty to enable the ion-pairing interaction and the number of side-chain conformations that can accommodate the interaction. These results should be useful for designing β-sheet containing molecular entities for various applications.
Collapse
|
18
|
Gupta S, Azadvari N, Hosseinzadeh P. Design of Protein Segments and Peptides for Binding to Protein Targets. BIODESIGN RESEARCH 2022; 2022:9783197. [PMID: 37850124 PMCID: PMC10521657 DOI: 10.34133/2022/9783197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 10/19/2023] Open
Abstract
Recent years have witnessed a rise in methods for accurate prediction of structure and design of novel functional proteins. Design of functional protein fragments and peptides occupy a small, albeit unique, space within the general field of protein design. While the smaller size of these peptides allows for more exhaustive computational methods, flexibility in their structure and sparsity of data compared to proteins, as well as presence of noncanonical building blocks, add additional challenges to their design. This review summarizes the current advances in the design of protein fragments and peptides for binding to targets and discusses the challenges in the field, with an eye toward future directions.
Collapse
Affiliation(s)
- Suchetana Gupta
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Noora Azadvari
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
19
|
Zhang MY, Yang H, Ortiz G, Trnka MJ, Petronikolou N, Burlingame AL, DeGrado WF, Fujimori DG. Covalent labeling of a chromatin reader domain using proximity-reactive cyclic peptides. Chem Sci 2022; 13:6599-6609. [PMID: 35756531 PMCID: PMC9172573 DOI: 10.1039/d2sc00555g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3—a trimethyllysine reader domain of histone demethylase KDM5A. Guided by the PHD3–histone co-crystal structure, we designed a sidechain-to-sidechain linking strategy to improve peptide proteolytic stability whilst maintaining binding affinity. We have developed an operationally simple solid-phase macrocyclization pathway, capitalizing on the inherent reactivity of the dimethyllysine ε-amino group to generate scaffolds bearing charged tetraalkylammonium functionalities that effectively engage the shallow aromatic ‘groove’ of PHD3. Leveraging a surface-exposed lysine residue on PHD3 adjacent to the ligand binding site, cyclic peptides were rendered covalent through installation of an arylsulfonyl fluoride warhead. The resulting lysine-reactive cyclic peptides demonstrated rapid and efficient labeling of the PHD3 domain in HEK293T lysates, showcasing the feasibility of employing proximity-induced reactivity for covalent labeling of this challenging family of reader domains. We describe the development of covalent cyclic peptide ligands which target a chromatin methylation reader domain using a proximity-reactive sulfonyl fluoride moiety.![]()
Collapse
Affiliation(s)
- Meng Yao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Gloria Ortiz
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Nektaria Petronikolou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco San Francisco CA 94158 USA
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco CA 94158 USA
- Quantitative Biosciences Institute, University of California San Francisco San Francisco CA 94158 USA
| |
Collapse
|