1
|
Zhao L, Huang Z, Meng H, Liang Q, Su XC, Xuan W. Site-Specific Protein Modification via Reductive Amination of Genetically Encoded Aldehyde. Bioconjug Chem 2025; 36:377-382. [PMID: 39963974 DOI: 10.1021/acs.bioconjchem.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Aldehyde represents an extremely useful bio-orthogonal group in chemical biology and has promoted the generation of high-quality bioconjugates in therapeutics development. However, the installation of an aldehyde group on a protein and subsequent conjugation remains technically inadequate in the aspect of site choice, substrate availability, and linkage stability. Herein, we take efforts to advance the genetic incorporation of an aldehyde-containing noncanonical amino acid in E. coli and then show that reductive amination could be a useful reaction in introducing various amine-containing molecules, including peptides, into a specific site of proteins.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhifen Huang
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Haonan Meng
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Qianzhi Liang
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xun-Cheng Su
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weimin Xuan
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
3
|
Bera B, Goswami U, Sk S, Bera MK. Carbonyldiimidazole (CDI) promoted direct and instantaneous thio-esterification of a carboxylic acid and thiol at ambient temperature. Org Biomol Chem 2024; 22:8570-8574. [PMID: 39360772 DOI: 10.1039/d4ob01376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A simple yet efficient method is disclosed for the synthesis of a diverse range of thioester derivatives. Carbonyldiimidazole promoted esterification between a carboxylic acid and thiol was carried out at ambient temperature. The short reaction time, excellent yield, operational ease and wide functional group tolerance are the notable features of the reaction. Furthermore, the precise preparation of thioesters on a gram scale suggests the promising prospects for its industrial application.
Collapse
Affiliation(s)
- Biman Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P O-Botanic Garden, Howrah-711103, WB, India
| | - Upasi Goswami
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P O-Botanic Garden, Howrah-711103, WB, India
| | - Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani-741235, WB, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P O-Botanic Garden, Howrah-711103, WB, India
| |
Collapse
|
4
|
Galesic A, Pan B, Ramirez J, Rhoades E, Pratt MR, Petersson EJ. Combining non-canonical amino acid mutagenesis and native chemical ligation for multiply modifying proteins: A case study of α-synuclein post-translational modifications. Methods 2023; 218:101-109. [PMID: 37549799 PMCID: PMC10657485 DOI: 10.1016/j.ymeth.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
The Parkinson's disease associated protein α-synuclein (αS) has been found to contain numerous post-translational modifications (PTMs), in both physiological and pathological states. One PTM site of particular interest is serine 87, which is subject to both O-linked β-N-acetylglucosamine (gS) modification and phosphorylation (pS), with αS-pS87 enriched in Parkinson's disease. An often-overlooked aspect of these PTMs is their effect on the membrane-binding properties of αS, which are important to its role in regulating neurotransmitter release. Here, we show how one can study these effects by synthesizing αS constructs containing authentic PTMs and labels for single molecule fluorescence correlation spectroscopy measurements. We synthesize αS-gS87 and αS-pS87 by combining native chemical ligation with genetic code expansion approaches. We introduce the fluorophore by a click reaction with a non-canonical amino acid. Beyond the specific problem of PTM effects on αS, our studies highlight the value of this combination of methods for multiply modifying proteins.
Collapse
Affiliation(s)
- Ana Galesic
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Grain B, Desmet R, Snella B, Melnyk O, Agouridas V. Incorporation of a Highly Reactive Oxalyl Thioester-Based Interacting Handle into Proteins. Org Lett 2023; 25:5117-5122. [PMID: 37384828 PMCID: PMC10353032 DOI: 10.1021/acs.orglett.3c01846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Providing biomolecules with extended physicochemical, biochemical, or biological properties is a contemporary challenge motivated by impactful benefits in life or materials sciences. In this study, we show that a latent and highly reactive oxalyl thioester precursor can be efficiently introduced as a pending functionality into a fully synthetic protein domain following a protection/late-stage deprotection strategy and can serve as an on-demand reactive handle. The approach is illustrated with the production of a 10 kDa ubiquitin Lys48 conjugate.
