1
|
Ashraf R, Adel M, Serya RAT, Ibrahim E, Haffez H, Soror S, Abouzid KAM. Design and synthesis of novel Hydroxamate and non-Hydroxamate HDAC inhibitors based on Chromone and Quinazolone scaffolds. Bioorg Chem 2025; 161:108514. [PMID: 40319810 DOI: 10.1016/j.bioorg.2025.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The development of selective histone deacetylase (HDAC) inhibitors represents an encouraging approach for cancer therapy. In this study, we report design, synthesis, and biological evaluation of hydroxamate, amidoxime, and carboxylic acid-based derivatives as novel HDAC inhibitors. The synthesized compounds were assessed for their inhibitory activity against multiple HDAC isoforms, particularly HDAC6, 7, and 8. Compounds 13, 16, 20, and 26 exhibited potent and selective inhibition of HDAC6. Compound 26 exhibited the most potent inhibitory activity against HDAC6, with an IC50 value of 70 nM. Additionally, compounds 17 and 23 demonstrated significant broad-spectrum antiproliferative activity across various cancer cell lines compared to other tested derivatives. Furthermore, compounds 17 and 23 showed promising total pan-HDAC inhibitory activity. Subsequent biological studies revealed that compounds 13, 16, 17, 20, 23, and 26 induced a combination of early and late apoptosis along with necrosis. In silico studies, including molecular docking and ADME predictions, were also conducted. Collectively, these findings highlight the potential of these compounds as promising candidates for the development of a novel class of selective HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Rosaline Ashraf
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell 2025; 85:1263-1279. [PMID: 40073861 DOI: 10.1016/j.molcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The recently discovered lysine lactylation represents a critical post-translational modification with widespread implications in epigenetics and cancer biology. Initially identified on histones, lysine lactylation has been also described on non-histone proteins, playing a pivotal role in transcriptional activation, protein function, and cellular processes. Two major sources of the lactyl moiety have been currently distinguished: L-lactyl-CoA (precursor of the L-lactyl moiety) and S-D-lactylglutathione (precursor of the D-lactyl moiety), which enable enzymatic and non-enzymatic mechanisms of lysine lactylation, respectively. Although the specific writers, erasers, and readers of this modification are still unclear, acetyltransferases and deacetylases have been proposed as crucial mediators of lysine lactylation. Remarkably, lactylation exerts significant influence on critical cancer-related pathways, thereby shaping cellular behavior during malignant transformation and the metastatic cascade. Hence, as recent insights into lysine lactylation underscore its growing potential in tumor biology, targeting this modification is emerging as a significant opportunity for cancer treatment.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
3
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025; 7:647-664. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
4
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Rho H, Hay N. Protein lactylation in cancer: mechanisms and potential therapeutic implications. Exp Mol Med 2025; 57:545-553. [PMID: 40128358 PMCID: PMC11958728 DOI: 10.1038/s12276-025-01410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 03/26/2025] Open
Abstract
Increased glycolysis, which leads to high lactate production, is a common feature of cancer cells. Recent evidence suggests that lactate plays a role in the post-translational modification of histone and nonhistone proteins via lactylation. In contrast to genetic mutations, lactylation in cancer cells is reversible. Thus, reversing lactylation can be exploited as a pharmacological intervention for various cancers. Here we discuss recent advances in histone and nonhistone lactylation in cancer, including L-, D- and S-lactylation, as well as alanyl-tRNA synthetase as a novel lactyltransferase. We also discuss potential approaches for targeting lactylation as a therapeutic opportunity in cancer treatment.
