1
|
Marker T, Steimbach RR, Perez-Borrajero C, Luzarowski M, Hartmann E, Schleich S, Pastor-Flores D, Espinet E, Trumpp A, Teleman AA, Gräter F, Simon B, Miller AK, Dick TP. Site-specific activation of the proton pump inhibitor rabeprazole by tetrathiolate zinc centres. Nat Chem 2025; 17:507-517. [PMID: 39979415 PMCID: PMC11964933 DOI: 10.1038/s41557-025-01745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Proton pump inhibitors have become top-selling drugs worldwide. Serendipitously discovered as prodrugs that are activated by protonation in acidic environments, proton pump inhibitors inhibit stomach acid secretion by covalently modifying the gastric proton pump. Despite their widespread use, alternative activation mechanisms and potential target proteins in non-acidic environments remain poorly understood. Employing a chemoproteomic approach, we found that the proton pump inhibitor rabeprazole selectively forms covalent conjugates with zinc-binding proteins. Focusing on DENR, a protein with a C4 zinc cluster (that is, zinc coordinated by four cysteines), we show that rabeprazole is activated by the zinc ion and subsequently conjugated to zinc-coordinating cysteines. Our results suggest that drug binding, activation and conjugation take place rapidly within the zinc coordination sphere. Finally, we provide evidence that other proton pump inhibitors can be activated in the same way. We conclude that zinc acts as a Lewis acid, obviating the need for low pH, to promote the activation and conjugation of proton pump inhibitors in non-acidic environments.
Collapse
Affiliation(s)
- Teresa Marker
- Division of Redox Regulation, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Raphael R Steimbach
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Drug Design Small Molecules Unit, Institute de Recherche Servier, Gif-sur-Yvette, France
| | - Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Eric Hartmann
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Sibylle Schleich
- Division of Signal Transduction in Cancer and Metabolism, DKFZ, Heidelberg, Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- KBI Biopharma SA, Plan-les-Ouates, Switzerland
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona and Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, DKFZ and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurelio A Teleman
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Signal Transduction in Cancer and Metabolism, DKFZ, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Max Planck Institute (MPI) for Polymer Research, Mainz, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Tsai CY, Chen PH, Chen AL, Wang TSA. Spatiotemporal Investigation of Intercellular Heterogeneity via Multiple Photocaged Probes. Chemistry 2023; 29:e202301067. [PMID: 37382047 DOI: 10.1002/chem.202301067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.
Collapse
Affiliation(s)
- Chun-Yi Tsai
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Po-Hsun Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
3
|
Low TY, Syafruddin SE, Mohtar MA, Vellaichamy A, A Rahman NS, Pung YF, Tan CSH. Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions. Cell Mol Life Sci 2021; 78:5325-5339. [PMID: 34046695 PMCID: PMC8159249 DOI: 10.1007/s00018-021-03856-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Protein-protein interactions are fundamental to various aspects of cell biology with many protein complexes participating in numerous fundamental biological processes such as transcription, translation and cell cycle. MS-based proteomics techniques are routinely applied for characterising the interactome, such as affinity purification coupled to mass spectrometry that has been used to selectively enrich and identify interacting partners of a bait protein. In recent years, many orthogonal MS-based techniques and approaches have surfaced including proximity-dependent labelling of neighbouring proteins, chemical cross-linking of two interacting proteins, as well as inferring PPIs from the co-behaviour of proteins such as the co-fractionating profiles and the thermal solubility profiles of proteins. This review discusses the underlying principles, advantages, limitations and experimental considerations of these emerging techniques. In addition, a brief account on how MS-based techniques are used to investigate the structural and functional properties of protein complexes, including their topology, stoichiometry, copy number and dynamics, are discussed.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | | | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Chris Soon Heng Tan
- Department of Chemistry, College of Science , Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Witte A, Muñoz-López Á, Metz M, Schweiger MR, Janning P, Summerer D. Encoded, click-reactive DNA-binding domains for programmable capture of specific chromatin segments. Chem Sci 2020; 11:12506-12511. [PMID: 34123231 PMCID: PMC8162481 DOI: 10.1039/d0sc02707c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Enrichment of chromatin segments from specific genomic loci of living cells is an important goal in chromatin biology, since it enables establishing local molecular compositions as the basis of locus function. A central enrichment strategy relies on the expression of DNA-binding domains that selectively interact with a local target sequence followed by fixation and isolation of the associated chromatin segment. The efficiency and selectivity of this approach critically depend on the employed enrichment tag and the strategy used for its introduction into the DNA-binding domain or close-by proteins. We here report chromatin enrichment by expressing programmable transcription-activator-like effectors (TALEs) bearing single strained alkynes or alkenes introduced via genetic code expansion. This enables in situ biotinylation at a defined TALE site via strain-promoted inverse electron demand Diels Alder cycloadditions for single-step, high affinity enrichment. By targeting human pericentromeric SATIII repeats, the origin of nuclear stress bodies, we demonstrate enrichment of SATIII DNA and SATIII-associated proteins, and identify factors enriched during heat stress.
