1
|
Maru B, Edinboro A, Katolik A, El-Khoury R, Basran K, Wahba A, Damha M, Luedtke N, McKeague M. Fluorogenic oligonucleotide cleavage probes with a branched linker improve RNA detection. Nucleic Acids Res 2025; 53:gkaf141. [PMID: 40052819 PMCID: PMC11886808 DOI: 10.1093/nar/gkaf141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025] Open
Abstract
Fluorescent probe-based quantitative polymerase chain reaction (qPCR) is essential for DNA/RNA quantification widely used in research and clinical diagnostics. The performance of fluorogenic probes depends heavily on their design, particularly the identities of the fluorophore and quencher moieties, and the linkers used to attach them to oligonucleotides. Here we report a highly modular, three-way branched glycerol 'X' linker in fluorogenic TaqMan® type oligonucleotide probes for multiplexed, reverse transcription qPCR (RT-qPCR). The flexible 'X' linker served as an internal attachment point for various quenchers (BHQ1, BHQ2) in probes containing a variable fluorophore at the 5' end (Flu, Hex, Cy5, Cy5.5). A four-color RT-qPCR 'tetraplex' assay was thereby developed for distinguishing between RNA genomes from SARS-CoV-2, influenza A, and influenza B viruses in a single reaction. The 'X' linker exhibited superior performance with single-molecule detection limits approaching four copies, compared to an internal arabinoside-based (ara) linker strategy, demonstrating the presence of competing processes during primer extension, one where Taq exonuclease activity cleaves the fluorogenic X probe leading to productive fluorescence, and the second where the ara probe is displaced from the PCR template without cleavage. Together these results demonstrate the importance of linker structure selection in oligonucleotides for developing highly effective fluorogenic probes for qPCR.
Collapse
Affiliation(s)
- Bruktawit Maru
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Ayodele Edinboro
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
| | - Kaleena Basran
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
| | - Alexander S Wahba
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
- McGill Chemistry Characterization (MC), McGill University, Montreal H3A 0B8, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
- Centre de recherche en biologie structurale, McGill University, Montreal H3G 0B1, Canada
| | - Nathan W Luedtke
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
- Centre de recherche en biologie structurale, McGill University, Montreal H3G 0B1, Canada
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
- Department of Chemistry, McGill University, Montreal H3A 0B8, Canada
- Centre de recherche en biologie structurale, McGill University, Montreal H3G 0B1, Canada
| |
Collapse
|
2
|
Buerer L, Clark NE, Welch A, Duan C, Taggart AJ, Townley BA, Wang J, Soemedi R, Rong S, Lin CL, Zeng Y, Katolik A, Staley JP, Damha MJ, Mosammaparast N, Fairbrother WG. The debranching enzyme Dbr1 regulates lariat turnover and intron splicing. Nat Commun 2024; 15:4617. [PMID: 38816363 PMCID: PMC11139901 DOI: 10.1038/s41467-024-48696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/05/2024] [Indexed: 06/01/2024] Open
Abstract
The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.
Collapse
Affiliation(s)
- Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Chaorui Duan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jing Wang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Rachel Soemedi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
- Department of Genetics, Yale University, New Haven, CT, 06520, USA
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Clark NE, Katolik A, Gallant P, Welch A, Murphy E, Buerer L, Schorl C, Naik N, Naik MT, Holloway SP, Cano K, Weintraub ST, Howard KM, Hart PJ, Jogl G, Damha MJ, Fairbrother WG. Activation of human RNA lariat debranching enzyme Dbr1 by binding protein TTDN1 occurs though an intrinsically disordered C-terminal domain. J Biol Chem 2023; 299:105100. [PMID: 37507019 PMCID: PMC10470207 DOI: 10.1016/j.jbc.2023.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.
