1
|
Storti B, Carlotti B, Chiellini G, Ruglioni M, Salvadori T, Scotto M, Elisei F, Diaspro A, Bianchini P, Bizzarri R. An Efficient Aequorea victoria Green Fluorescent Protein for Stimulated Emission Depletion Super-Resolution Microscopy. Int J Mol Sci 2022; 23:ijms23052482. [PMID: 35269626 PMCID: PMC8910729 DOI: 10.3390/ijms23052482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
In spite of their value as genetically encodable reporters for imaging in living systems, fluorescent proteins have been used sporadically for stimulated emission depletion (STED) super-resolution imaging, owing to their moderate photophysical resistance, which does not enable reaching resolutions as high as for synthetic dyes. By a rational approach combining steady-state and ultrafast spectroscopy with gated STED imaging in living and fixed cells, we here demonstrate that F99S/M153T/V163A GFP (c3GFP) represents an efficient genetic reporter for STED, on account of no excited state absorption at depletion wavelengths <600 nm and a long emission lifetime. This makes c3GFP a valuable alternative to more common, but less photostable, EGFP and YFP/Citrine mutants for STED imaging studies targeting the green-yellow region of the optical spectrum.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Correspondence:
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (B.C.); (F.E.)
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
| | - Martina Ruglioni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
| | - Tiziano Salvadori
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
| | - Marco Scotto
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (B.C.); (F.E.)
| | - Alberto Diaspro
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
- DIFILAB, Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Paolo Bianchini
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy; (G.C.); (M.R.); (T.S.)
- Nanoscopy, CHT, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy; (M.S.); (A.D.); (P.B.)
| |
Collapse
|
2
|
Grabarek D, Andruniów T. Removing artifacts in polarizable embedding calculations of one- and two-photon absorption spectra of fluorescent proteins. J Chem Phys 2021; 153:215102. [PMID: 33291919 DOI: 10.1063/5.0023434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The multiscale calculations involving excited states may suffer from the electron spill-out (ESO) problem. This seems to be especially the case when the environment of the core region, described with the electronic structure method, is approximated by a polarizable force field. The ESO effect often leads to incorrect physical character of electronic excitations, spreading outside the quantum region, which, in turn, results in erroneous absorption spectra. In this work, we investigate means to remove the artifacts in one-photon absorption (OPA) and two-photon absorption (TPA) spectra of green and yellow fluorescent protein representatives. This includes (i) using different basis sets, (ii) extending the core subsystem beyond the chromophore, (iii) modification of polarization interaction between the core region and its environment, and (iv) including the Pauli repulsion through effective core potentials (ECPs). Our results clearly show that ESO is observed when diffuse functions are used to assemble the multielectron wave function regardless of the exchange-correlation functional used. Furthermore, extending the core region, thus accounting for exchange interactions between the chromophore and its environment, leads to even more spurious excited states. Also, damping the interactions between the core subsystem and the polarizable force field is hardly helpful. In contrast, placing ECPs in the position of sites creating the embedding potential leads to the removal of artificious excited states that presumably should not be observed in the OPA and TPA spectra. We prove that it is a reliable and cost-effective approach for systems where the covalent bond(s) between the core region and its environment must be cut.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System*. Angew Chem Int Ed Engl 2021; 60:10073-10081. [PMID: 33543524 DOI: 10.1002/anie.202015201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/05/2022]
Abstract
Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: University Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Siewert Hugelier
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: Advanced Optical Microscopy Centre, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Wim Vandenberg
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| |
Collapse
|
4
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure–Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elke De Zitter
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: University Grenoble Alpes CEA CNRS IBS 71 Avenue des Martyrs 38000 Grenoble France
| | - Siewert Hugelier
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Sam Duwé
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: Advanced Optical Microscopy Centre Hasselt University Agoralaan building C 3590 Diepenbeek Belgium
| | - Wim Vandenberg
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Alison G. Tebo
- Janelia Research Campus Howard Hughes Medical Institute 19700 Helix Drive Ashburn Virginia 20147 USA
| | - Luc Van Meervelt
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Peter Dedecker
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| |
Collapse
|
5
|
New 1,3-Disubstituted Benzo[ h]Isoquinoline Cyclen-Based Ligand Platform: Synthesis, Eu 3+ Multiphoton Sensitization and Imaging Applications. Molecules 2020; 26:molecules26010058. [PMID: 33374449 PMCID: PMC7795479 DOI: 10.3390/molecules26010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The development of lanthanide-based luminescent probes with a long emission lifetime has the potential to revolutionize imaging-based diagnostic techniques. By a rational design strategy taking advantage of computational predictions, a novel, water-soluble Eu3+ complex from a cyclen-based ligand bearing 1,3-disubstituted benzo[h]isoquinoline arms was realized. The ligand has been obtained overcoming the lack of reactivity of position 3 of the isoquinoline moiety. Notably, steric hindrance of the heteroaromatic chromophore allowed selective and stoichiometry-controlled insertion of two or three antennas on the cyclen platform without any protection strategy. The complex bears a fourth heptanoic arm for easy conjugation to biomolecules. This new chromophore allowed the sensitization of the metal center either with one or two photons excitation. The suitability as a luminescent bioprobe was validated by imaging BMI1 oncomarker in lung carcinoma cells following an established immunofluorescence approach. The use of a conventional epifluorescence microscope equipped with a linear structured illumination module disclosed a simple and inexpensive way to image confocally Ln-bioprobes by single photon excitation in the 350–400 nm window, where ordinary confocal systems have no excitation sources.
