1
|
Torri D, Bering L, Yates LRL, Angiolini SM, Xu G, Cuesta‐Hoyos S, Shepherd SA, Micklefield J. Enzymatic Cascades for Stereoselective and Regioselective Amide Bond Assembly. Angew Chem Int Ed Engl 2025; 64:e202422185. [PMID: 39792621 PMCID: PMC11933536 DOI: 10.1002/anie.202422185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need. Herein, we present novel biocatalytic cascade reactions for synthesising various amides under mild aqueous conditions from readily available organic nitriles combining nitrile hydrolysing enzymes and amide bond synthetase enzymes. These cooperative biocatalytic cascades enable kinetic resolution of racemic nitriles and provide a highly enantioselective biocatalytic extension of the Strecker reaction. The regioselective non-directed C-H bond amidation of simple arenes was demonstrated through the incorporation of photoredox catalysis to the front end of the cascade. C-H bond amidation of simple aromatic precursors was also achieved via a CO2 fixation cascade combining enzymatic carboxylation and amide bond synthesis in one-pot.
Collapse
Affiliation(s)
- Daniele Torri
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Luis Bering
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Luke R. L. Yates
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Stuart M. Angiolini
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Guangcai Xu
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Sebastian Cuesta‐Hoyos
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Sarah A. Shepherd
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
- Department of Chemistry, Molecular Science Research HubImperial CollegeLondonW12 0BZUK
| |
Collapse
|
2
|
Wu F, Zhang C, Chen R, Chu Z, Han B, Zhai R. Research Progress in Isotope Labeling/Tags-Based Protein Quantification and Metrology Technologies. J Proteome Res 2025; 24:13-26. [PMID: 39628444 DOI: 10.1021/acs.jproteome.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced liquid chromatogram-mass spectrometry (LC-MS) and automated large-scale data processing have made MS-based quantitative analysis increasingly useful for research in fields such as biology, medicine, food safety, and beyond. This is because MS-based quantitative analysis can accurately and sensitively analyze thousands of proteins and peptides in a single experiment. However, the precision, coverage, complexity, and resilience of conventional quantification methods vary as a result of the modifications to the analytic environment and the physicochemical characteristics of analytes. Therefore, specially designed approaches are necessary for sample preparation. Dozens of methods have been developed and adapted for these needs based on stable isotopic labeling or isobaric tagging, each with distinct characteristics. In this review, we will summarize the leading strategies and techniques used thus far for MS-based protein quantification as well as analyze the advantages and shortcomings of different approaches. Additionally, we provide an overview of protein metrology development.
Collapse
Affiliation(s)
- Fan Wu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Chen
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
3
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
4
|
Tang Q, Chen X. Nascent Proteomics: Chemical Tools for Monitoring Newly Synthesized Proteins. Angew Chem Int Ed Engl 2023; 62:e202305866. [PMID: 37309018 DOI: 10.1002/anie.202305866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Cellular proteins are dynamically regulated in response to environmental stimuli. Conventional proteomics compares the entire proteome in different cellular states to identify differentially expressed proteins, which suffers from limited sensitivity for analyzing acute and subtle changes. To address this challenge, nascent proteomics has been developed, which selectively analyzes the newly synthesized proteins, thus offering a more sensitive and timely insight into the dynamic changes of the proteome. In this Minireview, we discuss recent advancements in nascent proteomics, with an emphasis on methodological developments. Also, we delve into the current challenges and provide an outlook on the future prospects of this exciting field.
