1
|
Yang M, Zhao W, Zhang J, Liu L, Tian S, Miao Y, Jia Y, Wang L, Chai Q, Wang Q, Liu F, Zhang Y, You X. HDAC11 Inhibition as a Potential Therapeutic Strategy for AML: Target Identification, Lead Discovery, Antitumor Potency, and Mechanism Investigation. J Med Chem 2025; 68:8124-8142. [PMID: 40177883 DOI: 10.1021/acs.jmedchem.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Herein, we identified that HDAC11 is involved in the pathogenesis of AML and is a potential therapeutic target for AML. Considering the scarcity of HDAC11 inhibitors, structurally novel HDAC11 inhibitors were developed, identifying A9 as the most potent one, which phenocopied the apoptosis induction, cell cycle arrest, and differentiation promotion effects of HDAC11 knockdown in AML cells. Moreover, A9 not only promoted iron uptake by upregulating TF and TFRC but also promoted iron release by upregulating HMOX1, which cooperatively led to iron homeostasis disruption and the consequent ferroptosis in AML cells. Mechanism investigation indicated that A9-induced HMOX1 upregulation was due to the activation of the p62-Keap1-Nrf2 pathway. Notably, the combination of A9 with chemotherapy drugs synergistically reduced AML cell viability in vitro. The robust in vivo anti-AML efficacy of A9, alone and combined with cytarabine, was also validated. Collectively, our study revealed pharmacological inhibition of HDAC11 as a potential therapeutic strategy for AML.
Collapse
Affiliation(s)
- Maoshuo Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinwei Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lanlan Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Sijia Tian
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yaqing Miao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongxin Jia
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Limei Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qipeng Chai
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, P.R. China
| | - Fabao Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yingjie Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaona You
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
2
|
Zhang F, Yue K, Sun S, Lu S, Jia G, Zha Y, Zhang S, Chou CJ, Liao C, Li X, Duan Y. Targeting Histone Deacetylase 11 with a Highly Selective Inhibitor for the Treatment of MASLD. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412903. [PMID: 39976110 PMCID: PMC12005767 DOI: 10.1002/advs.202412903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the most prevalent chronic liver disorder globally. Due to its intricate pathogenesis and the current lack of efficacious pharmacological interventions, there is a pressing need to discover novel therapeutic targets and agents for MASLD treatment. Herein, it is found that histone deacetylase 11 (HDAC11), a subtype of HDAC family, is markedly overexpressed in both in vitro and in vivo models of MASLD. Furthermore, the knockdown of HDAC11 is observed to mitigate lipid accumulation in hepatic cells. A highly selective HDAC11 inhibitor, B6, which exhibits favorable pharmacokinetic property and liver distribution, is further designed and synthesized. Integrating RNA-seq data with in vivo and in vitro experiments, B6 is found to inhibit de novo lipogenesis (DNL) and promote fatty acid oxidation, thus mitigating hepatic lipid accumulation and pathological symptoms in MASLD mice. Further omics analysis and experiments reveal that B6 enhances the phosphorylation of AMPKα1 at Thr172 through the inhibition of HDAC11, consequently modulating DNL and fatty acid oxidation in the liver. In summary, this study identifies HDAC11 as a potential therapeutic target in MASLD and reports the discovery of a highly selective HDAC11 inhibitor with favorable drug-like properties for the treatment of MASLD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiologythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Kairui Yue
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
| | - Simin Sun
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Geng Jia
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - C. James Chou
- Department of Drug Discovery and Biomedical SciencesCollege of PharmacyMedical University of South CarolinaCharlestonSC29425USA
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Xiaoyang Li
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
- Marine Biomedical Research Institute of QingdaoQingdaoShandong266071China
| | - Yajun Duan
- Department of Cardiologythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| |
Collapse
|
3
|
Danková D, Nielsen AL, Zarda A, Hansen TN, Hesse M, Benová M, Tsiris A, Bartling CRO, Will EJ, Strømgaard K, Moreno-Yruela C, Heinis C, Olsen CA. Discovery of De Novo Macrocycle Inhibitors of Histone Deacetylase 11. JACS AU 2025; 5:1299-1307. [PMID: 40151233 PMCID: PMC11938020 DOI: 10.1021/jacsau.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 03/29/2025]
Abstract
Histone deacetylase (HDAC) enzymes are epigenetic regulators that affect diverse protein function by removing acyl groups from lysine side chains throughout the proteome. The most recently discovered human isozyme, HDAC11, differs from other HDACs in substrate preference and tissue expression profile. Elucidation of the biological function of this enzyme has been scarce and only a few chemical probes to help advance this insight have been developed thus far. Here we discovered macrocyclic inhibitors that exhibit selectivity for HDAC11 and penetrate the cytoplasmic membrane in cultured cells as determined by the chloroalkane penetration assay. Our work establishes the combination of de novo macrocycle synthesis with incorporation of N-alkylated hydroxamic acid moieties as a viable strategy for targeting HDAC11. Further, this study demonstrates the potential of applying macrocyclic peptide-based library synthesis to directly furnish high-affinity, cell-permeating ligands. The discovered inhibitors comprise tool compounds for the investigation of the biological function of HDAC11.
