1
|
Spirocyclic dimer SpiD7 activates the unfolded protein response to selectively inhibit growth and induce apoptosis of cancer cells. J Biol Chem 2022; 298:101890. [PMID: 35378132 PMCID: PMC9062249 DOI: 10.1016/j.jbc.2022.101890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The unfolded protein response (UPR) is an adaptation mechanism activated to resolve transient accumulation of unfolded/misfolded proteins in the endoplasmic reticulum. Failure to resolve the transient accumulation of such proteins results in UPR-mediated programmed cell death. Loss of tumor suppressor gene or oncogene addiction in cancer cells can result in sustained higher basal UPR levels; however, it is not clear if these higher basal UPR levels in cancer cells can be exploited as a therapeutic strategy. We hypothesized that covalent modification of surface-exposed cysteine (SEC) residues could simulate unfolded/misfolded proteins to activate the UPR, and that higher basal UPR levels in cancer cells would provide the necessary therapeutic window. To test this hypothesis, here we synthesized analogs that can covalently modify multiple SEC residues and evaluated them as UPR activators. We identified a spirocyclic dimer, SpiD7, and evaluated its effects on UPR activation signals, that is, XBP1 splicing, phosphorylation of eIF2α, and a decrease in ATF 6 levels, in normal and cancer cells, which were further confirmed by RNA-Seq analyses. We found that SpiD7 selectively induced caspase-mediated apoptosis in cancer cells, whereas normal cells exhibited robust XBP1 splicing, indicating adaptation to stress. Furthermore, SpiD7 inhibited the growth of high-grade serous carcinoma cell lines ~3-15-fold more potently than immortalized fallopian tube epithelial (paired normal control) cells and reduced clonogenic growth of high-grade serous carcinoma cell lines. Our results suggest that induction of the UPR by covalent modification of SEC residues represents a cancer cell vulnerability and can be exploited to discover novel therapeutics.
Collapse
|
2
|
Selective CDK9 degradation using a proteolysis-targeting chimera (PROTAC) strategy. Future Med Chem 2021; 14:131-134. [PMID: 34814708 DOI: 10.4155/fmc-2021-0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
3
|
Rana S, Mallareddy JR, Singh S, Boghean L, Natarajan A. Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Cancers (Basel) 2021; 13:5506. [PMID: 34771669 PMCID: PMC8583118 DOI: 10.3390/cancers13215506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
The cyclin-dependent kinase (CDK) family of proteins play prominent roles in transcription, mRNA processing, and cell cycle regulation, making them attractive cancer targets. Palbociclib was the first FDA-approved CDK inhibitor that non-selectively targets the ATP binding sites of CDK4 and CDK6. In this review, we will briefly inventory CDK inhibitors that are either part of over 30 active clinical trials or recruiting patients. The lack of selectivity among CDKs and dose-limiting toxicities are major challenges associated with the development of CDK inhibitors. Proteolysis Targeting Chimeras (PROTACs) and Molecular Glues have emerged as alternative therapeutic modalities to target proteins. PROTACs and Molecular glues utilize the cellular protein degradation machinery to destroy the target protein. PROTACs are heterobifunctional molecules that form a ternary complex with the target protein and E3-ligase by making two distinct small molecule-protein interactions. On the other hand, Molecular glues function by converting the target protein into a "neo-substrate" for an E3 ligase. Unlike small molecule inhibitors, preclinical studies with CDK targeted PROTACs have exhibited improved CDK selectivity. Moreover, the efficacy of PROTACs and molecular glues are not tied to the dose of these molecular entities but to the formation of the ternary complex. Here, we provide an overview of PROTACs and molecular glues that modulate CDK function as emerging therapeutic modalities.
Collapse
Affiliation(s)
- Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA;
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Lidia Boghean
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.R.M.); (S.S.); (L.B.)
- Pharmaceutical Sciences and University of Nebraska Medical Center, Omaha, NE 68198, USA
- Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Sagar S, Singh S, Mallareddy JR, Sonawane YA, Napoleon JV, Rana S, Contreras JI, Rajesh C, Ezell EL, Kizhake S, Garrison JC, Radhakrishnan P, Natarajan A. Structure activity relationship (SAR) study identifies a quinoxaline urea analog that modulates IKKβ phosphorylation for pancreatic cancer therapy. Eur J Med Chem 2021; 222:113579. [PMID: 34098465 PMCID: PMC8373685 DOI: 10.1016/j.ejmech.2021.113579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
Genetic models validated Inhibitor of nuclear factor (NF) kappa B kinase beta (IKKβ) as a therapeutic target for KRAS mutation associated pancreatic cancer. Phosphorylation of the activation loop serine residues (S177, S181) in IKKβ is a key event that drives tumor necrosis factor (TNF) α induced NF-κB mediated gene expression. Here we conducted structure activity relationship (SAR) study to improve potency and oral bioavailability of a quinoxaline analog 13-197 that was previously reported as a NFκB inhibitor for pancreatic cancer therapy. The SAR led to the identification of a novel quinoxaline urea analog 84 that reduced the levels of p-IKKβ in dose- and time-dependent studies. When compared to 13-197, analog 84 was ∼2.5-fold more potent in TNFα-induced NFκB inhibition and ∼4-fold more potent in inhibiting pancreatic cancer cell growth. Analog 84 exhibited ∼4.3-fold greater exposure (AUC0-∞) resulting in ∼5.7-fold increase in oral bioavailability (%F) when compared to 13-197. Importantly, oral administration of 84 by itself and in combination of gemcitabine reduced p-IKKβ levels and inhibited pancreatic tumor growth in a xenograft model.
