1
|
Jamitzky S, Altvater B, Krekeler C, Hoen L, Brandes C, Ebbinghaus J, Richter L, Kosel L, Ochs L, Farwick N, Urban K, Kluge L, Bücker L, Görlich D, Johnston ICD, Pfeifer R, Hartmann W, Rossig C, Kailayangiri S. Ganglioside SSEA-4 in Ewing sarcoma marks a tumor cell population with aggressive features and is a potential cell-surface immune target. Sci Rep 2024; 14:11935. [PMID: 38789477 PMCID: PMC11126692 DOI: 10.1038/s41598-024-62849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Carbohydrate markers of immature cells during prenatal human development can be aberrantly expressed in cancers and deserve evaluation as immune targets. A candidate target in Ewing sarcoma is the globo-series ganglioside stage-specific embryonic antigen-4 (SSEA-4). We detected SSEA-4 expression on the cell surface of all of 14 EwS cell lines and in 21 of 31 (68%) primary EwS tumor biopsies. Among paired subpopulations of tumor cells with low versus high SSEA-4 expression, SSEA-4high expression was significantly and consistently associated with functional characteristics of tumor aggressiveness, including higher cell proliferation, colony formation, chemoresistance and propensity to migrate. SSEA-4low versus SSEA-4high expression was not related to expression levels of the EWSR1-FLI1 fusion transcript or markers of epithelial/mesenchymal plasticity. SSEA-4low cells selected from bulk populations regained higher SSEA-4 expression in vitro and during in vivo tumor growth in a murine xenograft model. T cells engineered to express SSEA-4-specific chimeric antigen receptors (CARs) specifically interacted with SSEA-4 positive EwS cells and exerted effective antigen-specific tumor cell lysis in vitro. In conclusion, with its stable expression and functional significance in EwS, SSEA-4 is an attractive therapeutic immune target in this cancer that deserves further evaluation for clinical translation.
Collapse
Affiliation(s)
- Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Carolin Krekeler
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Laura Hoen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Caroline Brandes
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Julia Ebbinghaus
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lisa Richter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lisa Kosel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Laurin Ochs
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Katja Urban
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lena Kluge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lara Bücker
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstr. 56, 48149, Muenster, Germany
| | - Ian C D Johnston
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Domagkstr. 17, 48149, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Roentgenstr. 16, 48149, Muenster, Germany.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
2
|
Smolinska A, Chodkowska M, Kominek A, Janiec J, Piwocka K, Sulejczak D, Sarnowska A. Stemness properties of SSEA-4+ subpopulation isolated from heterogenous Wharton's jelly mesenchymal stem/stromal cells. Front Cell Dev Biol 2024; 12:1227034. [PMID: 38455073 PMCID: PMC10917976 DOI: 10.3389/fcell.2024.1227034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024] Open
Abstract
Background: High heterogeneity of mesenchymal stem/stromal cells (MSCs) due to different degrees of differentiation of cell subpopulations poses a considerable challenge in preclinical studies. The cells at a pluripotent-like stage represent a stem cell population of interest for many researchers worldwide, which is worthy of identification, isolation, and functional characterization. In the current study, we asked whether Wharton's jelly-derived MSCs (WJ-MSCs) which express stage-specific embryonic antigen-4 (SSEA-4) can be considered as a pluripotent-like stem cell population. Methods: SSEA-4 expression in different culture conditions was compared and the efficiency of two cell separation methods were assessed: Magnetic Activated Cell Sorting (MACS) and Fluorescence Activated Cell Sorting (FACS). After isolation, SSEA-4+ cells were analyzed for the following parameters: the maintenance of the SSEA-4 antigen expression after cell sorting, stem cell-related gene expression, proliferation potential, clonogenicity, secretome profiling, and the ability to form spheres under 3D culture conditions. Results: FACS allowed for the enrichment of SSEA-4+ cell content in the population that lasted for six passages after sorting. Despite the elevated expression of stemness-related genes, SSEA-4+ cells neither differed in their proliferation and clonogenicity potential from initial and negative populations nor exhibited pluripotent differentiation repertoire. SSEA-4+ cells were observed to form smaller spheroids and exhibited increased survival under 3D conditions. Conclusion: Despite the transient expression of stemness-related genes, our findings could not fully confirm the undifferentiated pluripotent-like nature of the SSEA-4+ WJ-MSC population cultured in vitro.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Janiec
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Chen NY, Lin CW, Lai TY, Wu CY, Liao PC, Hsu TL, Wong CH. Increased expression of SSEA-4 on TKI-resistant non-small cell lung cancer with EGFR-T790M mutation. Proc Natl Acad Sci U S A 2024; 121:e2313397121. [PMID: 38252815 PMCID: PMC10835044 DOI: 10.1073/pnas.2313397121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme β3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.
Collapse
Affiliation(s)
- Nai-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei11221, Taiwan
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung406040, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Pei-Chi Liao
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
5
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Shivatare VS, Chuang PK, Tseng TH, Zeng YF, Huang HW, Veeranjaneyulu G, Wu HC, Wong CH. Study on antibody Fc-glycosylation for optimal effector functions. Chem Commun (Camb) 2023; 59:5555-5558. [PMID: 37071468 PMCID: PMC10259620 DOI: 10.1039/d3cc00672g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
A comprehensive structure-activity relationship study on antibody Fc-glycosylation has been performed using the chimeric anti-SSEA4 antibody chMC813-70 as a model. The α-2,6 sialylated biantennary complex type glycan was identified as the optimal Fc-glycan with significant enhancement in antibody effector functions, including binding to different Fc receptors and ADCC.
Collapse
Affiliation(s)
- Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Po-Kai Chuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Tzu-Hao Tseng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Yi-Fang Zeng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Han-Wen Huang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Gannedi Veeranjaneyulu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|