Collapse
|
6
|
Grabarek D, Andruniów T. What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins? J Chem Theory Comput 2020; 16:6439-6455. [PMID: 32862643 PMCID: PMC7586329 DOI: 10.1021/acs.jctc.0c00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
We
systematically investigate an impact of the size and content
of a quantum (QM) region, treated at the density functional theory
level, in embedding calculations on one- (OPA) and two-photon absorption
(TPA) spectra of the following fluorescent proteins (FPs) models: Aequorea victoria green FP (avGFP) with neutral (avGFP-n)
and anionic (avGFP-a) chromophore as well as Citrine FP. We find that
amino acid (a.a.) residues as well as water molecules hydrogen-bonded
(h-bonded) to the chromophore usually boost both OPA and TPA processes
intensity. The presence of hydrophobic a.a. residues in the quantum
region also non-negligibly affects both absorption spectra but decreases
absorption intensity. We conclude that to reach a quantitative description
of OPA and TPA spectra in multiscale modeling of FPs, the quantum
region should consist of a chromophore and most of a.a. residues and
water molecules in a radius
of 0.30–0.35 nm (ca. 200–230 atoms)
when the remaining part of the system is approximated by the electrostatic
point-charges. The optimal size of the QM region can be reduced to
80–100 atoms by utilizing a more advanced polarizable embedding
model. We also find components of the QM region that are specific
to a FP under study. We propose that the F165 a.a. residue is important
in tuning the TPA spectrum of avGFP-n but not other investigated FPs.
In the case of Citrine, Y203 and M69 a.a. residues must definitely
be part of the QM subsystem. Furthermore, we find that long-range
electrostatic interactions between the QM region and the rest of the
protein cannot be neglected even for the most extensive QM regions
(ca. 350 atoms).
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
7
|
Moeyaert B, Dedecker P. A comprehensive dataset of image sequences covering 20 fluorescent protein labels and 12 imaging conditions for use in super-resolution imaging. Data Brief 2020; 29:105273. [PMID: 32149169 PMCID: PMC7033320 DOI: 10.1016/j.dib.2020.105273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/05/2022] Open
Abstract
Super-resolution fluorescence microscopy techniques allow imaging fluorescently labelled structures with a resolution that surpasses the diffraction limit of light (approx. 200nm). The quality and, thus, reliability of each of these techniques is strongly dependent on (1) the quality of the optics, (2) the fitness of the specific fluorescent label for the given technique and (3) the algorithms being used. Of these, the fitness of the labels is most subjective, as fitness metrics are scarce, and generating samples with different labels and imaging them is laborious. This prevent rigorous fitness assessment of fluorescent labels. We have developed a mathematical framework for assessing the quality of SOFI data [1], [2], which we used to assess the fitness of 20 different fluorescent protein labels for SOFI imaging. Here, we report this dataset of 2240 image sequences, representing 10 fields of view each of transfected Cos7 cells expressing each of the 20 different fluorescent proteins under 4-12 imaging conditions. The labels span the visible spectrum and include non-photo-transforming and photo-transforming fluorescent proteins. The imaging conditions consist of 4 different excitation powers, each with three different powers of 405 nm light added (except for the blue labels that are excited with 405 nm light). Though this data was in essence generated to assess which labels are best suited for SOFI imaging, it can be used as a benchmark for further development of the SOFI algorithm, or for the development of other super-resolution imaging modalities that benefit from similar input data.