Collapse
Affiliation(s)
- Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Science, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Liu W, Tang Q, Meng L, Hu S, Sun DE, Li S, Dai P, Chen X. Interbacterial Chemical Communication-Triggered Nascent Proteomics. Angew Chem Int Ed Engl 2023; 62:e202214010. [PMID: 36428226 DOI: 10.1002/anie.202214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Metabolic labeling with clickable noncanonical amino acids has enabled nascent proteome profiling, which can be performed in a cell-type-specific manner. However, nascent proteomics in an intercellular communication-dependent manner remains challenging. Here we develop communication-activated profiling of protein expression (CAPPEX), which integrates the LuxI/LuxR quorum sensing circuit with the cell-type-specific nascent proteomics method to enable selective click-labeling of newly synthesized proteins in a specific bacterium upon receiving chemical signals from another reporter bacterium. CAPPEX reveals that E. coli competes with Salmonella for tryptophan as the precursor for indole, and the resulting indole suppressed the expression of virulence factors in Salmonella. This tryptophan-indole axis confers attenuation of Salmonella invasion in host cells and living mice. The CAPPEX strategy should be widely applicable for investigating various interbacterial communication processes.
Collapse
Affiliation(s)
- Weibing Liu
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Liying Meng
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.,Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Shufan Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - De-En Sun
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shan Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Love AC, Tran SH, Prescher JA. Caged Cumate Enables Proximity-Dependent Control Over Gene Expression. Chembiochem 2021; 22:2440-2448. [PMID: 34031982 PMCID: PMC9870035 DOI: 10.1002/cbic.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Indexed: 01/26/2023]
Abstract
Cell-cell interactions underlie diverse physiological processes yet remain challenging to examine with conventional imaging tools. Here we report a novel strategy to illuminate cell proximity using transcriptional activators. We repurposed cumate, a small molecule inducer of gene expression, by caging its key carboxylate group with a nitrile. Nitrilase-expressing activator cells released the cage, liberating cumate for consumption by reporter cells. Reporter cells comprising a cumate-responsive switch expressed a target gene when in close proximity to the activator cells. Overall, this strategy provides a versatile platform to image and potentially manipulate cellular interactions over time.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
| | - Sabrina H Tran
- Department of Biological Sciences, University of California, Irvine, 5120 Natural Sciences II, Irvine, CA, 92627, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Ste. 101, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H, Marcus K. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Methods Mol Biol 2021; 2228:85-116. [PMID: 33950486 DOI: 10.1007/978-1-0716-1024-4_8] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent decades, mass spectrometry has moved more than ever before into the front line of protein-centered research. After being established at the qualitative level, the more challenging question of quantification of proteins and peptides using mass spectrometry has become a focus for further development. In this chapter, we discuss and review actual strategies and problems of the methods for the quantitative analysis of peptides, proteins, and finally proteomes by mass spectrometry. The common themes, the differences, and the potential pitfalls of the main approaches are presented in order to provide a survey of the emerging field of quantitative, mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Svitlana Rozanova
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for protein diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for protein diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Miroslav Nikolov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany. .,Medical Proteome Analysis, Center for protein diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
8
|
Nguyen K, Kubota M, Arco JD, Feng C, Singha M, Beasley S, Sakr J, Gandhi SP, Blurton-Jones M, Fernández Lucas J, Spitale RC. A Bump-Hole Strategy for Increased Stringency of Cell-Specific Metabolic Labeling of RNA. ACS Chem Biol 2020; 15:3099-3105. [PMID: 33222436 DOI: 10.1021/acschembio.0c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Profiling RNA expression in a cell-specific manner continues to be a grand challenge in biochemical research. Bioorthogonal nucleosides can be utilized to track RNA expression; however, these methods currently have limitations due to background and incorporation of analogs into undesired cells. Herein, we design and demonstrate that uracil phosphoribosyltransferase can be engineered to match 5-vinyluracil for cell-specific metabolic labeling of RNA with exceptional specificity and stringency.
