1
|
Jiang H, Zhang RB, Peng J, Ren L, Wang HD. Disruption of the Hippo pathway promotes the proliferation of childhood acute lymphoblastic leukemia cells, inhibits apoptosis and chemosensitivity. Expert Rev Hematol 2024; 17:269-274. [PMID: 38753450 DOI: 10.1080/17474086.2024.2356255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Despite advancements in chemotherapy and stem cell transplantation, the recurrence and chemoresistance of childhood acute lymphoblastic leukemia (cALL) remain a significant challenge, thus indicating the need for novel therapeutic targets. RESEARCH DESIGN AND METHODS The protein levels of YAP1, p-YAP1, TAZ, and Cyr61 of cALL patients and healthy volunteers were measured by western blot analysis. Then the leukemic cell line SUP-B15 was transfected with sh-YAP1 and pcDNA3.1-YAP1 to knockdown or overexpress YAP1. The viability, chemosensitivity, apoptosis, migration, and invasion of SUP-B15 cells were determined by MTT, flow cytometry, and Transwell assay. RESULTS The cALL patients had higher YAP1, TAZ, and Cyr61 protein expression and lower p-YAP1 protein expression in bone marrow tissues compared with healthy volunteers (p < 0.01). In SUP-B15 cells, YAP1 knockdown upregulated p-YAP1 protein expression (p < 0.01) and downregulated TAZ and Cyr61 protein expression (p < 0.01). In addition, knocking down YAP1 significantly inhibited cell viability, migration, and invasion, and induced apoptosis (p < 0.01). YAP1 knockdown also reduced the IC50 value following treatment with vincristine, daunorubicin, cyclophosphamide, and dexamethasone (p < 0.05). CONCLUSIONS Disruption of the Hippo pathway attenuates the development of cALL by promoting cell proliferation while suppressing apoptosis and drug sensitivity.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Rui-Bo Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Juan Peng
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Lan Ren
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Heng-Dong Wang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| |
Collapse
|
2
|
Fnaiche A, Chan HC, Paquin A, González Suárez N, Vu V, Li F, Allali-Hassani A, Cao MA, Szewczyk MM, Bolotokova A, Allemand F, Gelin M, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Guichou JF, Annabi B, Gagnon A. Development of HC-258, a Covalent Acrylamide TEAD Inhibitor That Reduces Gene Expression and Cell Migration. ACS Med Chem Lett 2023; 14:1746-1753. [PMID: 38116405 PMCID: PMC10726447 DOI: 10.1021/acsmedchemlett.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed. Here we report the development of HC-258, which derives from FA and possesses an oxopentyl chain that mimics a molecule of PA as well as an acrylamide that reacts covalently with TEAD's cysteine. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD's PA pocket, where it forms a covalent bond with its cysteine.
Collapse
Affiliation(s)
- Ahmed Fnaiche
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Hwai-Chien Chan
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexis Paquin
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Narjara González Suárez
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Victoria Vu
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Fengling Li
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Michelle Ada Cao
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Magdalena M. Szewczyk
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Albina Bolotokova
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Frédéric Allemand
- Centre
de Biologie Structurale, CNRS, INSERM, Univ.
Montpellier, 34090 Montpellier, France
| | - Muriel Gelin
- Centre
de Biologie Structurale, CNRS, INSERM, Univ.
Montpellier, 34090 Montpellier, France
| | - Dalia Barsyte-Lovejoy
- Structural
Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Jean-François Guichou
- Centre
de Biologie Structurale, CNRS, INSERM, Univ.