Collapse
|
8
|
Moeyaert B, Vandenberg W, Dedecker P. SOFIevaluator: a strategy for the quantitative quality assessment of SOFI data. BIOMEDICAL OPTICS EXPRESS 2020; 11:636-648. [PMID: 32133218 PMCID: PMC7041449 DOI: 10.1364/boe.382278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 05/21/2023]
Abstract
Super-resolution fluorescence imaging techniques allow optical imaging of specimens beyond the diffraction limit of light. Super-resolution optical fluctuation imaging (SOFI) relies on computational analysis of stochastic blinking events to obtain a super-resolved image. As with some other super-resolution methods, this strong dependency on computational analysis can make it difficult to gauge how well the resulting images reflect the underlying sample structure. We herein report SOFIevaluator, an unbiased and parameter-free algorithm for calculating a set of metrics that describes the quality of super-resolution fluorescence imaging data for SOFI. We additionally demonstrate how SOFIevaluator can be used to identify fluorescent proteins that perform well for SOFI imaging under different imaging conditions.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Wim Vandenberg
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| |
Collapse
|
9
|
Shibazaki C, Shimizu R, Kagotani Y, Ostermann A, Schrader TE, Adachi M. Direct Observation of the Protonation States in the Mutant Green Fluorescent Protein. J Phys Chem Lett 2020; 11:492-496. [PMID: 31880458 DOI: 10.1021/acs.jpclett.9b03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neutron crystallography has been used to elucidate the protonation states for the enhanced green fluorescent protein, which has revolutionized imaging technologies. The structure has a deprotonated hydroxyl group in the fluorescent chromophore. Also, the protonation states of His148 and Thr203, as well as the orientation of a critical water molecule in direct contact with the chromophore, could be determined. The results demonstrate that the deprotonated hydroxyl group in the chromophore and the nitrogen atom ND1 in His148 are charged negatively and positively, respectively, forming an ion pair. The position of the two deuterium atoms in the critical water molecule appears to be displaced slightly toward the acceptor oxygen atoms according to their omit maps. This displacement implies the formation of an intriguing electrostatic potential realized inside of the protein. Our findings provide new insights into future protein design strategies along with developments in quantum chemical calculations.
Collapse
Affiliation(s)
- Chie Shibazaki
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Yuji Kagotani
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstrasse 1 , 85748 Garching , Germany
| | - Tobias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstrasse 1 , 85748 Garching , Germany
| | - Motoyasu Adachi
- Institute for Quantum Life Science , National Institutes for Quantum and Radiological Science and Technology (QST) , 2-4 Shirakata , Tokai , Ibaraki 319-1106 , Japan
| |
Collapse
|
10
|
Storti B, Civita S, Faraci P, Maroni G, Krishnan I, Levantini E, Bizzarri R. Fluorescence imaging of biochemical relationship between ubiquitinated histone 2A and Polycomb complex protein BMI1. Biophys Chem 2019; 253:106225. [PMID: 31323431 DOI: 10.1016/j.bpc.2019.106225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Several in vitro experiments have highlighted that the Polycomb group protein BMI1 plays a pivotal role in determining the biological functions of the Polycomb Repressor Complex 1 (PRC1), including its E3-ligase activity towards the Lys119 of histone H2A to yield ubiquitinated uH2A. The role of BMI1 in the epigenetic activity of PRC1 is particularly relevant in several cancers, particularly Non-Small Cell Lung Cancer (NSCLC). In this study, using indirect immunofluorescence protocols implemented on a confocal microscopy apparatus, we investigated the relationship between BMI1 and uH2A at different resolutions, in cultured (A549) and clinical NSCLC tissues, at the single cell level. In both cases, we observed a linear dependence of uH2A concentration upon BMI1 expression at the single nucleus level, indicating that the association of BMI1 to PRC1, which is needed for E3-ligase activity, occurs linearly in the physiological BMI1 concentration range. Additionally, in the NSCLC cell line model, a minor pool of uH2A may exist in absence of concurrent BMI1 expression, indicating non-exclusive, although predominant, role of BMI1 in the amplification of the E3-ligase activity of PRC1. A pharmacological downregulator of BMI1, PTC-209, was also tested in this context. Finally, the absence of significant colocalization (as measured by the Pearson's coefficient) between BMI1 and uH2A submicron clusters hints to a dynamic model where PRC1 resides transiently at ubiquitination sites. Beside unveiling subtle functional relationships between BMI1 and uH2A, these results also validate the use of uH2A as downstream "reporter" for BMI1 activity at the nuclear level in NSCLC contexts.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Simone Civita
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Paolo Faraci
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giorgia Maroni
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA; Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, via Moruzzi 1, 56124 Pisa, Italy
| | - Indira Krishnan
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA; Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, via Moruzzi 1, 56124 Pisa, Italy; Harvard Stem Cell Institute, 7 Divinity Ave, MA, Cambridge 02138, USA
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy; Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, via Roma 67, Pisa 56126, Italy
| |
Collapse
|
11
|
Begarani F, Cassano D, Margheritis E, Marotta R, Cardarelli F, Voliani V. Silica-Based Nanoparticles for Protein Encapsulation and Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E886. [PMID: 30388755 PMCID: PMC6266174 DOI: 10.3390/nano8110886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Although conceptually obvious, the effective delivery of proteins in therapeutic applications is far from being a routine practice. The major limitation is the conservation of protein physicochemical identity during the transport to the target site. In this regard, nanoparticle-based systems offer new intriguing possibilities, provided that (i) the harsh and denaturating conditions typically used for nanoparticle synthesis are avoided or mitigated; and (ii) nanoparticle biocompatibility and degradation (for protein release) are optimized. Here, we tackle these issues by starting from a nanoparticle architecture already tested for small chemical compounds. In particular, silica-shielded liposomes are produced and loaded with a test protein (i.e., Green Fluorescent Protein) in an aqueous environment. We demonstrate promising results concerning protein encapsulation, protection during intracellular trafficking and final release triggered by nanoparticle degradations in acidic organelles. We believe this proof of principle may open new applications and developments for targeted and efficient protein delivery.