Collapse
Affiliation(s)
- Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Stollmaier JG, Czarnecki BAR, Christianson DW. Mechanism-Based Inhibition of Histone Deacetylase 6 by a Selenocyanate Is Subject to Redox Modulation. J Am Chem Soc 2025; 147:6373-6377. [PMID: 39957581 PMCID: PMC11929974 DOI: 10.1021/jacs.5c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Organoselenocyanates have attracted considerable attention in recent years due to their therapeutic potential and versatility in medicinal chemistry. Here, we report on the mechanism of inhibition by 5-phenylcarbamoylpentyl selenocyanide (SelSA-2), an analogue of the well-characterized histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, a.k.a. Vorinostat). We show that histone deacetylases 6 and 10 promote selenocyanate hydrolysis to generate a selenolate anion, and we explore the redox chemistry of selenium as it modulates inhibitory activity through reversible formation of the diselenide. The 2.15 Å-resolution crystal structure of histone deacetylase 6 cocrystallized with SelSA-2 conclusively demonstrates that it is not the selenocyanate, but instead a zinc-bound selenolate anion, that is the active pharmacophore responsible for enzyme inhibition.
Collapse
Affiliation(s)
- Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323 USA
| | - Briana Abigail R. Czarnecki
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323 USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323 USA
| |
Collapse
|
7
|
Zhao W, Xin J, Yu X, Li Z, Li N. Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci 2025; 11:1510975. [PMID: 39850757 PMCID: PMC11754067 DOI: 10.3389/fmolb.2024.1510975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes. The current identification and enrichment strategies for lysine lactylation are introduced, and the known readers, writers, and erasers of this modification are summarized. In addition, the physiological and pathological implications of lysine lactylation are reviewed for different organisms, especially in prokaryotic cells. Finally, we end with a discussion of the limitations of the studies so far and propose future directions for lysine lactylation investigations.
Collapse
Affiliation(s)
- Wenjuan Zhao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiayi Xin
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of life sciences, Henan University, Kaifeng, China
| | - Xin Yu
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifang Li
- School of life sciences, Henan University, Kaifeng, China
| | - Nan Li
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
8
|
Christianson DW, Stollmaier JG, Czarnecki BAR. Mechanism-Based Inhibition of Histone Deacetylase 6 by a Selenocyanate is Subject to Redox Modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.04.631333. [PMID: 39803514 PMCID: PMC11722227 DOI: 10.1101/2025.01.04.631333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Organoselenocyanates have attracted considerable attention in recent years due to their therapeutic potential and versatility in medicinal chemistry. Here, we report on the mechanism of inhibition by 5-phenylcarbamoylpentyl selenocyanide (SelSA-2), an analogue of the well-characterized histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, a.k.a. Vorinostat). We show that histone deacetylases 6 and 10 can promote selenocyanate hydrolysis to generate a selenolate anion, and we explore the redox chemistry of selenium as it modulates inhibitory activity through reversible formation of the diselenide. The 2.15 Å-resolution crystal structure of histone deacetylase 6 cocrystallized with SelSA-2 conclusively demonstrates that it is not the selenocyanate, but instead the selenolate anion, that is the active pharmacophore responsible for enzyme inhibition.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Briana Abigail R Czarnecki
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, United States
| |
Collapse
|
9
|
Zhang D, Gao J, Zhu Z, Mao Q, Xu Z, Singh PK, Rimayi CC, Moreno-Yruela C, Xu S, Li G, Sin YC, Chen Y, Olsen CA, Snyder NW, Dai L, Li L, Zhao Y. Lysine L-lactylation is the dominant lactylation isomer induced by glycolysis. Nat Chem Biol 2025; 21:91-99. [PMID: 39030363 PMCID: PMC11666458 DOI: 10.1038/s41589-024-01680-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Qianying Mao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pankaj K Singh
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Cornelius C Rimayi
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yi-Cheng Sin
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathaniel W Snyder
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Philadelphia, PA, USA
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Yang Y, Shi J, Yu J, Zhao X, Zhu K, Wang S, Zhang X, Zhang X, Wei G, Cao W. New Posttranslational Modification Lactylation Brings New Inspiration for the Treatment of Rheumatoid Arthritis. J Inflamm Res 2024; 17:11845-11860. [PMID: 39758940 PMCID: PMC11697653 DOI: 10.2147/jir.s497240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA. More studies have shown that lactylation can regulate genes in various cells, such as fibroblast-like synoviocytes (FLSs) and macrophages, thus playing a special role in the development and occurrence of autoimmune diseases, neurological diseases, and cancer diseases. In this paper, we review the research on lactylation in RA-related cells and mechanisms and bring new insights into the pathogenesis, diagnosis, and treatment of RA.