Collapse
Affiliation(s)
- Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jon del Arco
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Beasley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jasmine Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Sunil P. Gandhi
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew Blurton-Jones
- Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, United States
| | - Jesus Fernández Lucas
- Universidad Europea de Madrid, E-28670 Villaviciosa de Odon, Madrid Spain
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine. Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
9
|
ZHAN FL, GAO SY, XIE YD, ZHANG JM, LI Y, LIU N. Applications of Click Chemistry Reaction for Proteomics Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60007-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Advances and applications of stable isotope labeling-based methods for proteome relative quantitation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wilson RS, Nairn AC. Cell-Type-Specific Proteomics: A Neuroscience Perspective. Proteomes 2018; 6:51. [PMID: 30544872 PMCID: PMC6313874 DOI: 10.3390/proteomes6040051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific analysis has become a major focus for many investigators in the field of neuroscience, particularly because of the large number of different cell populations found in brain tissue that play roles in a variety of developmental and behavioral disorders. However, isolation of these specific cell types can be challenging due to their nonuniformity and complex projections to different brain regions. Moreover, many analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein extracted from specific cell populations. Despite these challenges, methods to improve proteomic yield and increase resolution continue to develop at a rapid rate. In this review, we highlight the importance of cell-type-specific proteomics in neuroscience and the technical difficulties associated. Furthermore, current progress and technological advancements in cell-type-specific proteomics research are discussed with an emphasis in neuroscience.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Ankney JA, Muneer A, Chen X. Relative and Absolute Quantitation in Mass Spectrometry-Based Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:49-77. [PMID: 29894226 DOI: 10.1146/annurev-anchem-061516-045357] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based quantitative proteomics is a powerful tool for gaining insights into function and dynamics of biological systems. However, peptides with different sequences have different ionization efficiencies, and their intensities in a mass spectrum are not correlated with their abundances. Therefore, various label-free or stable isotope label-based quantitation methods have emerged to assist mass spectrometry to perform comparative proteomic experiments, thus enabling nonbiased identification of thousands of proteins differentially expressed in healthy versus diseased cells. Here, we discuss the most widely used label-free and metabolic-, enzymatic-, and chemical labeling-based proteomic strategies for relative and absolute quantitation. We summarize the specific strengths and weaknesses of each technique in terms of quantification accuracy, proteome coverage, multiplexing capability, and robustness. Applications of each strategy for solving specific biological complexities are also presented.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Adil Muneer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
13
|
Wright MH. Chemical Proteomics of Host-Microbe Interactions. Proteomics 2018; 18:e1700333. [DOI: 10.1002/pmic.201700333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Megan H. Wright
- Astbury Centre for Structural Molecular Biology; School of Chemistry; University of Leeds; Leeds LS2 9JT United Kingdom
| |
Collapse
|
14
|
Du S, Wang D, Lee JS, Peng B, Ge J, Yao SQ. Cell type-selective imaging and profiling of newly synthesized proteomes by using puromycin analogues. Chem Commun (Camb) 2018; 53:8443-8446. [PMID: 28702584 DOI: 10.1039/c7cc04536k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed a versatile antibody-assisted strategy for the imaging and profiling of newly synthesized proteomes in a cell-specific manner. This strategy remained highly selective even in heterogeneous co-cultured cells, thus enabling labeling and enrichment of nascent proteomes from targeted cells without the need for physical separation.
Collapse
Affiliation(s)
- Shubo Du
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Danyang Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Jun-Seok Lee
- Molecular Recognition Research Center & Department of Biological Chemistry, KIST-School Korea Institute of Science & Technology, South Korea
| | - Bo Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
15
|
Abstract
Koppel & Fainzilber review translatomics and proteomics methods for studying protein synthesis at subcellular resolution.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| |
Collapse
|
16
|
Bryson DI, Fan C, Guo LT, Miller C, Söll D, Liu DR. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol 2017; 13:1253-1260. [PMID: 29035361 PMCID: PMC5724969 DOI: 10.1038/nchembio.2474] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Directed evolution of orthogonal aminoacyl-tRNA synthetases (AARSs) enables site-specific installation of noncanonical amino acids (ncAAs) into proteins. Traditional evolution techniques typically produce AARSs with greatly reduced activity and selectivity compared to their wild-type counterparts. We designed phage-assisted continuous evolution (PACE) selections to rapidly produce highly active and selective orthogonal AARSs through hundreds of generations of evolution. PACE of a chimeric Methanosarcina spp. pyrrolysyl-tRNA synthetase (PylRS) improved its enzymatic efficiency (kcat/KMtRNA) 45-fold compared to the parent enzyme. Transplantation of the evolved mutations into other PylRS-derived synthetases improved yields of proteins containing noncanonical residues up to 9.7-fold. Simultaneous positive and negative selection PACE over 48 h greatly improved the selectivity of a promiscuous Methanocaldococcus jannaschii tyrosyl-tRNA synthetase variant for site-specific incorporation of p-iodo-L-phenylalanine. These findings offer new AARSs that increase the utility of orthogonal translation systems and establish the capability of PACE to efficiently evolve orthogonal AARSs with high activity and amino acid specificity.