Collapse
Affiliation(s)
- Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Pascal Gallant
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Eileen Murphy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nandita Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mandar T Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kristin Cano
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Katherine M Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - P John Hart
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
4
|
Hurtig JE, van Hoof A. An unknown essential function of tRNA splicing endonuclease is linked to the integrated stress response and intron debranching. Genetics 2023; 224:iyad044. [PMID: 36943791 PMCID: PMC10213494 DOI: 10.1093/genetics/iyad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
tRNA splicing endonuclease (TSEN) has a well-characterized role in transfer RNA (tRNA) splicing but also other functions. For yeast TSEN, these other functions include degradation of a subset of mRNAs that encode mitochondrial proteins and an unknown essential function. In this study, we use yeast genetics to characterize the unknown tRNA-independent function(s) of TSEN. Using a high-copy suppressor screen, we found that sen2 mutants can be suppressed by overexpression of SEN54. This effect was seen both for tRNA-dependent and tRNA-independent functions indicating that SEN54 is a general suppressor of sen2, likely through structural stabilization. A spontaneous suppressor screen identified mutations in the intron-debranching enzyme, Dbr1, as tRNA splicing-independent suppressors. Transcriptome analysis showed that sen2 mutation activates the Gcn4 stress response. These Gcn4 target transcripts decreased considerably in the sen2 dbr1 double mutant. We propose that Dbr1 and TSEN may compete for a shared substrate, which TSEN normally processes into an essential RNA, while Dbr1 initiates its degradation. These data provide further insight into the essential function(s) of TSEN. Importantly, single amino acid mutations in TSEN cause the generally fatal neuronal disease pontocerebellar hypoplasia (PCH). The mechanism by which defects in TSEN cause this disease is unknown, and our results reveal new possible mechanisms.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Clark NE, Katolik A, Welch A, Schorl C, Holloway SP, Schuermann JP, Hart PJ, Taylor AB, Damha MJ, Fairbrother WG. Crystal Structure of the RNA Lariat Debranching Enzyme Dbr1 with Hydrolyzed Phosphorothioate RNA Product. Biochemistry 2022; 61:2933-2939. [PMID: 36484984 DOI: 10.1021/acs.biochem.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Entamoeba histolytica Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond. The crystal structure revealed EhDbr1 in a product-bound state, with the hydrolyzed 2'-5' fragment of the PS-bRNA mimicking the binding mode of the native bRNA substrate. These findings suggest that product inhibition may contribute to the kinetic mechanism of Dbr1. We show that Dbr1 enzymes cleave phosphorothioate linkages at rates ∼10,000-fold more slowly than native phosphate linkages. This new product-bound crystal structure offers atomic details, which can aid inhibitor design. Dbr1 inhibitors could be therapeutic or investigative compounds for human diseases such as human immunodeficiency virus (HIV), amyotrophic lateral sclerosis (ALS), cancer, and viral encephalitis.
Collapse
Affiliation(s)
- Nathaniel E. Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02891, United States
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02891, United States
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02891, United States
| | - Stephen P. Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Jonathan P. Schuermann
- Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - P. John Hart
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Alexander B. Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - William G. Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02891, United States
| |
Collapse
|
6
|
Clark NE, Katolik A, Taggart AJ, Buerer L, Holloway SP, Miller N, Phillips JD, Farrell CP, Damha MJ, Fairbrother WG. Metal content and kinetic properties of yeast RNA lariat debranching enzyme Dbr1. RNA (NEW YORK, N.Y.) 2022; 28:927-936. [PMID: 35459748 PMCID: PMC9202583 DOI: 10.1261/rna.079159.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from Entamoeba histolytica uses combinations of Mn2+, Zn2+, and Fe2+ as enzymatic cofactors. Here, we examine the kinetic properties and metal dependence of the Dbr1 homolog from Saccharomyces cerevisiae (yDbr1). Elemental analysis measured stoichiometric quantities of Fe and Zn in yDbr1 purified following heterologous expression E. coli We analyzed the ability of Fe2+, Zn2+, and Mn2+ to reconstitute activity in metal-free apoenzyme. Purified yDbr1 was highly active, turning over substrate at 5.6 sec-1, and apo-yDbr1 reconstituted with Fe2+ was the most active species, turning over at 9.2 sec-1 We treated human lymphoblastoid cells with the iron-chelator deferoxamine and measured a twofold increase in cellular lariats. These data suggest that Fe is an important biological cofactor for Dbr1 enzymes.