Montpellier, 34090 Montpellier, France
| | - Borhane Annabi
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexandre Gagnon
- Département
de Chimie, Université du Québec
à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
3
|
Fnaiche A, Mélin L, Suárez NG, Paquin A, Vu V, Li F, Allali-Hassani A, Bolotokova A, Allemand F, Gelin M, Cotelle P, Woo S, LaPlante SR, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Guichou JF, Annabi B, Gagnon A. Development of LM-41 and AF-2112, two flufenamic acid-derived TEAD inhibitors obtained through the replacement of the trifluoromethyl group by aryl rings. Bioorg Med Chem Lett 2023; 95:129488. [PMID: 37770003 DOI: 10.1016/j.bmcl.2023.129488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Narjara González Suárez
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexis Paquin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Victoria Vu
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Albina Bolotokova
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Frédéric Allemand
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Muriel Gelin
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Philippe Cotelle
- Université de Lille, CHU Lille, INSERM-UMR-S-1172-JPArc-Centre de Recherche Jean-Pierre Aubert, Neurosciences et Cancer, F-59000 Lille, France
| | - Simon Woo
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Steven R LaPlante
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier, France.
| | - Borhane Annabi
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
4
|
Lee CH, Hunt D, Roth JG, Chiu CC, Suhar RA, LeSavage BL, Seymour AJ, Lindsay C, Krajina B, Chen YT, Chang KH, Hsieh IC, Chu PH, Wen MS, Heilshorn SC. Tuning pro-survival effects of human induced pluripotent stem cell-derived exosomes using elastin-like polypeptides. Biomaterials 2022; 291:121864. [DOI: 10.1016/j.biomaterials.2022.121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
5
|
Heo YJ, Lee N, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Empagliflozin Reduces the Progression of Hepatic Fibrosis in a Mouse Model and Inhibits the Activation of Hepatic Stellate Cells via the Hippo Signalling Pathway. Biomedicines 2022; 10:biomedicines10051032. [PMID: 35625768 PMCID: PMC9138578 DOI: 10.3390/biomedicines10051032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatic fibrosis is the excessive production and deposition of the extracellular matrix, resulting in the activation of the fibrogenic phenotype of hepatic stellate cells (HSCs). The Hippo/Yes-associated protein (YAP) signalling pathway is a highly conserved kinase cascade that is critical in regulating cell proliferation, differentiation, and survival, and controls stellate cell activation. Empagliflozin, a sodium-glucose cotransporter type-2 inhibitor, is an antidiabetic drug that may prevent fibrotic progression by reducing hepatic steatosis and inflammation. However, little is known about its mechanism of action in liver fibrosis. In this study, we used male C57 BL/6 J mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) as a model for hepatic fibrosis. For 5 weeks, the mice received either a vehicle or empagliflozin based on their assigned group. Empagliflozin attenuated CDAHFD-induced liver fibrosis. Thereafter, we identified the Hippo pathway, along with its effector, YAP, as a key pathway in the mouse liver. Hippo signalling is inactivated in the fibrotic liver, but empagliflozin treatment activated Hippo signalling and decreased YAP activity. In addition, empagliflozin downregulated the expression of pro-fibrogenic genes and activated Hippo signalling in HSCs. We identified a mechanism by which empagliflozin ameliorates liver fibrosis.
Collapse
Affiliation(s)
- Yu-Jung Heo
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-E.C.); (Y.K.)
| | - Ja-Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Seung-Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Dae-Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-E.C.); (Y.K.)
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Hae-Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
- Correspondence: ; Tel.: +82-31-219-4498
| |
Collapse
|
6
|
Mélin L, Abdullayev S, Fnaiche A, Vu V, González Suárez N, Zeng H, Szewczyk MM, Li F, Senisterra G, Allali-Hassani A, Chau I, Dong A, Woo S, Annabi B, Halabelian L, LaPlante SR, Vedadi M, Barsyte-Lovejoy D, Santhakumar V, Gagnon A. Development of LM98, a Small-Molecule TEAD Inhibitor Derived from Flufenamic Acid. ChemMedChem 2021; 16:2982-3002. [PMID: 34164919 DOI: 10.1002/cmdc.202100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Shuay Abdullayev
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Narjara González Suárez
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Simon Woo
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Borhane Annabi
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Steven R LaPlante
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Vijayaratnam Santhakumar
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
7
|
Gibault F, Sturbaut M, Coevoet M, Pugnière M, Burtscher A, Allemand F, Melnyk P, Hong W, Rubin BP, Pobbati AV, Guichou JF, Cotelle P, Bailly F. Design, Synthesis and Evaluation of a Series of 1,5-Diaryl-1,2,3-triazole-4-carbohydrazones as Inhibitors of the YAP-TAZ/TEAD Complex. ChemMedChem 2021; 16:2823-2844. [PMID: 34032019 DOI: 10.1002/cmdc.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/02/2023]
Abstract
Starting from our previously reported hit, a series of 1,5-diaryl-1,2,3-triazole-4-carbohydrazones were synthesized and evaluated as inhibitors of the YAP/TAZ-TEAD complex. Their binding to hTEAD2 was confirmed by nanodifferential scanning fluorimetry, and some of the compounds were also found to moderately disrupt the YAP-TEAD interaction, as assessed by a fluorescence polarization assay. A TEAD luciferase gene reporter assay performed in HEK293T cells and RTqPCR measurements in MDA-MB231 cells showed that these compounds inhibit YAP/TAZ-TEAD activity to cells in the micromolar range. In spite of the cytotoxic effects displayed by some of the compounds of this series, they are still good starting points and can be suitably modified into an effective and viable YAP-TEAD disruptor in the future.