Collapse
Affiliation(s)
- David I. Bryson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701
| | - Li-Tao Guo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520
| | - Corwin Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520
- Department of Chemistry, Yale University, New Haven, CT, 06520
| | - David R. Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142
| |
Collapse
|
17
|
Lehner F, Kudlinzki D, Richter C, Müller-Werkmeister HM, Eberl KB, Bredenbeck J, Schwalbe H, Silvers R. Impact of Azidohomoalanine Incorporation on Protein Structure and Ligand Binding. Chembiochem 2017; 18:2340-2350. [DOI: 10.1002/cbic.201700437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Lehner
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Denis Kudlinzki
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- German Cancer Consortium; DKTK; German Cancer Research Center; DKFZ; Im Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Christian Richter
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | | | - Katharina B. Eberl
- Institute for Biophysics; Goethe University Frankfurt; Max-von-Laue-Strasse 1 60438 Frankfurt am Main Germany
| | - Jens Bredenbeck
- Institute for Biophysics; Goethe University Frankfurt; Max-von-Laue-Strasse 1 60438 Frankfurt am Main Germany
| | - Harald Schwalbe
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Robert Silvers
- Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
- Present address: Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
18
|
Ramberger E, Dittmar G. Tissue Specific Labeling in Proteomics. Proteomes 2017; 5:proteomes5030017. [PMID: 28718811 PMCID: PMC5620534 DOI: 10.3390/proteomes5030017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples. While it is routinely used for the characterization of simple cell line systems, the analysis of the cell specific proteome in multicellular organisms and tissues poses a significant challenge. Isolating a subset of cells from tissues requires mechanical and biochemical separation or sorting, a process which can alter cellular signaling, and thus, the composition of the proteome. Recently, several approaches for cell selective labeling of proteins, that include bioorthogonal amino acids, biotinylating enzymes, and genetic tools, have been developed. These tools facilitate the selective labeling of proteins, their interactome, or of specific cell types within a tissue or an organism, while avoiding the difficult and contamination-prone biochemical separation of cells from the tissue. In this review, we give an overview of existing techniques and their application in cell culture models and whole animals.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Mass-Spectrometry Core Unit, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
- Berlin School of Integrative Oncology (BSIO), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Gunnar Dittmar
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1272 Strassen, Luxembourg.
| |
Collapse
|
19
|
Stastna M, Gottlieb RA, Van Eyk JE. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Expert Rev Proteomics 2017; 14:529-543. [PMID: 28532181 DOI: 10.1080/14789450.2017.1333424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Protein synthesis is the outcome of tightly regulated gene expression which is responsive to a variety of conditions. Efforts are ongoing to monitor individual stages of protein synthesis to ensure maximum efficiency and accuracy. Due to post-transcriptional regulation mechanisms, the correlation between translatome and proteome is higher than between transcriptome and proteome. However, the most accurate approach to assess the key modulators and final protein expression is directly by using proteomics. Areas covered: This review covers various proteomic strategies that were used to better understand post-transcriptional regulation, specifically during and early after translation. The methods that identify both regulatory proteins associated with translational components and newly synthesized proteins are discussed. Expert commentary: Emerging proteomic approaches make it possible to monitor protein dynamics in cells, tissues and whole animals. The ability to detect alteration in protein abundance soon after their synthesis enables earlier recognition of disease causing factors and candidates to prevent/rectify disease phenotype.
Collapse
Affiliation(s)
- Miroslava Stastna
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Advanced Clinical BioSystems Research Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,c Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i ., Brno , Czech Republic
| | - Roberta A Gottlieb
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer E Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Advanced Clinical BioSystems Research Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|