1
|
Jia X, Wang X, Chen H, Liu D, Deng B, Ao L, Yang J, Nie X, Zhao Z. Non-targeted metabolomic analysis of non-volatile metabolites in a novel Chinese industrially fermented low-salt kohlrabi. Front Nutr 2024; 11:1450789. [PMID: 39279898 PMCID: PMC11397298 DOI: 10.3389/fnut.2024.1450789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Low-temperature and low-salt fermented Chinese kohlrabi (LSCK) represents a novel approach to producing low-salt kohlrabi without the need for desalination during processing, as compared to traditional techniques. However, the profile of its non-volatile metabolites remains unclear. In order to investigate the non-volatile metabolites and their changes in LSCK during fermentation, the LSCKs fermented for 0 day (0D), 45 days (45D) and 90 days (90D) were analyzed using LC-MS/MS non-targeted metabolomics coupled with multivariate statistical analysis. The results showed that 60, 74, and 68 differential metabolites were identified in the three groups A1 (0D and 45D), A2 (0D and 90D), and A3 (45D and 90D) (VIP >1, p < 0.05, Log2FC >1), respectively. The differential metabolites were mainly amino acids, peptides, and analogues, fatty acyls, organic acids and derivatives, and carbohydrates and carbohydrate conjugates. Seventeen common differential metabolites were identified in A1, A2, and A3 groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the alanine, aspartate and glutamate metabolism, butanoate metabolism, α-linolenic acid metabolism, arginine biosynthesis, and phenylalanine metabolism were significantly correlated with the differential metabolites. The present study elucidates for the first time the changes in non-volatile differential metabolites and their associated metabolic pathways in the novel Chinese low-salt kohlrabi, providing a theoretical basis for improving the industrial fermentation process of this innovative product.
Collapse
Affiliation(s)
- Xiaohan Jia
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu, China
| | - Xinyi Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hongfan Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu, China
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Deng
- Solid-State Brewing Technology Innovation Center of Sichuan, Luzhou, China
| | - Ling Ao
- Solid-State Brewing Technology Innovation Center of Sichuan, Luzhou, China
| | - Jianping Yang
- Solid-State Brewing Technology Innovation Center of Sichuan, Luzhou, China
| | - Xin Nie
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu, China
| | - Zhiping Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
4
|
Salaemae W, Thompson AP, Gaiser BI, Lee KJ, Huxley MT, Sumby CJ, Polyak SW, Abell AD, Bruning JB, Wegener KL. Fortuitous In Vitro Compound Degradation Produces a Tractable Hit against Mycobacterium tuberculosis Dethiobiotin Synthetase: A Cautionary Tale of What Goes In Does Not Always Come Out. ACS Chem Biol 2023; 18:1985-1992. [PMID: 37651626 DOI: 10.1021/acschembio.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We previously reported potent ligands and inhibitors of Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS), a promising target for antituberculosis drug development (Schumann et al., ACS Chem Biol. 2021, 16, 2339-2347); here, the unconventional origin of the fragment compound they were derived from is described for the first time. Compound 1 (9b-hydroxy-6b,7,8,9,9a,9b-hexahydrocyclopenta[3,4]cyclobuta[1,2-c]chromen-6(6aH)-one), identified by an in silico fragment screen, was subsequently shown by surface plasmon resonance to have dose-responsive binding (KD = 0.6 mM). Clear electron density was revealed in the DAPA substrate binding pocket when 1 was soaked into MtDTBS crystals, but the density was inconsistent with the structure of 1. Here, we show that the lactone of 1 hydrolyzes to a carboxylic acid (2) under basic conditions, including those of the crystallography soak, with a subsequent ring opening of the component cyclobutane ring forming a cyclopentylacetic acid (3). Crystals soaked directly with authentic 3 produced an electron density that matched that of crystals soaked with presumed 1, confirming the identity of the bound ligand. The synthetic utility of fortuitously formed 3 enabled the subsequent compound development of nanomolar inhibitors. Our findings represent an example of chemical modification within drug discovery assays and demonstrate the value of high-resolution structural data in the fragment hit validation process.