Collapse
Affiliation(s)
- Benjamin Grain
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rémi Desmet
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Benoît Snella
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vangelis Agouridas
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Centrale
Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Fricke R, Swenson CV, Roe LT, Hamlish NX, Shah B, Zhang Z, Ficaretta E, Ad O, Smaga S, Gee CL, Chatterjee A, Schepartz A. Expanding the substrate scope of pyrrolysyl-transfer RNA synthetase enzymes to include non-α-amino acids in vitro and in vivo. Nat Chem 2023; 15:960-971. [PMID: 37264106 PMCID: PMC10322718 DOI: 10.1038/s41557-023-01224-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-L-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio and N-formyl-L-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and a m-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.
Collapse
Affiliation(s)
- Riley Fricke
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Cameron V Swenson
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Leah Tang Roe
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Noah Xue Hamlish
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Bhavana Shah
- Process Development, Amgen, Thousand Oaks, CA, USA
| | | | - Elise Ficaretta
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Sarah Smaga
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Abhishek Chatterjee
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Dharpure PD, Behera M, Thube AS, Bhat RG. Base Dependent Rearrangement of Dithiane and Dithiolane under Visible-light Photoredox catalysis. Chem Asian J 2023; 18:e202201128. [PMID: 36630181 DOI: 10.1002/asia.202201128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The rearrangement of dithiolanes and dithianes to access disulfide-linked-dithioesters under visible-light photoredox catalysis via controlled C-S bond cleavage has been disclosed. Unlike, the usual deprotection of dithioacetals to corresponding aldehydes under the oxidative conditions, we observed unique regioselective oxidative reactivity of five and six membered cyclic dithioacetals to form disulfide-linked-dithioesters by exchanging DMAP and imidazole bases. The generality of the protocol has been demonstrated by exploring a wide range of substrates. As an application, in situ generated thiyl radical has been trapped with disulfides to prepare hetero-disulfides of potential utility. The protocol proved to be practical on gram scale quantity and relied on clean energy source for the transformation. Based on the series of control experiments, cyclic voltammetry and Stern-Volmer studies the plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
8
|
Dharpure PD, Behera M, Khade VV, Thube AS, Bhat RG. Direct Access to Thiocyano-Thioesters from Cyclic Thioacetals via Photoredox Catalysis: An Introduction of Two Functional Groups in One Pot. Org Lett 2022; 24:6919-6924. [PMID: 36121933 DOI: 10.1021/acs.orglett.2c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyanation of organic compounds is an important synthetic transformation and mainly relies on a toxic CN source. Undeniably, thiocyanate salt has emerged as a very mild and environmentally benign CN source, yet its synthetic utility for cyanation is highly limited to very few types of organic compounds. Herein, we report the direct cyanation of cyclic thioacetals for accessing compounds with two different functional groups (thiocyano-thioesters) in one pot using sodium thiocyanate via photoredox catalysis. The protocol has been further extended for the direct cyanation of disulfides and diselenide to access aryl thiocyanates and aryl selenocyanate. A plausible mechanism has been proposed based on a series of control experiments, cyclic voltammetry and Stern-Volmer studies.
Collapse
Affiliation(s)
- Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Vikas V Khade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
9
|
Wu Q, Dong W, Miao H, Wang Q, Dong S, Xuan W. Site‐Specific Protein Modification with Reducing Carbohydrates. Angew Chem Int Ed Engl 2022; 61:e202116545. [DOI: 10.1002/anie.202116545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Qifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Hui Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Wu Q, Dong W, Miao H, Wang Q, Dong S, Xuan W. Site‐Specific Protein Modification with Reducing Carbohydrates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Hui Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs Chemical Biology Center School of Pharmaceutical Sciences Peking University Beijing 100191 China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Nyandoro K, Lamb CMG, Yu H, Shi J, Macmillan D. Investigation of acyl transfer auxiliary-assisted glycoconjugation for glycoprotein semi-synthesis. Org Biomol Chem 2022; 20:8506-8514. [DOI: 10.1039/d2ob01633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We explore reactions between sugar-linked acyl transfer auxiliaries and peptide or protein thioesters, and find that various glycoprotein analogues are accessible.