Collapse
Affiliation(s)
- Satish Sagar
- Eppley Institute for Cancer Research, Omaha, NE, USA
| | - Sarbjit Singh
- Eppley Institute for Cancer Research, Omaha, NE, USA
| | | | | | | | - Sandeep Rana
- Eppley Institute for Cancer Research, Omaha, NE, USA
| | | | | | | | | | | | - Prakash Radhakrishnan
- Eppley Institute for Cancer Research, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, Omaha, NE, USA; Department of Genetics Cell Biology and Anatomy, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amarnath Natarajan
- Eppley Institute for Cancer Research, Omaha, NE, USA; Department of Pharmaceutical Sciences, Omaha, NE, USA; Department of Genetics Cell Biology and Anatomy, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Micewicz ED, Damoiseaux RD, Deng G, Gomez A, Iwamoto KS, Jung ME, Nguyen C, Norris AJ, Ratikan JA, Ruchala P, Sayre JW, Schaue D, Whitelegge JP, McBride WH. Classes of Drugs that Mitigate Radiation Syndromes. Front Pharmacol 2021; 12:666776. [PMID: 34084139 PMCID: PMC8167044 DOI: 10.3389/fphar.2021.666776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Robert D. Damoiseaux
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering, University of California at Los Angeles, Los Angeles, CA, United States
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Adrian Gomez
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | | | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - James W. Sayre
- Department of Biostatistics and Radiology, Fielding School of Public Health, University of California at Los Angeles, Los Angeles, CA, United States
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
King HM, Rana S, Kubica SP, Mallareddy JR, Kizhake S, Ezell EL, Zahid M, Naldrett MJ, Alvarez S, Law HCH, Woods NT, Natarajan A. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg Med Chem Lett 2021; 43:128061. [PMID: 33895280 DOI: 10.1016/j.bmcl.2021.128061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a member of the cyclin-dependent kinase (CDK) family which is involved in transcriptional regulation of several genes, including the oncogene Myc, and is a validated target for pancreatic cancer. Here we report the development of an aminopyrazole based proteolysis targeting chimera (PROTAC 2) that selectively degrades CDK9 (DC50 = 158 ± 6 nM). Mass spectrometry-based kinome profiling shows PROTAC 2 selectively degrades CDK9 in MiaPaCa2 cells and sensitizes them to Venetoclax mediated growth inhibition.
Collapse
Affiliation(s)
- Hannah M King
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Sandeep Rana
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Sydney P Kubica
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Smitha Kizhake
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Edward L Ezell
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Michael J Naldrett
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Sophie Alvarez
- Proteomics & Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Henry C-H Law
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Nicholas T Woods
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022, USA
| | - Amarnath Natarajan
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68022, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68022, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022, USA.
| |
Collapse
|
7
|
Kour S, Rana S, Contreras JI, King HM, Robb CM, Sonawane YA, Bendjennat M, Crawford AJ, Barger CJ, Kizhake S, Luo X, Hollingsworth MA, Natarajan A. CDK5 Inhibitor Downregulates Mcl-1 and Sensitizes Pancreatic Cancer Cell Lines to Navitoclax. Mol Pharmacol 2019; 96:419-429. [PMID: 31467029 PMCID: PMC6726458 DOI: 10.1124/mol.119.116855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Developing small molecules that indirectly regulate Mcl-1 function has attracted a lot of attention in recent years. Here, we report the discovery of an aminopyrazole, 2-([1,1'-biphenyl]-4-yl)-N-(5-cyclobutyl-1H-pyrazol-3-yl)acetamide (analog 24), which selectively inhibited cyclin-dependent kinase (CDK) 5 over CDK2 in cancer cell lines. We also show that analog 24 reduced Mcl-1 levels in a concentration-dependent manner in cancer cell lines. Using a panel of doxycycline inducible cell lines, we show that CDK5 inhibitor 24 selectively modulates Mcl-1 function while the CDK4/6 inhibitor 6-acetyl-8-cyclopentyl-5-methyl-2-(5-(piperazin-1-yl)pyridin-2-ylamino)pyrido[2,3-day]pyrimidin-7(8H)-one does not. Previous studies using RNA interference and CRISPR showed that concurrent elimination of Bcl-xL and Mcl-1 resulted in induction of apoptosis. In pancreatic cancer cell lines, we show that either CDK5 knockdown or expression of a dominant negative CDK5 results in synergistic induction of apoptosis. Moreover, concurrent pharmacological perturbation of Mcl-1 and Bcl-xL in pancreatic cancer cell lines using a CDK5 inhibitor analog 24 that reduced Mcl-1 levels and 4-(4-{[2-(4-chlorophenyl)-5,5-dimethyl-1-cyclohexen-1-yl]methyl}-1-piperazinyl)-N-[(4-{[(2R)-4-(4-morpholinyl)-1-(phenylsulfanyl)-2-butanyl]amino}-3-[(trifluoromethyl)sulfonyl]phenyl)sulfonyl] benzamide (navitoclax), a Bcl-2/Bcl-xL/Bcl-w inhibitor, resulted in synergistic inhibition of cell growth and induction of apoptosis. In conclusion, we demonstrate targeting CDK5 will sensitize pancreatic cancers to Bcl-2 protein inhibitors. SIGNIFICANCE STATEMENT: Mcl-1 is stabilized by CDK5-mediated phosphorylation in pancreatic ductal adenocarcinoma, resulting in the deregulation of the apoptotic pathway. Thus, genetic or pharmacological targeting of CDK5 sensitizes pancreatic cancers to Bcl-2 inhibitors, such as navitoclax.
