1
|
Ren X, Zhao L, Shen J, Zhou P, Zhao K, Yuan C, Xing R, Yan X. Engineered microbial platform confers resistance against heavy metals via phosphomelanin biosynthesis. Nat Commun 2025; 16:4836. [PMID: 40413165 PMCID: PMC12103612 DOI: 10.1038/s41467-025-60117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Environmental concerns are increasingly fueling interest in engineered living materials derived from microbial sources. Melanin biosynthesis in microbes, particularly facilitated by recombinant tyrosinase expression, offers sustainable protection for the habitat of microorganisms against severe environmental stressors. However, there exists a vast urgency to optimize these engineered microbial platforms, which will amplify their protective capabilities, integrate multifaceted functions, and thereby expand their utility and effectiveness. Here, we genetically engineer microbial platforms capable of endogenously biosynthesizing phosphomelanin, a unique phosphorus-containing melanin. The ability to heterogeneously biosynthesize phosphomelanin endows the microbes with enhanced resistance to heavy metals, thus safeguarding their survival in adverse conditions. Furthermore, we upgrade these engineered microbes by integrating PET-degrading enzymes, thereby achieving effective integrated management of metallized plastic waste. This engineered microbial platform, with its phosphomelanin biosynthetic capabilities, presents significant opportunities for microbes to engage in bioengineering manufacturing, potentially serving as the next-generation guardians against global ecological challenges.
Collapse
Affiliation(s)
- Xiaokang Ren
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyang Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jintao Shen
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Zhou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaili Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Identification of γ-butyrolactone signalling molecules in diverse actinomycetes using resin-assisted isolation and chemoenzymatic synthesis. RSC Chem Biol 2025; 6:630-641. [PMID: 40046449 PMCID: PMC11877004 DOI: 10.1039/d5cb00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Actinomycetes are prolific producers of secondary metabolites with diverse bioactivities. Secondary metabolism in actinomycetes is regulated by signalling molecules, often termed "bacterial hormones." In Streptomyces griseus, the γ-butyrolactone (GBL) A-factor (1) plays a key role in regulating secondary metabolism, including streptomycin production. The widespread presence of afsA, the gene encoding A-factor synthase, suggests that GBLs are a major class of signalling molecules in actinomycetes. However, their identification is hindered by the requirement for large-scale cultures. This study presents two methodologies for identifying natural GBLs. First, a resin-assisted culture method combined with MS-guided screening enabled the isolation and structural determination of GBLs (2-5) from smaller-scale cultures. Second, a chemoenzymatic synthesis method involving one-pot three enzymatic reactions was developed, allowing the production of GBL standards (10a-10l). Using these standards, HR-LCMS analysis of 31 strains across 10 actinomycetes genera identified GBLs in nearly half of the tested strains, including genera where GBLs were detected for the first time. Chiral HPLC analysis further revealed the presence of the (3S)-isomer of GBL (11), an enantiomer of known GBLs. This study uncovers the widespread distribution and structural diversity of GBLs among actinomycetes, providing insights into their regulatory roles and potential for activating secondary metabolism, which may facilitate the discovery of new natural products.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku Sendai Miyagi 980-8572 Japan
| |
Collapse
|
3
|
Liu Y, Tang Y, Fu Z, Zhu W, Wang H, Zhang H. BGC heteroexpression strategy for production of novel microbial secondary metabolites. Metab Eng 2025; 91:1-29. [PMID: 40158686 DOI: 10.1016/j.ymben.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Biosynthetic gene clusters (BGCs) in microbial genomes play a crucial role in the biosynthesis of diverse secondary metabolites (SMs) with pharmaceutical potential. However, most BGCs remain silent under conventional conditions, resulting in the frequently repeated discovery of known SMs. Fortunately, in the past two decades, the heterologous expression of BGCs in genetically tractable hosts has emerged as a powerful strategy to awaken microbial metabolic pathways for making novel microbial SMs. In this review, we comprehensively delineated the development and application of this strategy, highlighting various BGC cloning and assembly techniques and their technical characteristics. We also summarized 519 novel SMs from BGC hetero-expression-derived strains and described their occurrence, bioactivity, mode of action, and biosynthetic logic. Lastly, current challenges and future perspectives for developing more efficient BGC hetero-expression strategies were discussed in this review.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuqi Tang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiyang Fu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Wang C, Wambui J, Fernandez-Cantos MV, Jurt S, Broos J, Stephan R, Kuipers OP. Heterologous Expression and Characterization of Estercin A, a Class II Lanthipeptide Derived from Clostridium estertheticum CF016, with Antimicrobial Activity against Clinically Relevant Pathogens. JOURNAL OF NATURAL PRODUCTS 2025; 88:262-273. [PMID: 39814593 DOI: 10.1021/acs.jnatprod.