Collapse
Affiliation(s)
- Yue Yang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinjie Shi
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiming Yu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xin Zhao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ke Zhu
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shen Wang
- Orthopedics Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, People’s Republic of China
| | - Xinwen Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xieyu Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Guangcheng Wei
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Nuñez R, Sidlowski PFW, Steen EA, Wynia-Smith SL, Sprague DJ, Keyes RF, Smith BC. The TRIM33 Bromodomain Recognizes Histone Lysine Lactylation. ACS Chem Biol 2024; 19:2418-2428. [PMID: 39556662 PMCID: PMC11706526 DOI: 10.1021/acschembio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Histone lysine lactylation (Kla) regulates inflammatory gene expression in activated macrophages and mediates the polarization of inflammatory (M1) to reparative (M2) macrophages. However, the molecular mechanisms and key protein players involved in Kla-mediated transcriptional changes are unknown. As Kla is structurally similar to lysine acetylation (Kac), which is bound by bromodomains, we hypothesized that bromodomain-containing proteins bind histone Kla. Here, we screened 28 recombinantly expressed bromodomains for binding to histone Kla peptides via AlphaScreen assays. TRIM33 was the sole bromodomain tested that bound histone Kla peptides. TRIM33 attenuates inflammatory genes during late-stage macrophage activation; thus, TRIM33 provides a potential link between histone Kla and macrophage polarization. Orthogonal biophysical techniques, including isothermal titration calorimetry and protein-detected nuclear magnetic resonance, confirmed the submicromolar binding affinity of the TRIM33 bromodomain to both Kla and Kac histone post-translational modifications. Sequence alignments of human bromodomains revealed a unique glutamic acid residue within the TRIM33 binding pocket that we found confers TRIM33 specificity for binding Kla compared with other bromodomains. Molecular modeling of interactions of Kla with the TRIM33 bromodomain binding pocket and site-directed mutagenesis of glutamic acid confirmed the critical role of this residue in the selective recognition of Kla by TRIM33. Collectively, our findings implicate TRIM33, a bromodomain-containing protein, as a novel reader of histone Kla, potentially bridging the gap between histone Kla and macrophage polarization. This study enhances our understanding of the regulatory role of histone Kla in macrophage-mediated inflammation and offers insights into the underlying structural and biophysical mechanisms.