Collapse
Affiliation(s)
- Smit Kour
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Hannah M King
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Caroline M Robb
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Mourad Bendjennat
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Ayrianne J Crawford
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Carter J Barger
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases (S.Ko., S.R., J.I.C., H.M.K., C.M.R., Y.A.S., M.B., A.J.C., C.J.B., S.Ki., X.L., M.A.H., A.N.), Departments of Pharmaceutical Sciences (A.N.) and Genetics Cell Biology and Anatomy (A.N.), and Fred & Pamela Buffett Cancer Center (X.L., M.A.H., A.N.), University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
8
|
Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett 2019; 29:1375-1379. [PMID: 30935795 DOI: 10.1016/j.bmcl.2019.03.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Development of selective kinase inhibitors that target the ATP binding site continues to be a challenge largely due to similar binding pockets. Palbociclib is a cyclin-dependent kinase inhibitor that targets the ATP binding site of CDK4 and CDK6 with similar potency. The enzymatic function associated with the kinase can be effectively probed using kinase inhibitors however the kinase-independent functions cannot. Herein, we report a palbociclib based PROTAC that selectively degrades CDK6 while sparing the homolog CDK4. We used competition studies to characterize the binding and mechanism of CDK6 degradation.
Collapse
|
9
|
Rao S, Du G, Hafner M, Subramanian K, Sorger PK, Gray NS. A multitargeted probe-based strategy to identify signaling vulnerabilities in cancers. J Biol Chem 2019; 294:8664-8673. [PMID: 30858179 DOI: 10.1074/jbc.ra118.006805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
Most cancer cells are dependent on a network of deregulated signaling pathways for survival and are insensitive, or rapidly evolve resistance, to selective inhibitors aimed at a single target. For these reasons, drugs that target more than one protein (polypharmacology) can be clinically advantageous. The discovery of useful polypharmacology remains serendipitous and is challenging to characterize and validate. In this study, we developed a non-genetic strategy for the identification of pathways that drive cancer cell proliferation and represent exploitable signaling vulnerabilities. Our approach is based on using a multitargeted kinase inhibitor, SM1-71, as a tool compound to identify combinations of targets whose simultaneous inhibition elicits a potent cytotoxic effect. As a proof of concept, we applied this approach to a KRAS-dependent non-small cell lung cancer (NSCLC) cell line, H23-KRASG12C Using a combination of phenotypic screens, signaling analyses, and kinase inhibitors, we found that dual inhibition of MEK1/2 and insulin-like growth factor 1 receptor (IGF1R)/insulin receptor (INSR) is critical for blocking proliferation in cells. Our work supports the value of multitargeted tool compounds with well-validated polypharmacology and target space as tools to discover kinase dependences in cancer. We propose that the strategy described here is complementary to existing genetics-based approaches, generalizable to other systems, and enabling for future mechanistic and translational studies of polypharmacology in the context of signaling vulnerabilities in cancers.
Collapse
Affiliation(s)
- Suman Rao
- Laboratory of Systems Pharmacology, Boston, Massachusetts 02115; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Marc Hafner
- Laboratory of Systems Pharmacology, Boston, Massachusetts 02115
| | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Boston, Massachusetts 02115
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
10
|
Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Bioorg Med Chem Lett 2018; 28:3736-3740. [PMID: 30343954 DOI: 10.1016/j.bmcl.2018.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
We synthesized a library of aminopyrazole analogs to systematically explore the hydrophobic pocket adjacent to the hinge region and the solvent exposed region of cyclin dependent kinases. Structure-activity relationship studies identified an optimal substitution for the hydrophobic pocket and analog 24 as a potent and selective CDK2/5 inhibitor.
Collapse
|