Collapse
Affiliation(s)
- Floriane Gibault
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Manon Sturbaut
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Mathilde Coevoet
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 208 rue des Apothicaires, 34298, Montpellier Cedex 5, France
| | - Ashley Burtscher
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, OH 44195, USA
| | - Frédéric Allemand
- University of Montpellier CNRS UMR5048, INSERM U1054 Centre de Biologie Structurale, 29 rue de Navacelles, 34090, Montpellier, France
| | - Patricia Melnyk
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A(✶)STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, OH 44195, USA
| | - Jean-François Guichou
- University of Montpellier CNRS UMR5048, INSERM U1054 Centre de Biologie Structurale, 29 rue de Navacelles, 34090, Montpellier, France
| | - Philippe Cotelle
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France.,Ecole Centrale Lille, 59000, Lille, France
| | - Fabrice Bailly
- INSERM, UMR-S 1172, Lille Neuroscience & Cognition, University of Lille, 59000, Lille, France
| |
Collapse
|
8
|
Sharma J, Antenos M, Madan P. A Comparative Analysis of Hippo Signaling Pathway Components during Murine and Bovine Early Mammalian Embryogenesis. Genes (Basel) 2021; 12:281. [PMID: 33669396 PMCID: PMC7920285 DOI: 10.3390/genes12020281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
The time required for successful blastocyst formation varies among multiple species. The formation of a blastocyst is governed by numerous molecular cell signaling pathways, such as the Hippo signaling pathway. The Hippo signaling pathway is initiated by increased cell-cell contact and via apical polarity proteins (AMOT, PARD6, and NF2) during the period of preimplantation embryogenesis. Cell-cell contact and cell polarity activate (phosphorylates) the core cascade components of the pathway (mammalian sterile twenty like 1 and 2 (MST1/2) and large tumor suppressor 1 and 2 (LATS1/2)), which in turn phosphorylate the downstream effectors of the pathway (YAP1/TAZ). The Hippo pathway remains inactive with YAP1 (Yes Associated protein 1) present inside the nucleus in the trophectoderm (TE) cells (polar blastomeres) of the mouse blastocyst. In the inner cell mass (ICM) cells (apolar blastomeres), the pathway is activated with p-YAP1 present in the cytoplasm. On the contrary, during bovine embryogenesis, p-YAP1 is exclusively present in the nucleus in both TE and ICM cells. Contrary to mouse embryos, transcription co activator with PDZ-binding motif (TAZ) (also known as WWTR1) is also predominantly present in the cytoplasm in all the blastomeres during bovine embryogenesis. This review outlines the major differences in the localization and function of Hippo signaling pathway components of murine and bovine preimplantation embryos, suggesting significant differences in the regulation of this pathway in between the two species. The variance observed in the Hippo signaling pathway between murine and bovine embryos confirms that both of these early embryonic models are quite distinct. Moreover, based on the similarity of the Hippo signaling pathway between bovine and human early embryo development, bovine embryos could be an alternate model for understanding the regulation of the Hippo signaling pathway in human embryos.