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine. In this study, we heterologously expressed and structurally characterized estercin A, an unprecedented class II lanthipeptide derived from Clostridium estertheticum CF016 in Escherichia coli. Comprising 27 amino acids, estercin A features three overlapping (methyl-)lanthionine rings, with a shorter C-terminal part compared to most reported class II lanthipeptides. Estercin A exhibited selective antimicrobial properties against methicillin-resistant Staphylococcus aureus, bowel infection-associated Clostridium perfringens and Clostridium tetani. The mode of action of estercin A was determined as binding to lipid II on the cell membrane. Estercin A exhibited stability across a range of pH values and temperatures and showed resistance to degradation by trypsin. Our findings highlight estercin A as a novel and stable antimicrobial peptide with significant potential in combating clinically relevant pathogens.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747AG, The Netherlands
| |
Collapse
|
5
|
Thetsana C, Moriuchi R, Kodani S. Isolation and structure determination of a new antibacterial lanthipeptide derived from the marine derived bacterium Lysinibacillus sp.CTST325. World J Microbiol Biotechnol 2025; 41:54. [PMID: 39878791 DOI: 10.1007/s11274-024-04212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/22/2024] [Indexed: 01/31/2025]
Abstract
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp. CTST325 (NBRC 116944), produced a new peptidic compound, lysinibacin. Genome sequence analysis of Lysinibacillus sp. CTST325 indicated the presence of several biosynthetic gene clusters for secondary metabolites, including lanthipeptides. The structure determination of lysinibacin was performed using CID-MS and NMR spectral data. As a result, lysinibacin was identified as a new class III lanthipeptide, containing N-dimethylated Tyr at the N-terminus and the unusual amino acid labionin at the C-terminus. The biosynthetic gene cluster of lysinibacin was identified from the genome data of the strain CTST325, based on the structure of lysinibacin. Lysinibacin showed antibacterial activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Chanaphat Thetsana
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ryota Moriuchi
- Shizuoka Instrumental Analysis Center, Shizuoka University, Shizuoka, Japan
| | - Shinya Kodani
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
6
|
Pulliam C, Xue D, Campbell A, Older E, Li J. Discovery and Heterologous Expression of Trilenodin, an Antimicrobial Lasso Peptide with a Unique Tri-Isoleucine Motif. Chembiochem 2024; 25:e202400586. [PMID: 39225753 PMCID: PMC11664905 DOI: 10.1002/cbic.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are an increasingly relevant class of peptide natural products with diverse biological activities, intriguing physical properties, and unique chemical structures. Most characterized lasso peptides have been from Actinobacteria and Proteobacteria, despite bioinformatic analyses suggesting that other bacterial taxa, particularly those from Firmicutes, are rich in biosynthetic gene clusters (BGCs) encoding lasso peptides. Herein, we report the bioinformatic identification of a lasso peptide BGC from Paenibacillus taiwanensis DSM18679 which we termed pats. We used a bioinformatics-guided isolation approach and high-resolution tandem mass spectrometry (HRMS/MS) to isolate and subsequently characterize a new lasso peptide produced from the pats BGC, which we named trilenodin, after the tri-isoleucine motif present in its primary sequence. This tri-isoleucine motif is unique among currently characterized lasso peptides. We confirmed the connection between the pats BGC and trilenodin production by establishing the first Bacillus subtilis 168-based heterologous expression system for expressing Firmicutes lasso peptides. We finally determined that trilenodin exhibits potent antimicrobial activity against B. subtilis and Klebsiella pneumoniae, making trilenodin the first characterized biologically active lasso peptide from Firmicutes. Collectively, we demonstrate that bacteria from Firmicutes can serve as high-potential sources of chemically and biologically diverse lasso peptides.
Collapse
Affiliation(s)
- Conor Pulliam
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Dan Xue
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Andrew Campbell
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Ethan Older
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| | - Jie Li
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia, South Carolina29208United States
| |
Collapse
|
7
|
Shi C, Zhao H. A Plug-and-Play T7 Expression System for Heterologous Production of Lanthipeptides in Bacillus subtilis. ACS Synth Biol 2024; 13:3746-3753. [PMID: 39480482 DOI: 10.1021/acssynbio.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ribosomally synthesized lanthionine-containing peptides (lanthipeptides) have emerged as a promising source of antimicrobials against multidrug resistance pathogens. An effective way to discover and engineer lanthipeptides is through heterologous expression of their biosynthetic gene clusters (BGCs) in a host of choice. Here we report a plug-and-play pathway refactoring strategy for rapid evaluation of lanthipeptide BGCs in Bacillus subtilis based on the T7 expression system. As a proof of concept, we used this strategy to not only observe the successful production of a known lanthipeptide haloduracin β but also discover two new human-microbiota-derived lanthipeptides that previously failed to be produced in Escherichia coli. The resulting B. subtilis plug-and-play T7 expression system should enable the genome mining of new lanthipeptides in a high-throughput manner.
