1
|
Ehinger FJ, Scherlach K, Trottmann F, Fiedler J, Richter I, Hertweck C. A Catch-Release Strategy for the Genomics-Driven Discovery of Antiproliferative Furan-Functionalized Peptides. Angew Chem Int Ed Engl 2025; 64:e202421760. [PMID: 39680015 DOI: 10.1002/anie.202421760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Furan-functionalized peptides are of significant pharmacological interest due to their pronounced bioactivities and unique potential for orthogonal bioconjugation and derivatization. However, naturally occurring peptides with furyl side chains are exceedingly rare. This study presents a streamlined method to predict and assess the microbial production of peptides incorporating 3-furylalanine (Fua) moieties. The approach integrates genome mining and the reversible, chemoselective tagging of furyl residues, utilizing their unique Diels-Alder reactivity, for mass-spectrometry-guided identification of candidate compounds. By employing the rhizonin Fua synthase as a bioinformatic handle and through heterologous reconstitution of Fua biosynthesis, we identified previously unknown Fua biosynthetic pathways in diverse bacterial phyla, including actinomycetes, cyanobacteria, actinobacteria, and γ-proteobacteria, suggesting that Fua-containing peptides are remarkably widely distributed. Metabolic profiling by reversible tagging facilitated the detection of Fua-containing metabolites in their native producers. The successful adaptation of this method for solid support enabled the direct enrichment of furyl-substituted peptides from complex mixtures. This multi-pronged approach enabled the discovery and characterization of two novel families of Fua cyclopeptides (rubriamides and typhamides) with potent antiproliferative effects against human tumor cells and nematodes. The innovative catch-and-release strategy, in conjunction with genome mining, represents a valuable tool for the discovery of new furan-substituted natural products.
Collapse
Affiliation(s)
- Friedrich J Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
2
|
Wang Z, Cheng J, Wen H, Hou T, Luo F, Wang Y, Xu X, Liu Y, Zhao Y, Liang X. Synthesis, anticancer and antibacterial evaluation of novel spiramycin-acylated derivatives. RSC Adv 2024; 14:38898-38907. [PMID: 39654915 PMCID: PMC11626521 DOI: 10.1039/d4ra03126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Spiramycin and its derivatives are commonly used antimicrobials, and its derivative, carrimycin, has recently been found to have good anticancer potential. Here, we found that the 4''-OH of spiramycin can be selectively acylated, resulting in a series of novel spiramycin derivatives with a structure similar to carrimycin. Anticancer studies showed that most of the derivatives exhibited moderate to good anti-proliferative activity against four cancer cell lines, including HGC-27, HT-29, HCT-116 and HeLa, especially compound 14, which has the strongest activity against HGC-27 cells with an IC50 value of 0.19 ± 0.02 μM. Pharmacological studies on HGC-27 cells revealed that compound 14 could arrest the cell cycle in the S phase, raise ROS levels, and induce cell apoptosis via activation of Erk/p38 MAPK signaling pathways. In addition, antibacterial studies showed that most of the spiramycin I derivatives modified at the 4''-OH group enhanced antibacterial activity on the four tested strains, including S. aureus, S. aureus MRSA, S. epidermidis, and B. subtilis. In particular, compound 16 was the most effective one and comparable to linezolid, a commonly used first-line antimicrobial. These results suggest that spiramycin I derivatives may provide an opportunity to design new anticancer or antibacterial agents, even dual-function agents.
Collapse
Affiliation(s)
- Zhiwei Wang
- Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Junxiang Cheng
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Hui Wen
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Tao Hou
- Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Fengbin Luo
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Yaodong Wang
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Xingjun Xu
- Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Yanfang Liu
- Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Yaopeng Zhao
- Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| | - Xinmiao Liang
- Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519
- Ganjiang Chinese Medicine Innovation Center Nanchang 330000 China
| |
Collapse
|
3
|
Prasongpholchai P, Tucker S, Burgess C, Jenkins R, Wilkening I, Corre C, Song L, Tosin M. Extended polyene formation by a cryptic iterative polyketide synthase from Rhodococcus. Chem Commun (Camb) 2024; 60:14085-14088. [PMID: 39526441 PMCID: PMC11563203 DOI: 10.1039/d4cc04963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Many reactive intermediates leading to high value molecules are biosynthesised by multifunctional enzymes in Actinobacteria. Herein we report the workings of a cryptic iterative polyketide synthase (iPKS) from the marine microorganism Rhodococcus erythropolis PR4. The iPKS generates extended polyenes up to C22 nonaenes, preluding novel chemistry and biology.
Collapse
Affiliation(s)
| | - Sam Tucker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Charles Burgess
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Robert Jenkins
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Christophe Corre
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
4
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
5
|
Eggly AS, Otgontseren N, Roberts CB, Alwali AY, Hennigan HE, Parkinson EI. A Diels-Alder probe for discovery of natural products containing furan moieties. Beilstein J Org Chem 2024; 20:1001-1010. [PMID: 38711585 PMCID: PMC11070956 DOI: 10.3762/bjoc.20.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Natural products (NPs) are fantastic sources of inspiration for novel pharmaceuticals, oftentimes showing unique bioactivity against interesting targets. Specifically, NPs containing furan moieties show activity against a variety of diseases including fungal infections, and cancers. However, it is challenging to discover and isolate these small molecules from cell supernatant. The work described herein showcases the development of a molecular probe that can covalently modify furan moieties via a [4 + 2] Diels-Alder cycloaddition, making them easily identifiable on liquid chromatography-mass spectrometry (LC-MS). The molecular probe, which undergoes this reaction with a variety of furans, was designed with both a UV-tag and a mass tag to enable easy identification. The probe has been tested with a variety of purified furans, including natural products, methylenomycin furan (MMF) hormones, and MMF derivatives. Moreover, the molecular probe has been tested in crude supernatants of various Streptomyces strains and enables identification of MMFs.