Collapse
Affiliation(s)
- Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
- Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA
| | - Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Nathaniel Miller
- Department of Geological Sciences, University of Texas Austin, Austin, Texas 78712, USA
| | - John D Phillips
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Colin P Farrell
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
7
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
Zhang SY, Clark NE, Freije CA, Pauwels E, Taggart AJ, Okada S, Mandel H, Garcia P, Ciancanelli MJ, Biran A, Lafaille FG, Tsumura M, Cobat A, Luo J, Volpi S, Zimmer B, Sakata S, Dinis A, Ohara O, Garcia Reino EJ, Dobbs K, Hasek M, Holloway SP, McCammon K, Hussong SA, DeRosa N, Van Skike CE, Katolik A, Lorenzo L, Hyodo M, Faria E, Halwani R, Fukuhara R, Smith GA, Galvan V, Damha MJ, Al-Muhsen S, Itan Y, Boeke JD, Notarangelo LD, Studer L, Kobayashi M, Diogo L, Fairbrother WG, Abel L, Rosenberg BR, Hart PJ, Etzioni A, Casanova JL. Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection. Cell 2018; 172:952-965.e18. [PMID: 29474921 PMCID: PMC5886375 DOI: 10.1016/j.cell.2018.02.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/03/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023]
Abstract
Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris 75015, France; Paris Descartes University, Imagine Institute, Paris 75015, France.
| | - Nathaniel E Clark
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Catherine A Freije
- Program in Immunogenomics, The Rockefeller University, New York, NY 10065, USA
| | - Elodie Pauwels
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima 734-8553, Japan
| | - Hanna Mandel
- Metabolic Unit, Ruth Children's Hospital, Rambam Health Care Campus, Haifa 31096, Israel; Rappaport Faculty of Medicine, Haifa 31096, Israel
| | - Paula Garcia
- Child Developmental Center, Pediatric Hospital, Hospital and University Center of Coimbra, Coimbra 3000-602, Portugal
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Anat Biran
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Fabien G Lafaille
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima 734-8553, Japan
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris 75015, France; Paris Descartes University, Imagine Institute, Paris 75015, France
| | - Jingchuan Luo
- Department of Molecular Biology & Genetics, JHU School of Medicine, Baltimore, MD 21205, USA; Institute for Systems Genetics, NYU Langone Health, New York 10016, NY, USA
| | - Stefano Volpi
- Pediatric and Rheumatology Clinic, Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto Giannina Gaslini and University of Genoa, Genoa 16100, Italy
| | - Bastian Zimmer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima 734-8553, Japan
| | - Alexandra Dinis
- Pediatric Intensive Care Unit, Pediatric Hospital, Hospital and University Center of Coimbra, Coimbra 3000-075, Portugal
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba 292-0818, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Eduardo J Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-1456, USA
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karen McCammon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Department of Veterans Affairs, TX 78229, USA
| | - Nicholas DeRosa
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montréal, QC H3A0B8, Canada
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris 75015, France; Paris Descartes University, Imagine Institute, Paris 75015, France
| | - Maki Hyodo
- Department of Obstetrics and Gynecology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima 734-8553, Japan
| | - Emilia Faria
- Immuno-Allergy Department, Hospital and University of Coimbra, Coimbra 3000-075, Portugal
| | - Rabih Halwani
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Rie Fukuhara
- Department of Neonatology, Hiroshima Prefectural Hospital, Hiroshima 734-8115, Japan
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Department of Veterans Affairs, TX 78229, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC H3A0B8, Canada
| | - Saleh Al-Muhsen
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jef D Boeke
- Department of Molecular Biology & Genetics, JHU School of Medicine, Baltimore, MD 21205, USA; Institute for Systems Genetics, NYU Langone Health, New York 10016, NY, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-1456, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima 734-8553, Japan
| | - Luisa Diogo
- Pediatric Hospital of Coimbra, Coimbra 3000-075, Portugal
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris 75015, France; Paris Descartes University, Imagine Institute, Paris 75015, France
| | - Brad R Rosenberg
- Program in Immunogenomics, The Rockefeller University, New York, NY 10065, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - P John Hart
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Department of Veterans Affairs, TX 78229, USA; X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Amos Etzioni
- Rappaport Faculty of Medicine, Haifa 31096, Israel; Immunology Unit, Ruth Children's Hospital, Haifa 31096, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris 75015, France; Paris Descartes University, Imagine Institute, Paris 75015, France; Howard Hughes Medical Institute, New York, NY 10065, USA; Pediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
9
|
Affiliation(s)
| | - Doug Auld
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|