Collapse
Affiliation(s)
| | | | - Haoran Yu
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian Shi
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Derek Macmillan
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
12
|
Wang YH, Jian ML, Chen PJ, Tsou JC, Truong LP, Wang YS. Ferritin Conjugates With Multiple Clickable Amino Acids Encoded by C-Terminal Engineered Pyrrolysyl-tRNA Synthetase. Front Chem 2021; 9:779976. [PMID: 34900939 PMCID: PMC8655692 DOI: 10.3389/fchem.2021.779976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
This study reports the application of expanding genetic codes in developing protein cage-based delivery systems. The evolved Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)•tRNAPyl pairs derived from directed evolution are examined to probe their recognition for para-substituted phenylalanine analogs. The evolved MmPylRS, AzFRS, harboring a wide range of substrates, is further engineered at the C-terminal region into another variant, AzFRS-MS. AzFRS-MS shows suppression of the elevated sfGFP protein amount up to 10 TAG stop codons when charging p-azido-l-phenylalanine (AzF, 4), which allows the occurrence of click chemistry. Since protein nanocages used as drug delivery systems that encompass multiple drugs through a site-specific loading approach remain largely unexplored, as a proof of concept, the application of AzFRS-MS for the site-specific incorporation of AzF on human heavy chain ferritin (Ftn) is developed. The Ftn-4 conjugate is shown to be able to load multiple fluorescence dyes or a therapeutic agent, doxorubicin (Dox), through the strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction. Aiming to selectively target Her2+ breast cancer cells, Ftn-4-DOX conjugates fused with a HER2 receptor recognition peptide, anti-Her2/neu peptide (AHNP), is developed and demonstrated to be able to deliver Dox into the cell and to prolong the drug release. This work presents another application of evolved MmPylRS systems, whose potential in developing a variety of protein conjugates is noteworthy.
Collapse
Affiliation(s)
- Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mu-Lung Jian
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Le P Truong
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Yang X, Miao H, Xiao R, Wang L, Zhao Y, Wu Q, Ji Y, Du J, Qin H, Xuan W. Diverse protein manipulations with genetically encoded glutamic acid benzyl ester. Chem Sci 2021; 12:9778-9785. [PMID: 34349951 PMCID: PMC8299518 DOI: 10.1039/d1sc01882e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Site-specific modification of proteins has significantly advanced the use of proteins in biological research and therapeutics development. Among various strategies aimed at this end, genetic code expansion (GCE) allows structurally and functionally distinct non-canonical amino acids (ncAAs) to be incorporated into specific sites of a protein. Herein, we genetically encode an esterified glutamic acid analogue (BnE) into proteins, and demonstrate that BnE can be applied in different types of site-specific protein modifications, including N-terminal pyroglutamation, caging Glu in the active site of a toxic protein, and endowing proteins with metal chelator hydroxamic acid and versatile reactive handle acyl hydrazide. Importantly, novel epigenetic mark Gln methylation is generated on histones via the derived acyl hydrazide handle. This work provides useful and unique tools to modify proteins at specific Glu or Gln residues, and complements the toolbox of GCE.