Collapse
Affiliation(s)
- Raymundo Nuñez
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Paul F W Sidlowski
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Erica A Steen
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Daniel J Sprague
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
12
|
Tang F, Xiao D, Li X, Qiao L. The roles of lactate and the interplay with m 6A modification in diseases. Cell Biol Toxicol 2024; 40:107. [PMID: 39617813 PMCID: PMC11609124 DOI: 10.1007/s10565-024-09951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Lactate exhibits various biological functions, including the mediation of histone and non-histone lactylation to regulate gene transcription, influencing the activity of T lymphocytes, NK cells, and macrophages in immune suppression, activating G protein-coupled receptor 81 for signal transduction, and serving as an energy substrate. The m6A modification represents the most prevalent post-transcriptional epigenetic alteration. It is regulated by m6A-related regulatory enzymes (including methyltransferases, demethylases, and recognition proteins) that control the transcription, splicing, stability, and translation of downstream target RNAs. Lactate-mediated lactylation at histone H3K18 can modulate downstream target m6A modifications by enhancing the transcriptional expression levels of m6A-related regulatory enzymes. These enzymes play a crucial role in the progression of diseases such as cancer, fibrosis (in both liver and lung), myocardial ischemia, cerebral hemorrhage, and sepsis. Furthermore, m6A-related regulatory enzymes are also subject to lactylation by lactate. In turn, these regulatory enzymes can influence key glycolytic pathway enzymes or modify lactate transporter MCT4 via m6A alterations to impact lactate levels and subsequently affect lactylation processes.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
14
|
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W, Cheng F. Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med 2024; 14:e70070. [PMID: 39456119 PMCID: PMC11511673 DOI: 10.1002/ctm2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lactylation, a recently identified form of protein post-translational modification (PTM), has emerged as a key player in cancer biology. The Warburg effect, a hallmark of tumour metabolism, underscores the significance of lactylation in cancer progression. By regulating gene transcription and protein function, lactylation facilitates metabolic reprogramming, enabling tumours to adapt to nutrient limitations and sustain rapid growth. Over the past decade, extensive research has revealed the intricate regulatory network underlying lactylation in tumours. Large-scale sequencing and machine learning have confirmed the widespread occurrence of lactylation sites across the tumour proteome. Targeting lactylation enzymes or metabolic pathways has demonstrated promising anti-tumour effects, highlighting the therapeutic potential of this modification. This review comprehensively explores the mechanisms of lactylation in cancer cells and the tumour microenvironment. We expound on the application of advanced omics technologies for target identification and data modelling within the lactylation field. Additionally, we summarise existing anti-lactylation drugs and discuss their clinical implications. By providing a comprehensive overview of recent advancements, this review aims to stimulate innovative research and accelerate the translation of lactylation-based therapies into clinical practice. KEY POINTS: Lactylation significantly influences tumour metabolism and gene regulation, contributing to cancer progression. Advanced sequencing and machine learning reveal widespread lactylation sites in tumours. Targeting lactylation enzymes shows promise in enhancing anti-tumour drug efficacy and overcoming chemotherapy resistance. This review outlines the clinical implications and future research directions of lactylation in oncology.
Collapse
Affiliation(s)
- Yipeng He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Tianbao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zefeng Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zhen Yin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qin Yuan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
15
|
Zhu Y, Liu W, Luo Z, Xiao F, Sun B. New insights into the roles of lactylation in cancer. Front Pharmacol 2024; 15:1412672. [PMID: 39502530 PMCID: PMC11534861 DOI: 10.3389/fphar.2024.1412672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Lactylation, a novel discovered posttranslational modification, is a vital component of lactate function and is prevalent in a wide range of cells, interacting with both histone and non-histone proteins. Recent studies have confirmed that lactylation as a new contributor to epigenetic landscape is involved in multiple pathological processes. Accumulating evidence reveals that lactylation exists in different pathophysiological states and leads to inflammation and cancer; however, few mechanisms of lactylation have been elaborated. This review summarizes the biological processes and pathophysiological roles of lactylation in cancer, as well as discusses the relevant mechanisms and potential therapeutic targets, aiming to provide new insights for targeted cancer therapy.