Collapse
Affiliation(s)
- Daniela Danková
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Alexander L. Nielsen
- Institute
of Chemical Sciences and Engineering, School of Basic Sciences, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne Zarda
- Institute
of Chemical Sciences and Engineering, School of Basic Sciences, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tobias N. Hansen
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Marie Hesse
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Michaela Benová
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Athanasios Tsiris
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Christian R. O. Bartling
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Edward J. Will
- Institute
of Chemical Sciences and Engineering, School of Basic Sciences, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kristian Strømgaard
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Carlos Moreno-Yruela
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
- Institute
of Chemical Sciences and Engineering, School of Basic Sciences, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute
of Chemical Sciences and Engineering, School of Basic Sciences, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian A. Olsen
- Center
for Biopharmaceuticals and Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
5
|
Jia G, Liu J, Hou X, Jiang Y, Li X. Biological function and small molecule inhibitors of histone deacetylase 11. Eur J Med Chem 2024; 276:116634. [PMID: 38972077 DOI: 10.1016/j.ejmech.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
HDAC11, as a rising star in the histone deacetylase (HDAC) family, has attracted widespread interest in the biomedical field in recent years specially owing to its high defatty-acylase activity compared its innate deacetylase activity. Numerous studies have provided evidence indicating the crucial involvement of HDAC11 in cancers, immune responses, and metabolic processes. Several potent and selective HDAC11 inhibitors have been discovered and identified, which is crucial for exploring the function of HDAC11 and its potential therapeutic applications. Herein, we present a critical overview of the current advances in the biological function of HDAC11 and its inhibitors. We initially discuss the physiological functions of HDAC11 and its pathological roles in relevant diseases. Subsequently, our main focus centers on the design strategy and development process of HDAC11 inhibitors. Additionally, we address significant challenges and outline future directions in this field. This perspective may provide guidance for the further development of HDAC11 inhibitors and their prospects in disease treatment.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xinlu Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Baselious F, Hilscher S, Hagemann S, Tripathee S, Robaa D, Barinka C, Hüttelmaier S, Schutkowski M, Sippl W. Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity. Arch Pharm (Weinheim) 2024; 357:e2400486. [PMID: 38996352 DOI: 10.1002/ardp.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sunita Tripathee
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Khatun S, Prasad Bhagat R, Dutta R, Datta A, Jaiswal A, Halder S, Jha T, Amin SA, Gayen S. Unraveling HDAC11: Epigenetic orchestra in different diseases and structural insights for inhibitor design. Biochem Pharmacol 2024; 225:116312. [PMID: 38788962 DOI: 10.1016/j.bcp.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Histone deacetylase 11 (HDAC11), a member of the HDAC family, has emerged as a critical regulator in numerous physiological as well as pathological processes. Due to its diverse roles, HDAC11 has been a focal point of research in recent times. Different non-selective inhibitors are already approved, and research is going on to find selective HDAC11 inhibitors. The objective of this review is to comprehensively explore the role of HDAC11 as a pivotal regulator in a multitude of physiological and pathological processes. It aims to delve into the intricate details of HDAC11's structural and functional aspects, elucidating its molecular interactions and implications in different disease contexts. With a primary focus on elucidating the structure-activity relationships (SARs) of HDAC11 inhibitors, this review also aims to provide a holistic understanding of how its molecular architecture influences its inhibition. Additionally, by integrating both established knowledge and recent research, the review seeks to contribute novel insights into the potential therapeutic applications of HDAC11 inhibitors. Overall, the scope of this review spans from fundamental research elucidating the complexities of HDAC11 biology to the potential of targeting HDAC11 in therapeutic interventions.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ritam Dutta
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata 700109, West Bengal, India
| | - Anwesha Datta
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Abhishek Jaiswal
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Swapnamay Halder
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata 700109, West Bengal, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