Collapse
Affiliation(s)
- Chengyou Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Liang H, Luo Y, van der Donk WA. Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin. Biochemistry 2024; 63:2493-2505. [PMID: 39271288 PMCID: PMC11447909 DOI: 10.1021/acs.biochem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Modification of the N- and C-termini of peptides enhances their stability against degradation by exopeptidases. The biosynthetic pathways of many peptidic natural products feature enzymatic modification of their termini, and these enzymes may represent a valuable pool of biocatalysts. The lantibiotic cacaoidin carries an N,N-dimethylated N-terminal amine group. Its biosynthetic gene cluster encodes the putative methyltransferase Cao4. In this work, we present reconstitution of the activity of the enzyme, which we termed CaoSC following standardized lanthipeptide nomenclature, using a heterologously produced peptide as the model substrate. In vitro methylation of diverse lanthipeptides revealed the substrate requirements of CaoSC. The enzyme accepts peptides of varying lengths and C-terminal sequences but requires dehydroalanine or dehydrobutyrine at the second position. CaoSC-mediated dimethylation of natural lantibiotics resulted in modestly enhanced antimicrobial activity of the lantibiotic haloduracin compared to that of the native compound. Improved activity and/or metabolic stability as a result of methylation illustrates the potential future application of CaoSC in the bioengineering of therapeutic peptides.
Collapse
Affiliation(s)
- Haoqian Liang
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Liu Z, Li H, Yu Q, Song Q, Peng B, Wang K, Li Z. Heterologous Expression Facilitates the Production and Characterization of a Class III Lanthipeptide with Coupled Labionin Cross-Links in Sponge-Associated Streptomyces rochei MB037. ACS Chem Biol 2024; 19:2060-2069. [PMID: 39145437 DOI: 10.1021/acschembio.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cyclic peptides, with remarkable stability, cellular permeability, and proteolysis resistance, display promising potential in pharmaceutical applications. Labionin (Lab), a unique bicyclic cross-link containing both C-C and C-S bonds, provides high rigidity and better control of conformation compared to monocyclic cross-links. To discover more Lab-containing scaffolds with highly rigid conformation for cyclic peptide drug development, herein, a cryptic class III lanthipeptide biosynthetic gene cluster (BGC) (i.e., rcs) was identified in the sponge-associated Streptomyces rochei MB037 and expressed in Escherichia coli, incorporating an N-terminal SUMO-tag on the RcsA precursor peptide to prevent proteolysis. Subsequently, a novel class III lanthipeptide, i.e., rochsin A, exhibiting a highly rigid conformation with coupled Lab cross-links crowded by bulky aromatic amino acids, was produced. Three AplP-like proteases outside the rcs BGC were proven to remove the leader peptide of rochsin A through their dual endo- and aminopeptidase activities, resulting in mature rochsin A in vitro. Ala mutation experiments revealed the C to N cyclization direction, like most class III lanthipeptides. However, RcsKC displays a high substrate breadth, enabling various ring topologies that are rarely observed in other class III lanthipeptides. Overall, the established expression system broadens the chemical diversity of cyclic peptides with unique Lab cross-links and offers a highly rigid scaffold for cyclic peptide drug development.
Collapse
Affiliation(s)
- Zhengjie Liu
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianzhe Yu
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianqian Song
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Peng
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kang Wang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
10
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Luo Y, Xu S, Frerk AM, van der Donk WA. Facile Method for Determining Lanthipeptide Stereochemistry. Anal Chem 2024; 96:1767-1773. [PMID: 38232355 PMCID: PMC10831782 DOI: 10.1021/acs.analchem.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Lanthipeptides make up a large group of natural products that belong to the ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain lanthionine and methyllanthionine bis-amino acids that have varying stereochemistry. The stereochemistry of new lanthipeptides is often not determined because current methods require equipment that is not standard in most laboratories. In this study, we developed a facile, efficient, and user-friendly method for detecting lanthipeptide stereochemistry, utilizing advanced Marfey's analysis with detection by liquid chromatography coupled with mass spectrometry (LC-MS). Under optimized conditions, 0.05 mg of peptide is sufficient to characterize the stereochemistry of five (methyl)lanthionines of different stereochemistry using a simple liquid chromatography setup, which is a much lower detection limit than current methods. In addition, we describe methods to readily access standards of the three different methyllanthionine stereoisomers and two different lanthionine stereoisomers that have been reported in known lanthipeptides. The developed workflow uses a commonly used nonchiral column system and offers a scalable platform to assist antimicrobial discovery. We illustrate its utility with an example of a lanthipeptide discovered by genome mining.
Collapse
Affiliation(s)
- Youran Luo
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Shuyun Xu
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Autumn M. Frerk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|