Collapse
Affiliation(s)
- Anna Witte
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Álvaro Muñoz-López
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Malte Metz
- Max-Planck Institute for Molecular Physiology Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Michal R Schweiger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne Weyertal 115b 50931 Köln Germany
- Center for Molecular Medicine Cologne Robert-Koch-Str. 21 50931 Cologne Germany
| | - Petra Janning
- Max-Planck Institute for Molecular Physiology Otto-Hahn Str. 4a 44227 Dortmund Germany
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
5
|
ZHAN FL, GAO SY, XIE YD, ZHANG JM, LI Y, LIU N. Applications of Click Chemistry Reaction for Proteomics Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60007-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Ablenas CJ, Gidi Y, Powdrill MH, Ahmed N, Shaw TA, Mesko M, Götte M, Cosa G, Pezacki JP. Hepatitis C Virus Helicase Binding Activity Monitored through Site-Specific Labeling Using an Expanded Genetic Code. ACS Infect Dis 2019; 5:2118-2126. [PMID: 31640339 DOI: 10.1021/acsinfecdis.9b00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of unwinding catalyzed by the hepatitis C virus nonstructural protein 3 helicase (NS3h) has been a subject of considerable interest, with NS3h serving as a prototypical enzyme in the study of helicase function. Recent studies support an ATP-fueled, inchworm-like stepping of NS3h on the nucleic acid that would result in the displacement of the complementary strand of the duplex during unwinding. Here, we describe the screening of a site of incorporation of an unnatural amino acid in NS3h for fluorescent labeling of the enzyme to be used in single-molecule Förster resonance energy transfer (FRET) experiments. From the nine potential sites identified in NS3h for incorporation of the unnatural amino acid, only one allowed for expression and fluorescent labeling of the recombinant protein. Incorporation of the unnatural amino acid was confirmed via bulk assays to not interfere with unwinding activity of the helicase. Binding to four different dsDNA sequences bearing a ssDNA overhang segment of varying length (either minimal 6 or 7 base length overhang to ensure binding or a long 24 base overhang) and sequence was recorded with the new NS3h construct at the single-molecule level. Single-molecule fluorescence displayed time intervals with anticorrelated donor and acceptor emission fluctuations associated with protein binding to the substrates. An apparent FRET value was estimated from the binding events showing a single FRET value of ∼0.8 for the 6-7 base overhangs. A smaller mean value and a broad distribution was in turn recorded for the long ssDNA overhang, consistent with NS3h exploring a larger physical space while bound to the DNA construct. Notably, intervals where NS3h binding was recorded were exhibited at time periods where the acceptor dye reversibly bleached. Protein induced fluorescence intensity enhancement in the donor channel became apparent at these intervals. Overall, the site-specific fluorescent labeling of NS3h reported here provides a powerful tool for future studies to monitor the dynamics of enzyme translocation during unwinding by single-molecule FRET.
Collapse
Affiliation(s)
- Christopher J. Ablenas
- Department of Biochemistry, McGill University, Montreal, Quebec H3G1Y6, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Yasser Gidi
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Megan H. Powdrill
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Mihai Mesko
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G2R7, Canada
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, Montreal, Quebec H3A0B8, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
7
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
8
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Wanigasekara MSK, Huang X, Chakrabarty JK, Bugarin A, Chowdhury SM. Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins. ACS OMEGA 2018; 3:14229-14235. [PMID: 31458113 PMCID: PMC6645047 DOI: 10.1021/acsomega.8b01729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 06/10/2023]
Abstract
Modification of arginine residues using dicarbonyl compounds is a common method to identify functional or reactive arginine residues in proteins. Arginine undergoes several kinds of posttranslational modifications in these functional residues. Identifying these reactive residues confidently in a protein or large-scale samples is a very challenging task. Several dicarbonyl compounds have been utilized, and the most effective ones are phenylglyoxal and cyclohexanedione. However, tracking these reactive arginine residues in a protein or large-scale protein samples using a chemical labeling approach is very challenging. Thus, the enrichment of modified peptides will provide reduced sample complexity and confident mass-spectrometric data analysis. To pinpoint arginine-labeled peptide efficiently, we developed a novel arginine-selective enrichment reagent. For the first time, we conjugated an azide tag in a widely used dicarbonyl compound cyclohexanedione. This provided us the ability to enrich modified peptides using a bio-orthogonal click chemistry and the biotin-avidin affinity chromatography. We evaluated the reagent in several standard peptides and proteins. Three standard peptides, bradykinin, substance P, and neurotensin, were labeled with this cyclohexanedione-azide reagent. Click labeling of modified peptides was tested by spiking the peptides in a myoglobin protein digest. A protein, RNase A, was also labeled with the reagent, and after click chemistry and biotin-avidin affinity chromatography, we identified two selective arginine residues. We believe this strategy will be an efficient way for identifying functional and reactive arginine residues in a protein or protein mixtures.
Collapse
|
10
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
11
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
12
|
Ramberger E, Dittmar G. Tissue Specific Labeling in Proteomics. Proteomes 2017; 5:proteomes5030017. [PMID: 28718811 PMCID: PMC5620534 DOI: 10.3390/proteomes5030017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples. While it is routinely used for the characterization of simple cell line systems, the analysis of the cell specific proteome in multicellular organisms and tissues poses a significant challenge. Isolating a subset of cells from tissues requires mechanical and biochemical separation or sorting, a process which can alter cellular signaling, and thus, the composition of the proteome. Recently, several approaches for cell selective labeling of proteins, that include bioorthogonal amino acids, biotinylating enzymes, and genetic tools, have been developed. These tools facilitate the selective labeling of proteins, their interactome, or of specific cell types within a tissue or an organism, while avoiding the difficult and contamination-prone biochemical separation of cells from the tissue. In this review, we give an overview of existing techniques and their application in cell culture models and whole animals.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Mass-Spectrometry Core Unit, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
- Berlin School of Integrative Oncology (BSIO), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Gunnar Dittmar
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1272 Strassen, Luxembourg.
| |
Collapse
|