Collapse
Affiliation(s)
| | | | - Pavneesh Madan
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.); (M.A.)
| |
Collapse
|
9
|
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. Int J Mol Sci 2020; 21:ijms21155262. [PMID: 32722222 PMCID: PMC7432558 DOI: 10.3390/ijms21155262] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. We also demonstrate that structural biology provides insights into the function of a target and identifies a druggable site for rational drug design.
Collapse
|
10
|
Cruzeiro GAV, Lira RCP, de Almeida Magalhães T, Scrideli CA, Valera ET, Baumgartner M, Tone LG. CTGF expression is indicative of better survival rates in patients with medulloblastoma. Cancer Gene Ther 2019; 27:378-382. [PMID: 31073205 DOI: 10.1038/s41417-019-0100-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/27/2019] [Indexed: 11/09/2022]
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children and it is subgrouped into 4 entities (SHH, WNT, Group 3, and Group 4). Molecular pathways involved in these different subgroups still are evolving and can be of clinical relevance to therapy. The YAP1-CTGF axis is known to regulate cell proliferation, differentiation, and cell death; however, its role in MB is poorly explored. We aimed to investigate the role of YAP1 gene in the MB SHH cell line DAOY and evaluate cell proliferation, doubling time and 3D spheroids invasion and its consequence on CTGF regulation. We assessed CTGF expression from 22 children with MB. Lastly, we validated our findings through in silico analysis in large cohorts dataset of patients. We observed an increased invasion rate of DAOY cells and CTGF downregulation under YAP1 knockdown (p < 0.0001). Additionally CTGF is overexpressed in MB with extensive nodularity subtype and an indicative of higher survival rates in pediatric MB (p < 0.05). Interestingly, no difference of CTGF expression was observed between molecular subgroups. These results provide new evidence ofCTGF as a potential prognostic marker for MB, corroborating to the role of YAP1 in restricting MB cell.
Collapse
Affiliation(s)
- Gustavo Alencastro Veiga Cruzeiro
- Department of Oncology, Children's Research Center, Neuro-Oncology group, University Children's Hospital Zürich, August-Forel Strasse 1, CH-8008, Zürich, Switzerland. .,Department of Pediatrics, Ribeirão Preto Medical School, Hospital das Clínicas, University of São Paulo, Av.Bandeirantes 3900, Hospital das Clínicas, Ribeirão Preto, São Paulo, Brazil. .,Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 100 Blossom Street, Cox 7, Boston, Massachusetts, USA.
| | - Regia Caroline Peixoto Lira
- Department of Pediatrics, Ribeirão Preto Medical School, Hospital das Clínicas, University of São Paulo, Av.Bandeirantes 3900, Hospital das Clínicas, Ribeirão Preto, São Paulo, Brazil
| | - Taciani de Almeida Magalhães
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, Hospital das Clínicas, University of São Paulo, Av.Bandeirantes 3900, Hospital das Clínicas, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, Hospital das Clínicas, University of São Paulo, Av.Bandeirantes 3900, Hospital das Clínicas, Ribeirão Preto, São Paulo, Brazil
| | - Martin Baumgartner
- Department of Oncology, Children's Research Center, Neuro-Oncology group, University Children's Hospital Zürich, August-Forel Strasse 1, CH-8008, Zürich, Switzerland
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, Hospital das Clínicas, University of São Paulo, Av.Bandeirantes 3900, Hospital das Clínicas, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Abstract
The Hippo pathway controls organ size and maintains tissue homeostasis through a central MST-LATS kinase cascade. When Hippo signaling is on, activated MST1/2 partner with SAV1 to phosphorylate and activate the LATS1/2-MOB1 complexes, which in turn phosphorylate and inactivate YAP/TAZ transcription co-activators. This process halts the expression of Hippo-responsive genes, thereby inhibiting cell proliferation and promoting apoptosis. Our studies have shown that two core adaptor proteins MOB1 and SAV1 use distinctive mechanisms to enhance Hippo signaling. MOB1 promotes MST-dependent LATS activation through dynamic scaffolding and allosteric regulation. SAV1 promotes MST activation by antagonizing the PP2A phosphatase activity. Here we describe the detailed methods for the purification and crystallization of the MST2-SAV1 and pMOB1-LATS1 complexes, for assaying the SAV1-dependent inhibition of PP2A, and for analyzing LATS1 kinase activation using in vitro reconstitution.