Collapse
Affiliation(s)
- Xiaochen Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Hui Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ruotong Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Luyao Wang
- School of Pharmaceutical Sciences, Tsinghua University 30 Shuangqing Rd. Beijing China
| | - Yan Zhao
- School of Pharmaceutical Sciences, Tsinghua University 30 Shuangqing Rd. Beijing China
| | - Qifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yanli Ji
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, Tsinghua University 30 Shuangqing Rd. Beijing China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Dalian, 116023 China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Liu J, Cao L, Klauser PC, Cheng R, Berdan VY, Sun W, Wang N, Ghelichkhani F, Yu B, Rozovsky S, Wang L. A Genetically Encoded Fluorosulfonyloxybenzoyl-l-lysine for Expansive Covalent Bonding of Proteins via SuFEx Chemistry. J Am Chem Soc 2021; 143:10341-10351. [PMID: 34213894 DOI: 10.1021/jacs.1c04259] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically introducing novel chemical bonds into proteins provides innovative avenues for biochemical research, protein engineering, and biotherapeutic applications. Recently, latent bioreactive unnatural amino acids (Uaas) have been incorporated into proteins to covalently target natural residues through proximity-enabled reactivity. Aryl fluorosulfate is particularly attractive due to its exceptional biocompatibility and multitargeting capability via sulfur(VI) fluoride exchange (SuFEx) reaction. Thus far, fluorosulfate-l-tyrosine (FSY) is the only aryl fluorosulfate-containing Uaa that has been genetically encoded. FSY has a relatively rigid and short side chain, which restricts the diversity of proteins targetable and the scope of applications. Here we designed and genetically encoded a new latent bioreactive Uaa, fluorosulfonyloxybenzoyl-l-lysine (FSK), in E. coli and mammalian cells. Due to its long and flexible aryl fluorosulfate-containing side chain, FSK was particularly useful in covalently linking protein sites that are unreachable with FSY, both intra- and intermolecularly, in vitro and in live cells. In addition, we created covalent nanobodies that irreversibly bound to epidermal growth factor receptors (EGFR) on cells, with FSK and FSY targeting distinct positions on EGFR to counter potential mutational resistance. Moreover, we established the use of FSK and FSY for genetically encoded chemical cross-linking to capture elusive enzyme-substrate interactions in live cells, allowing us to target residues aside from Cys and to cross-link at the binding periphery. FSK complements FSY to expand target diversity and versatility. Together, they provide a powerful, genetically encoded, latent bioreactive SuFEx system for creating covalent bonds in diverse proteins in vitro and in vivo, which will be widely useful for biological research and applications.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Li Cao
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Rujin Cheng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Viktoriya Y Berdan
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Wei Sun
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Barnes NG, Nyandoro K, Jin H, Macmillan D. Rapid access to Asp/Glu sidechain hydrazides as thioester precursors for peptide cyclization and glycosylation. Chem Commun (Camb) 2021; 57:1006-1009. [PMID: 33399597 DOI: 10.1039/d0cc07404g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Head-to-sidechain macrocylic peptides, and neoglycopeptides, were readily prepared by site-specific amidation of aspartic and glutamic acid sidechain hydrazides. Hydrazides, serving as latent thioesters, were introduced through regioselective opening of the corresponding Nα-Fmoc protected anhydride precursors.
Collapse
Affiliation(s)
- Natalie G Barnes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H0AJ, UK.
| | - Kudakwashe Nyandoro
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H0AJ, UK.
| | - Hanzhang Jin
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H0AJ, UK.
| | - Derek Macmillan
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H0AJ, UK.
| |
Collapse
|
16
|
Hernández D, Carro C, Boto A. "Doubly Customizable" Unit for the Generation of Structural Diversity: From Pure Enantiomeric Amines to Peptide Derivatives. J Org Chem 2021; 86:2796-2809. [PMID: 33433228 DOI: 10.1021/acs.joc.0c02751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Readily available, low-cost 4R-hydroxy-l-proline (Hyp) is introduced as a "doubly customizable" unit for the generation of libraries of structurally diverse compounds. Hyp can be cleaved at two points, followed by the introduction of new functionalities. In the first cycle, the removal and replacement of the carboxylic group are carried out, followed (second cycle) by the scission of the 4,5-position and manipulation of the resulting chains. In this way, three new chains are generated and can be transformed independently to afford a diversity of products with tailored substituents, such as β-amino aldehydes, diamines, β-amino acid derivatives, including N-alkylated ones, or modified peptides. Many of these products are high-profit compounds but, in spite of their commercial value, are still scarce. Moreover, the process takes place with stereochemical control, and either pure R or S isomers can be obtained with small variations of the synthetic route.