Collapse
Affiliation(s)
- Yajun Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Feiyan Xiao
- Center for Clinical Trial and Research, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
16
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
17
|
Liu X, Zhou Y, Wang H. The role of lactate-induced protein lactylation in gliomas: implications for preclinical research and the development of new treatments. Front Pharmacol 2024; 15:1383274. [PMID: 38983918 PMCID: PMC11231103 DOI: 10.3389/fphar.2024.1383274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The most prevalent primary brain tumors in adults are gliomas. In addition to insufficient therapeutic alternatives, gliomas are fatal mostly due to the rapid proliferation and continuous infiltration of tumor cells into the surrounding healthy brain tissue. According to a growing body of research, aerobic glycolysis, or the Warburg effect, promotes glioma development because gliomas are heterogeneous cancers that undergo metabolic reprogramming. Therefore, addressing the Warburg effect might be a useful therapeutic strategy for treating cancer. Lactate plays a critical role in reprogramming energy metabolism, allowing cells to rapidly access large amounts of energy. Lactate, a byproduct of glycolysis, is therefore present in rapidly proliferating cells and tumors. In addition to the protumorigenesis pathways of lactate synthesis, circulation, and consumption, lactate-induced lactylation has been identified in recent investigations. Lactate plays crucial roles in modulating immune processes, maintaining homeostasis, and promoting metabolic reprogramming in tumors, which are processes regulated by the lactate-induced lactylation of the lysine residues of histones. In this paper, we discuss the discovery and effects of lactylation, review the published studies on how protein lactylation influences cancer growth and further explore novel treatment approaches to achieve improved antitumor effects by targeting lactylation. These findings could lead to a new approach and guidance for improving the prognosis of patients with gliomas.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
19
|
Gao X, Pang C, Fan Z, Wang Y, Duan Y, Zhan H. Regulation of newly identified lysine lactylation in cancer. Cancer Lett 2024; 587:216680. [PMID: 38346584 DOI: 10.1016/j.canlet.2024.216680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Metabolic reprogramming is a typical hallmark of cancer. Enhanced glycolysis in tumor cells leads to the accumulation of lactate, which is traditionally considered metabolic waste. With the development of high-resolution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), the lactate-derived, lysine lactylation(Kla), has been identified. Kla can alter the spatial configuration of chromatin and regulate the expression of corresponding genes. Metabolic reprogramming and epigenetic remodeling have been extensively linked. Accumulating studies have subsequently expanded the framework on the key roles of this protein translational modification (PTM) in tumors and have provided a new concept of cancer-specific regulation by Kla.
Collapse
Affiliation(s)
- Xin Gao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Chaoyu Pang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
20
|
Yang J, Nicely NI, Weiser BP. Effects of Dimerization on the Deacylase Activities of Human SIRT2. Biochemistry 2023; 62:3383-3395. [PMID: 37966275 PMCID: PMC10702427 DOI: 10.1021/acs.biochem.3c00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Human sirtuin isoform 2 (SIRT2) is an NAD+-dependent enzyme that functions as a lysine deacetylase and defatty-acylase. Here, we report that SIRT2 readily dimerizes in solution and in cells and that dimerization affects its ability to remove different acyl modifications from substrates. Dimerization of recombinant SIRT2 was revealed with analytical size exclusion chromatography and chemical cross-linking. Dimerized SIRT2 dissociates into monomers upon binding long fatty acylated substrates (decanoyl-, dodecanoyl-, and myristoyl-lysine). However, we did not observe dissociation of dimeric SIRT2 in the presence of acetyl-lysine. Analysis of X-ray crystal structures led us to discover a SIRT2 double mutant (Q142A/E340A) that is impaired in its ability to dimerize, which was confirmed with chemical cross-linking and in cells with a split-GFP approach. In enzyme assays, the SIRT2(Q142A/E340A) mutant had normal defatty-acylase activity and impaired deacetylase activity compared with the wild-type protein. These results indicate that dimerization is essential for optimal SIRT2 function as a deacetylase. Moreover, we show that SIRT2 dimers can be dissociated by a deacetylase and defatty-acylase inhibitor, ascorbyl palmitate. Our finding that its oligomeric state can affect the acyl substrate selectivity of SIRT2 is a novel mode of activity regulation by the enzyme that can be altered genetically or pharmacologically.