Collapse
Affiliation(s)
- Lisheng Ni
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep 2018; 38:BSR20171469. [PMID: 30038061 PMCID: PMC6131212 DOI: 10.1042/bsr20171469] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
First discovered two decades ago through genetic screens in Drosophila, the Hippo pathway has been shown to be conserved in metazoans and controls organ size and tissue homeostasis through regulating the balance between cell proliferation and apoptosis. Dysregulation of the Hippo pathway leads to aberrant tissue growth and tumorigenesis. Extensive studies in Drosophila and mammals have identified the core components of Hippo signaling, which form a central kinase cascade to ultimately control gene expression. Here, we review recent structural, biochemical, and cellular studies that have revealed intricate phosphorylation-dependent mechanisms in regulating the formation and activation of the core kinase complex in the Hippo pathway. These studies have established the dimerization-mediated activation of the Hippo kinase (mammalian Ste20-like 1 and 2 (MST1/2) in mammals), the dynamic scaffolding and allosteric roles of adaptor proteins in downstream kinase activation, and the importance of multisite linker autophosphorylation by Hippo and MST1/2 in fine-tuning the signaling strength and robustness of the Hippo pathway. We highlight the gaps in our knowledge in this field that will require further mechanistic studies.
Collapse
|
13
|
Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochem J 2018; 475:2043-2055. [DOI: 10.1042/bcj20180225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022]
Abstract
The oncoprotein YAP (Yes-associated protein) requires the TEAD family of transcription factors for the up-regulation of genes important for cell proliferation. Disrupting YAP–TEAD interaction is an attractive strategy for cancer therapy. Targeting TEADs using small molecules that either bind to the YAP-binding pocket or the palmitate-binding pocket is proposed to disrupt the YAP–TEAD interaction. There is a need for methodologies to facilitate robust and reliable identification of compounds that occupy either YAP-binding pocket or palmitate-binding pocket. Here, using NMR spectroscopy, we validated compounds that bind to these pockets and also identify the residues in mouse TEAD4 (mTEAD4) that interact with these compounds. Flufenamic acid (FA) was used as a positive control for validation of palmitate-binding pocket-occupying compounds by NMR. Furthermore, we identify a hit from a fragment screen and show that it occupies a site close to YAP-binding pocket on the TEAD surface. Our results also indicate that purified mTEAD4 can catalyze autopalmitoylation. NMR studies on mTEAD4 revealed that exchanges exist in TEAD as NMR signal broadening was observed for residues close to the palmitoylation site. Mutating the palmitoylated cysteine (C360S mutant) abolished palmitoylation, while no significant changes in the NMR spectrum were observed for the mutant which still binds to YAP. We also show that FA inhibits TEAD autopalmitoylation. Our studies highlight the utility of NMR spectroscopy in identifying small molecules that bind to TEAD pockets and reinforce the notion that both palmitate-binding pocket and YAP-binding pocket are targetable.
Collapse
|
14
|
Holden JK, Cunningham CN. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers (Basel) 2018; 10:cancers10030081. [PMID: 29558384 PMCID: PMC5876656 DOI: 10.3390/cancers10030081] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway is a critical transcriptional signaling pathway that regulates cell growth, proliferation and organ development. The transcriptional enhanced associate domain (TEAD) protein family consists of four paralogous transcription factors that function to modulate gene expression in response to the Hippo signaling pathway. Transcriptional activation of these proteins occurs upon binding to the co-activator YAP/TAZ whose entry into the nucleus is regulated by Lats1/2 kinase. In recent years, it has become apparent that the dysregulation and/or overexpression of Hippo pathway effectors is implicated in a wide range of cancers, including prostate, gastric and liver cancer. A large body of work has been dedicated to understanding the therapeutic potential of modulating the phosphorylation and localization of YAP/TAZ. However, YAP/TAZ are considered to be natively unfolded and may be intractable as drug targets. Therefore, TEAD proteins present themselves as an excellent therapeutic target for intervention of the Hippo pathway. This review summarizes the functional role of TEAD proteins in cancer and assesses the therapeutic potential of antagonizing TEAD function in vivo.