Collapse
Affiliation(s)
- Dacil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| | - Carmen Carro
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain.,BIOSIGMA, Antonio Domínguez Alfonso 16, 38003 Santa Cruz de Tenerife, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
17
|
Yoshida Y, Kasuya R, Mino T, Sakamoto M. Phase-transfer catalysed asymmetric synthesis of α-chiral tetrasubstituted α-aminothioesters. Org Biomol Chem 2021; 19:6402-6406. [PMID: 34100506 DOI: 10.1039/d1ob00829c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral amino thioesters are important scaffolds owing to their widespread use in organic synthesis and biosynthesis. Despite their usefulness, their asymmetric synthesis, especially the catalytic asymmetric synthesis of α-chiral tetrasubstituted α-aminothioesters, is limited, with only one example reported so far. Herein, we report the first phase-transfer catalysed asymmetric synthesis of α-chiral tetrasubstituted α-aminothioesters to afford the corresponding products in up to 81% ee.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.
| | - Reina Kasuya
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.
| |
Collapse
|
18
|
Holloran N, Collins D, Rathnayake U, Zhang B, Koh M, Kang C, Garner P. Site-Specific Synthesis of Cysteine-Bridged Glycoproteins via Expressed Protein Glycoligation. Bioconjug Chem 2020; 31:2362-2366. [PMID: 32931248 DOI: 10.1021/acs.bioconjchem.0c00437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Site-specific glycosylation of a functional recombinant protein thioester is reported. The thioester functionalized protein sfGFP-Y151ThioD, prepared by genetic code expansion, underwent native chemical ligation with the cysteine-conjugated glycans H-Cys-NH-GlcNAc and H-Cys-NH-(GlcNAc)2(Man)3 to give the corresponding cysteine-bridged glycoproteins. The intact glycoproteins, which retained their fluorescence, were characterized by top-down mass spectrometry and gel electrophoresis. The bridging cysteine provided a convenient handle for affinity chromatography purification of the glycoproteins via a removable biotin tag. Given the influence that specific glycoforms can have on a protein's function, the ability to attach a homogeneous glycan to an intact protein in a functional group controlled yet sequon-independent manner could find widespread application. These preliminary results set the stage for development of the expressed protein glycoligation (EPG) concept.
Collapse
Affiliation(s)
- Nicholas Holloran
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Daniel Collins
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Upendra Rathnayake
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Minseob Koh
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Philip Garner
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| |
Collapse
|
19
|
Won Y, Pagar AD, Patil MD, Dawson PE, Yun H. Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0163-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Baumann T, Hauf M, Richter F, Albers S, Möglich A, Ignatova Z, Budisa N. Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Int J Mol Sci 2019; 20:ijms20092343. [PMID: 31083552 PMCID: PMC6539999 DOI: 10.3390/ijms20092343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/20/2023] Open
Abstract
Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5–7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.
Collapse
Affiliation(s)
- Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Matthias Hauf
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Florian Richter
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
21
|
|
22
|
Coin I. Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells. Curr Opin Chem Biol 2018; 46:156-163. [PMID: 30077876 DOI: 10.1016/j.cbpa.2018.07.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
The genetic incorporation of non-canonical amino acids (ncAAs) equipped with photo-crosslinking and chemical crosslinking moieties has found broad application in the study of protein-protein interactions from a unique perspective in live cells. We highlight here applications of photo-activatable ncAAs to map protein interaction surfaces and to capture protein-protein interactions, and we describe recent efforts to efficiently couple photo-crosslinking with mass spectrometric analysis. In addition, we describe recent advances in the development and application of ncAAs for chemical crosslinking, including protein stapling, photo-control of protein conformation, two-dimensional crosslinking, and stabilization of transient and low-affinity protein-protein interactions. We expect that the field will keep growing in the near future and enable the tackling of ambitious biological questions.
Collapse
Affiliation(s)
- Irene Coin
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04301 Leipzig, Germany.
| |
Collapse
|