Collapse
Affiliation(s)
- Jie Yang
- Department
of Molecular Biology, Rowan University School
of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Nathan I. Nicely
- Department
of Pharmacology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Brian P. Weiser
- Department
of Molecular Biology, Rowan University School
of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| |
Collapse
|
21
|
Qu J, Li P, Sun Z. Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol 2023; 14:1284344. [PMID: 37965331 PMCID: PMC10641494 DOI: 10.3389/fimmu.2023.1284344] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
As a major product of glycolysis and a vital signaling molecule, many studies have reported the key role of lactate in tumor progression and cell fate determination. Lactylation is a newly discovered post-translational modification induced by lactate. On the one hand, lactylation introduced a new era of lactate metabolism in the tumor microenvironment (TME), and on the other hand, it provided a key breakthrough point for elucidation of the interaction between tumor metabolic reprogramming and epigenetic modification. Studies have shown that the lactylation of tumor cells, tumor stem cells and tumor-infiltrating immune cells in TME can participate in the development of cancer through downstream transcriptional regulation, and is a potential and promising tumor treatment target. This review summarized the discovery and effects of lactylation, as well as recent research on histone lactylation regulating cancer progression through reshaping TME. We also focused on new strategies to enhance anti-tumor effects via targeting lactylation. Finally, we discussed the limitations of existing studies and proposed new perspectives for future research in order to further explore lactylation targets. It may provide a new way and direction to improve tumor prognosis.
Collapse
Affiliation(s)
- Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Peizhi Li
- The First People’s Hospital of Xinxiang City, The Fifth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
22
|
Fan Z, Liu Z, Zhang N, Wei W, Cheng K, Sun H, Hao Q. Identification of SIRT3 as an eraser of H4K16la. iScience 2023; 26:107757. [PMID: 37720100 PMCID: PMC10504495 DOI: 10.1016/j.isci.2023.107757] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
Lysine lactylation (Kla) is a novel histone post-translational modification discovered in late 2019. Later, HDAC1-3, were identified as the robust Kla erasers. While the Sirtuin family proteins showed weak eraser activities toward Kla, as reported. However, the catalytic mechanisms and physiological functions of HDACs and Sirtuins are not identical. In this study, we observed that SIRT3 exhibits a higher eraser activity against the H4K16la site than the other human Sirtuins. Crystal structures revealed the detailed binding mechanisms between lactyl-lysine peptides and SIRT3. Furthermore, a chemical probe, p-H4K16laAlk, was developed to capture potential Kla erasers from cell lysates. SIRT3 was captured by this probe and detected via proteomic analysis. And another chemical probe, p-H4K16la-NBD, was developed to detect the eraser-Kla delactylation processes directly via fluorescence indication. Our findings and chemical probes provide new directions for further investigating Kla and its roles in gene transcription regulation.
Collapse
Affiliation(s)
- Zhuming Fan
- Institute of High Energy Physics, CAS, Beijing 100000, China
- Spallation Neutron Source Science Center, CAS, Dongguan, Guangdong 523000, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Nan Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Ke Cheng
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Quan Hao
- Institute of High Energy Physics, CAS, Beijing 100000, China
- Spallation Neutron Source Science Center, CAS, Dongguan, Guangdong 523000, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Front Cell Dev Biol 2022; 10:972020. [PMID: 36092712 PMCID: PMC9462419 DOI: 10.3389/fcell.2022.972020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Lactate, the end product of glycolysis, efficiently functions as the carbon source, signaling molecules and immune regulators. Lactylation, being regulated by lactate, has recently been confirmed as a novel contributor to epigenetic landscape, not only opening a new era for in-depth exploration of lactate metabolism but also offering key breakpoints for further functional and mechanistic research. Several studies have identified the pivotal role of protein lactylation in cell fate determination, embryonic development, inflammation, cancer, and neuropsychiatric disorders. This review summarized recent advances with respect to the discovery, the derivation, the cross-species landscape, and the diverse functions of lactylation. Further, we thoroughly discussed the discrepancies and limitations in available studies, providing optimal perspectives for future research.
Collapse
Affiliation(s)
- Xuelian Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Wei Li, ; Xin Zhou,
| | - Xin Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Wei Li, ; Xin Zhou,
| |
Collapse
|