Collapse
Affiliation(s)
- Jeffrey K Holden
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Christian N Cunningham
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Jia L, Gu W, Zhang Y, Jiang B, Qiao X, Wen Y. Activated Yes-Associated Protein Accelerates Cell Cycle, Inhibits Apoptosis, and Delays Senescence in Human Periodontal Ligament Stem Cells. Int J Med Sci 2018; 15:1241-1250. [PMID: 30123063 PMCID: PMC6097269 DOI: 10.7150/ijms.25115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Objectives: To provide insight into the biological effects of activated Yes-associated protein (YAP) on the proliferation, apoptosis, and senescence of human periodontal ligament stem cells (h-PDLSCs). Methods: h-PDLSCs were isolated by the limiting dilution method, and their surface markers were quantified by flow cytometry. Enhanced green fluorescence protein (EGFP)-labeled lentiviral vector was used to activate YAP in h-PDLSCs, then qRT-PCR and Western blotting were used to evaluate the expression level of YAP. Immunofluorescence was used to detect the location of YAP in h-PDLSCs. The proliferation activity was detected by cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU), and the cell cycle was determined by flow cytometry. Apoptosis was analyzed by Annexin V-APC staining. Cell senescence was detected by β-galactosidase staining. Proteins in ERK, Bcl-2, and p53 signaling pathways were detected by Western blotting. Results: h-PDLSCs were isolated successfully and were positive for human mesenchymal stem cell surface markers. After YAP was activated by lentiviral vector, the mRNA and protein of YAP were highly expressed, and more YAP translocated into the nucleus. When YAP was overexpressed in h-PDLSCs, proliferation activity was improved; early and late apoptosis rates decreased (P<0.05); the proportion of cells in G2/M phases increased (P<0.05), while that in G0/G1 phase decreased (P<0.05); cellular senescence was delayed (P<0.01); the expression of P-MEK, P-ERK, P-P90RSK and P-Msk increased, while the expression of Bcl-2 family members (Bak, Bid and Bik) decreased. Conclusions: Activated YAP promotes proliferation, inhibits apoptosis, and delays senescence of h-PDLSCs. The Hippo-YAP signaling pathway can influence ERK and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Linglu Jia
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Weiting Gu
- Department of Obstetrics and Gynecology, Qilu hospital of Shandong University, Jinan, China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Baoqi Jiang
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Xu Qiao
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Yong Wen
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| |
Collapse
|
16
|
Keck M, Fournier A, Gualtieri F, Walker A, von Rüden EL, Russmann V, Deeg CA, Hauck SM, Krause R, Potschka H. A systems level analysis of epileptogenesis-associated proteome alterations. Neurobiol Dis 2017; 105:164-178. [PMID: 28576708 DOI: 10.1016/j.nbd.2017.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Despite intense research efforts, the knowledge about the mechanisms of epileptogenesis and epilepsy is still considered incomplete and limited. However, an in-depth understanding of molecular pathophysiological processes is crucial for the rational selection of innovative biomarkers and target candidates. Here, we subjected proteomic data from different phases of a chronic rat epileptogenesis model to a comprehensive systems level analysis. Weighted Gene Co-expression Network analysis identified several modules of interconnected protein groups reflecting distinct molecular aspects of epileptogenesis in the hippocampus and the parahippocampal cortex. Characterization of these modules did not only further validate the data but also revealed regulation of molecular processes not described previously in the context of epilepsy development. The data sets also provide valuable information about temporal patterns, which should be taken into account for development of preventive strategies in particular when it comes to multi-targeting network pharmacology approaches. In addition, principal component analysis suggests candidate biomarkers, which might inform the design of novel molecular imaging approaches aiming to predict epileptogenesis during different phases or confirm epilepsy manifestation. Further studies are necessary to distinguish between molecular alterations, which correlate with epileptogenesis versus those reflecting a mere consequence of the status epilepticus.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Anna Fournier
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, 35037 Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Roland Krause
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany.
| |
Collapse
|