Collapse
Affiliation(s)
- Wanisa Salaemae
- Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Andrew P Thompson
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Birgit I Gaiser
- Centre for Nanoscale BioPhotonics (CNBP), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kwang Jun Lee
- Centre for Nanoscale BioPhotonics (CNBP), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael T Huxley
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher J Sumby
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven W Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Centre for Nanoscale BioPhotonics (CNBP), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kate L Wegener
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Explicit molecular dynamics simulation studies to discover novel natural compound analogues as Mycobacterium tuberculosis inhibitors. Heliyon 2023; 9:e13324. [PMID: 36816262 PMCID: PMC9932657 DOI: 10.1016/j.heliyon.2023.e13324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) in one of the dreadful diseases present globally. This is caused by Mycobacterium tuberculosis. Mycobacterium tuberculosis dethiobiotin synthetase (MtDTBS) is an essential enzyme in biotin biosynthesis and is an ideal target to design and develop novel inhibitors. In order to effectively combat this disease six natural compound (butein) analogues were subjected to molecular docking to determine their binding mode and the binding affinities. The resultant complex structures were subjected to 500 ns simulation run to estimate their binding stabilities using GROMACS. The molecular dynamics simulation studies provided essential evidence that the systems were stable during the progression of 500 ns simulation run. The root mean square deviation (RMSD) of all the systems was found to be below 0.3 nm stating that the systems are well converged. The radius of gyration (Rg) profiles indicated that the systems were highly compact without any major fluctuations. The principle component analysis (PCA) and Gibbs energy landscape studies have revealed that the comp3, comp5 and comp11 systems navigated marginally through the PC2. The intermolecular interactions have further demonstrated that all the compounds have displayed key residue interactions, firmly holding the ligands at the binding pocket. The residue Lys37 was found consistently to interact with all the ligands highlighting its potential role in inhibiting the MtDTBS. Our investigation further put forth two novel compounds (comp10 and comp11) as putative antituberculosis agents. Collectively, we propose six compounds has plausible inhibitors to curtail TB and further can act as scaffolds in designing new compounds.
Collapse
|
6
|
Xu Y, Yang J, Li W, Song S, Shi Y, Wu L, Sun J, Hou M, Wang J, Jia X, Zhang H, Huang M, Lu T, Gan J, Feng Y. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022; 18:e1010615. [PMID: 35816546 PMCID: PMC9302846 DOI: 10.1371/journal.ppat.1010615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world’s population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical ‘BioC-BioH(3)’ paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.
Collapse
Affiliation(s)
- Yongchang Xu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, The People’s Republic of China
| | - Shuaijie Song
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Yu Shi
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Lihan Wu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jingdu Sun
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
| | - Mengyun Hou
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources & Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, The People’s Republic of China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Man Huang
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
- * E-mail: (JG); (YF)
| | - Youjun Feng
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
- * E-mail: (JG); (YF)
| |
Collapse
|
7
|
An Outline of the Latest Crystallographic Studies on Inhibitor-Enzyme Complexes for the Design and Development of New Therapeutics against Tuberculosis. Molecules 2021; 26:molecules26237082. [PMID: 34885662 PMCID: PMC8659263 DOI: 10.3390/molecules26237082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
The elucidation of the structure of enzymes and their complexes with ligands continues to provide invaluable insights for the development of drugs against many diseases, including bacterial infections. After nearly three decades since the World Health Organization’s (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. The structural elucidation of enzyme-ligand complexes is fundamental to identify hot-spots, define possible interaction sites, and elaborate strategies to develop optimized molecules with high affinity. This review offers a critical and comprehensive overview of the most recent structural information on traditional and emerging mycobacterial enzymatic targets. A selection of more than twenty enzymes is here discussed, with a special emphasis on the analysis of their binding sites, the definition of the structure–activity relationships (SARs) of their inhibitors, and the study of their main intermolecular interactions. This work corroborates the potential of structural studies, substantiating their relevance in future anti-mycobacterial drug discovery and development efforts.
Collapse
|