Collapse
Affiliation(s)
- Filippo Begarani
- NEST-Scuola Normale Superiore, Pisa 56100, Italy.
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Pisa 56100, Italy.
| | - Domenico Cassano
- NEST-Scuola Normale Superiore, Pisa 56100, Italy.
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Pisa 56100, Italy.
| | - Eleonora Margheritis
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Pisa 56100, Italy.
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genova 00161, Italy.
| | | | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Pisa 56100, Italy.
| |
Collapse
|
12
|
Lolli G, Raboni S, Pasqualetto E, Benoni R, Campanini B, Ronda L, Mozzarelli A, Bettati S, Battistutta R. Insight into GFPmut2 pH Dependence by Single Crystal Microspectrophotometry and X-ray Crystallography. J Phys Chem B 2018; 122:11326-11337. [PMID: 30179482 DOI: 10.1021/acs.jpcb.8b07260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fluorescence of Green Fluorescent Protein (wtGFP) and variants has been exploited in distinct applications in cellular and analytical biology. GFPs emission depends on the population of the protonated (A-state) and deprotonated (B-state) forms of the chromophore. Whereas wtGFP is pH-independent, mutants in which Ser65 is replaced by either threonine or alanine (as in GFPmut2) are pH-dependent, with a p Ka around 6. Given the wtGFP pH-independence, only the structure of the protonated form was determined. The deprotonated form was deduced on the basis of the crystal structure of the Ser65Thr mutant at basic pH, assuming that it corresponds to the conformation populated in solution. Here, we present an investigation where structures of the protonated and deprotonated forms of GFPmut2 were determined from crystals grown in either MPD at pH 6 or PEG at pH 8.5, and moved to either higher or lower pH. Both crystal forms of GFPmut2 were titrated monitoring the process via polarized absorption microspectrophotometry in order to precisely correlate the protonation process with the structures. We found that (i) in solution, chromophore titration is not thermodynamically coupled with any residue and Glu222 is always protonated independent of the protonation state of the chromophore; (ii) the lack of coupling is reflected in the structural behavior of the chromophore and Glu222 environments, with only the former showing variations with pH; (iii) titrations of low-pH and high-pH grown crystals exhibit a Hill coefficient of about 0.75, indicating an anticooperative behavior not observed in solution; (iv) structures where pH was changed in the crystal point to Glu222 as the ionizable group responsible for the outset of the anticooperative behavior; and (v) in GFPmut2 the canonical GFP proton wire involving the chromophore is not interrupted at the level of Ser205 and Glu222 at basic pH as in the Ser65Thr mutant. This allows proposing the structure of the deprotonated state of GFPmut2 as an alternative model for the analogous state of wtGFP.
Collapse
Affiliation(s)
- Graziano Lolli
- Centro di Biologia Integrata - CIBIO , Università di Trento , 38123 Povo , Trento , Italy
| | - Samanta Raboni
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy
| | - Elisa Pasqualetto
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy
| | - Roberto Benoni
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy
| | - Luca Ronda
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy.,Istituto di Biofisica , Consiglio Nazionale delle Ricerche , 56124 Pisa , Italy.,Istituto Nazionale Biostrutture e Biosistemi , 00136 Rome , Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy.,Istituto Nazionale Biostrutture e Biosistemi , 00136 Rome , Italy
| | - Roberto Battistutta
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy
| |
Collapse
|