1
|
Hilgers F, Hogenkamp F, Klaus O, Kruse L, Loeschcke A, Bier C, Binder D, Jaeger KE, Pietruszka J, Drepper T. Light-mediated control of gene expression in the anoxygenic phototrophic bacterium Rhodobacter capsulatus using photocaged inducers. Front Bioeng Biotechnol 2022; 10:902059. [PMID: 36246361 PMCID: PMC9561348 DOI: 10.3389/fbioe.2022.902059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Photocaged inducer molecules, especially photocaged isopropyl-β-d-1-thiogalactopyranoside (cIPTG), are well-established optochemical tools for light-regulated gene expression and have been intensively applied in Escherichia coli and other bacteria including Corynebacterium glutamicum, Pseudomonas putida or Bacillus subtilis. In this study, we aimed to implement a light-mediated on-switch for target gene expression in the facultative anoxygenic phototroph Rhodobacter capsulatus by using different cIPTG variants under both phototrophic and non-phototrophic cultivation conditions. We could demonstrate that especially 6-nitropiperonyl-(NP)-cIPTG can be applied for light-mediated induction of target gene expression in this facultative phototrophic bacterium. Furthermore, we successfully applied the optochemical approach to induce the intrinsic carotenoid biosynthesis to showcase engineering of a cellular function. Photocaged IPTG thus represents a light-responsive tool, which offers various promising properties suitable for future applications in biology and biotechnology including automated multi-factorial control of cellular functions as well as optimization of production processes.
Collapse
Affiliation(s)
- Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Luzie Kruse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
2
|
Hogenkamp F, Hilgers F, Bitzenhofer NL, Ophoven V, Haase M, Bier C, Binder D, Jaeger K, Drepper T, Pietruszka J. Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems. Chembiochem 2022; 23:e202100467. [PMID: 34750949 PMCID: PMC9299732 DOI: 10.1002/cbic.202100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Indexed: 12/05/2022]
Abstract
Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Vera Ophoven
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Mona Haase
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Claus Bier
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Dennis Binder
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| |
Collapse
|
3
|
Hogenkamp F, Hilgers F, Knapp A, Klaus O, Bier C, Binder D, Jaeger KE, Drepper T, Pietruszka J. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria. Chembiochem 2020; 22:539-547. [PMID: 32914927 PMCID: PMC7894499 DOI: 10.1002/cbic.202000377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non‐invasive as well as easily tuneable. In the recent past, photo‐responsive inducer molecules such as 6‐nitropiperonyl‐caged IPTG (NP‐cIPTG) have been used as optochemical tools for Lac repressor‐controlled microbial expression systems. To further expand the applicability of the versatile optochemical on‐switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light‐mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water‐soluble cIPTG derivative proved to be particularly suitable for light‐mediated gene expression in these alternative expression hosts.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| |
Collapse
|
4
|
Täuber S, von Lieres E, Grünberger A. Dynamic Environmental Control in Microfluidic Single-Cell Cultivations: From Concepts to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906670. [PMID: 32157796 DOI: 10.1002/smll.201906670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Microfluidic single-cell cultivation (MSCC) is an emerging field within fundamental as well as applied biology. During the last years, most MSCCs were performed at constant environmental conditions. Recently, MSCC at oscillating and dynamic environmental conditions has started to gain significant interest in the research community for the investigation of cellular behavior. Herein, an overview of this topic is given and microfluidic concepts that enable oscillating and dynamic control of environmental conditions with a focus on medium conditions are discussed, and their application in single-cell research for the cultivation of both mammalian and microbial cell systems is demonstrated. Furthermore, perspectives for performing MSCC at complex dynamic environmental profiles of single parameters and multiparameters (e.g., pH and O2 ) in amplitude and time are discussed. The technical progress in this field provides completely new experimental approaches and lays the foundation for systematic analysis of cellular metabolism at fluctuating environments.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Leygeber M, Lindemann D, Sachs CC, Kaganovitch E, Wiechert W, Nöh K, Kohlheyer D. Analyzing Microbial Population Heterogeneity—Expanding the Toolbox of Microfluidic Single-Cell Cultivations. J Mol Biol 2019; 431:4569-4588. [DOI: 10.1016/j.jmb.2019.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
|
6
|
Hartmann SK, Stockdreher Y, Wandrey G, Hosseinpour Tehrani H, Zambanini T, Meyer AJ, Büchs J, Blank LM, Schwarzländer M, Wierckx N. Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1015-1024. [DOI: 10.1016/j.bbabio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/06/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
|
7
|
Pérez-García F, Wendisch VF. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 2018; 365:5047308. [DOI: 10.1093/femsle/fny166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
8
|
Lee JH, Wendisch VF. Production of amino acids - Genetic and metabolic engineering approaches. BIORESOURCE TECHNOLOGY 2017; 245:1575-1587. [PMID: 28552565 DOI: 10.1016/j.biortech.2017.05.065] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/22/2023]
Abstract
The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Major in Food Science & Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan 48434, Republic of Korea
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
9
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
Light-controlled gene expression in yeast using photocaged Cu 2. J Biotechnol 2017; 258:117-125. [PMID: 28455204 DOI: 10.1016/j.jbiotec.2017.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/21/2022]
Abstract
The manipulation of cellular function, such as the regulation of gene expression, is of great interest to many biotechnological applications and often achieved by the addition of small effector molecules. By combining effector molecules with photolabile protecting groups that mask their biological activity until they are activated by light, precise, yet minimally invasive, photocontrol is enabled. However, applications of this trendsetting technology are limited by the small number of established caged compound-based expression systems. Supported by computational chemistry, we used the versatile photolabile chelator DMNP-EDTA, long-established in neurobiology for photolytic Ca2+ release, to control Cu2+ release upon specific UV-A irradiation. This permits light-mediated control over the widely used Cu2+-inducible pCUP1 promoter from S. cerevisiae and thus constitutes the first example of a caged metal ion to regulate recombinant gene expression. We screened our novel DMNP-EDTA-Cu system for best induction time and expression level of eYFP with a high-throughput online monitoring system equipped with an LED array for individual illumination of every single well. Thereby, we realized a minimally invasive, easy-to-control, parallel and automated optical expression regulation via caged Cu2+ allowing temporal and quantitative control as a beneficial alternative to conventional induction via pipetting CuCl2 as effector molecule.
Collapse
|