8
|
Li J, Chen X, Liu R, Liu X, Shu M. Engineering novel scaffolds for specific HDAC11 inhibitors against metabolic diseases exploiting deep learning, virtual screening, and molecular dynamics simulations. Int J Biol Macromol 2024; 262:129810. [PMID: 38340912 DOI: 10.1016/j.ijbiomac.2024.129810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
The prevalence of metabolic diseases is increasing at a frightening rate year by year. The burgeoning development of deep learning enables drug design to be more efficient, selective, and structurally novel. The critical relevance of Histone deacetylase 11 (HDAC11) to the pathogenesis of several metabolic diseases makes it a promising drug target for curbing metabolic disorders. The present study aims to design new specific HDAC11 inhibitors for the treatment of metabolic diseases. Deep learning was performed to learn the properties of existing HDAC11 inhibitors and yield a novel compound library containing 23,122 molecules. Subsequently, the compound library was screened by ADMET properties, Lipinski & Veber rules, traditional machine classification models, and molecular docking, and 10 compounds were screened as candidate HDAC11 inhibitors. The stability of the 10 new molecules was further evaluated by deploying RMSD, RMSF, MM/GBSA, free energy landscape mapping, and PCA analysis in molecular dynamics simulations. As a result, ten compounds, Cpd_17556, Cpd_2184, Cpd_8907, Cpd_7771, Cpd_14959, Cpd_7108, Cpd_12383, Cpd_13153, Cpd_14500and Cpd_21811, were characterized as good HDAC11 inhibitors and are expected to be promising drug candidates for metabolic disorders, and further in vitro, in vivo and clinical trials to demonstrate in the future.
Collapse
Affiliation(s)
- Jiali Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - XiaoDie Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - Rong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - Xingyu Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China.
| |
Collapse
|
9
|
Baselious F, Hilscher S, Robaa D, Barinka C, Schutkowski M, Sippl W. Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor. Int J Mol Sci 2024; 25:1358. [PMID: 38279359 PMCID: PMC10816272 DOI: 10.3390/ijms25021358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic;
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| |
Collapse
|
10
|
Baselious F, Robaa D, Sippl W. Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study. Comput Biol Med 2023; 167:107700. [PMID: 37972533 DOI: 10.1016/j.compbiomed.2023.107700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Histone deacetylase 11 (HDAC11), an enzyme that cleaves acyl groups from acylated lysine residues, is the sole member of class IV of HDAC family with no reported crystal structure so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms which complicates the conventional template-based homology modeling. AlphaFold is a neural network machine learning approach for predicting the 3D structures of proteins with atomic accuracy even in absence of similar structures. However, the structures predicted by AlphaFold are missing small molecules as ligands and cofactors. In our study, we first optimized the HDAC11 AlphaFold model by adding the catalytic zinc ion followed by assessment of the usability of the model by docking of the selective inhibitor FT895. Minimization of the optimized model in presence of transplanted inhibitors, which have been described as HDAC11 inhibitors, was performed. Four complexes were generated and proved to be stable using three replicas of 50 ns MD simulations and were successfully utilized for docking of the selective inhibitors FT895, MIR002 and SIS17. For SIS17, The most reasonable pose was selected based on structural comparison between HDAC6, HDAC8 and the HDAC11 optimized AlphaFold model. The manually optimized HDAC11 model is thus able to explain the binding behavior of known HDAC11 inhibitors and can be used for further structure-based optimization.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
11
|
Liu Y, Tong X, Hu W, Chen D. HDAC11: A novel target for improved cancer therapy. Biomed Pharmacother 2023; 166:115418. [PMID: 37659201 DOI: 10.1016/j.biopha.2023.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Histone deacetylase 11 (HDAC11) is a unique member of the histone deacetylase family that plays an important role in the regulation of gene expression and protein function. In recent years, research on the role of HDAC11 in tumors has attracted increasing attention. This review summarizes the current knowledge on the subcellular localization, structure, expression, and functions of HDAC11 in tumors, as well as the regulatory mechanisms involved in its network, including ncRNA and substrates. Moreover, we focus on the progress made in targeting HDAC11 to overcome tumor therapy resistance, and the development of HDAC11 inhibitors for cancer treatment. Collectively, this review provides comprehensive insights into the potential clinical implications of HDAC11 for cancer therapy.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Xuechao Tong
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|