Collapse
Affiliation(s)
- Alyssa S Eggly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Namuunzul Otgontseren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Carson B Roberts
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Haylie E Hennigan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
6
|
Naulin E, Lombard M, Gandon V, Retailleau P, Elslande EV, Neuville L, Masson G. Enantioselective and Regiodivergent Synthesis of Dihydro-1,2-oxazines from Triene-Carbamates via Chiral Phosphoric Acid-Catalysis. J Am Chem Soc 2023; 145:26504-26515. [PMID: 38011838 DOI: 10.1021/jacs.3c12015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Conjugated trienes are fascinating building blocks for the rapid construction of complex polycyclic compounds. However, limited success has been achieved due to the challenging regioselectivity control. Herein, we report an enantio- and diastereoselective process allowing to regioselectively control the functionalization of NH-triene-carbamates. Synthesis of chiral cis-3,6-dihydro-2H-1,2-oxazines is achieved by a chiral phosphoric acid catalyzed Nitroso-Diels-Alder cycloaddition involving [(1E,3E,5E)-hexa-1,3,5-trien-1-yl]carbamates. Moreover, modular access to three different regioisomers with excellent diastereoselectivities and high to excellent enantioselectivities is obtained by a careful choice of the reaction conditions. A computational study reveals that the regioselectivity is influenced by the steric demand of the substituents at the 6-position of the triene, as well as noncovalent interactions between the two cycloaddition partners. Utility of each regioisomeric cycloadduct is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, Orsay 91400, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| |
Collapse
|
7
|
Schäfer RJB, Wilson K, Biedermann M, Moore BS, Sieber S, Wennemers H. Identification of Isonitrile-Containing Natural Products in Complex Biological Matrices through Ligation with Chlorooximes. Chemistry 2023; 29:e202203277. [PMID: 36331430 PMCID: PMC9892309 DOI: 10.1002/chem.202203277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Isonitrile-containing natural products have garnered attention for their manifold bioactivities but are difficult to detect and isolate due to the chemical lability of the isonitrile functional group. Here, we used the isonitrile-chlorooxime ligation (INC) in a reactivity-based screening (RBS) protocol for the detection and isolation of alkaloid and terpene isonitriles in the cyanobacterium Fischerella ambigua and a marine sponge of the order Bubarida, respectively. A trifunctional probe bearing a chlorooxime moiety, a UV active aromatic moiety, and a bromine label facilitated the chemoselective reaction with isonitriles, UV-Vis spectroscopic detection, and mass spectrometric analysis. The INC-based RBS allowed for the detection, isolation, and structural elucidation of isonitriles in microgram quantities.
Collapse
Affiliation(s)
- Rebecca J. B. Schäfer
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Kayla Wilson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Maurice Biedermann
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bradley S. Moore
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, 92093, United States
| | - Simon Sieber
- University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Yin S, Liu Z, Shen J, Xia Y, Wang W, Gui P, Jia Q, Kachanuban K, Zhu W, Fu P. Chimeric natural products derived from medermycin and the nature-inspired construction of their polycyclic skeletons. Nat Commun 2022; 13:5169. [PMID: 36056035 PMCID: PMC9440243 DOI: 10.1038/s41467-022-32901-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Medermycin, produced by Streptomyces species, represents a family of antibiotics with significant activity against Gram-positive pathogens. The biosynthesis of this family of natural products has been studied, and new skeletons related to medermycin have rarely been reported until recently. Herein, we report eight chimeric medermycin-type natural products with unusual polycyclic skeletons. The formation of these compounds features some key nonenzymatic steps, which inspired us to construct complex polycyclic skeletons via three efficient one-step reactions under mild conditions. This strategy was further developed to efficiently synthesize analogues for biological activity studies. The synthetic compounds, chimedermycins L and M, and sekgranaticin B, show potent antibacterial activity against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis. This work paves the way for understanding the nonenzymatic formation of complex natural products and using it to synthesize natural product derivatives.
Collapse
Affiliation(s)
- Shupeng Yin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jingjing Shen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yuwei Xia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Weihong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Pengyan Gui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qian Jia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Konthorn Kachanuban
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
9
|
Genus Nocardiopsis: A Prolific Producer of Natural Products. Mar Drugs 2022; 20:md20060374. [PMID: 35736177 PMCID: PMC9231205 DOI: 10.3390/md20060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.
Collapse
|
10
|
Castro-Falcón G, Creamer KE, Chase AB, Kim MC, Sweeney D, Glukhov E, Fenical W, Jensen PR. Structure and Candidate Biosynthetic Gene Cluster of a Manumycin-Type Metabolite from Salinispora pacifica. JOURNAL OF NATURAL PRODUCTS 2022; 85:980-986. [PMID: 35263117 PMCID: PMC9209988 DOI: 10.1021/acs.jnatprod.1c01117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new manumycin-type natural product named pacificamide (1) and its candidate biosynthetic gene cluster (pac) were discovered from the marine actinobacterium Salinispora pacifica CNT-855. The structure of the compound was determined using NMR, electronic circular dichroism, and bioinformatic predictions. The pac gene cluster is unique to S. pacifica and found in only two of the 119 Salinispora genomes analyzed across nine species. Comparative analyses of biosynthetic gene clusters encoding the production of related manumycin-type compounds revealed genetic differences in accordance with the unique pacificamide structure. Further queries of manumycin-type gene clusters from public databases revealed their limited distribution across the phylum Actinobacteria and orphan diversity that suggests additional products remain to be discovered in this compound class. Production of the known metabolite triacsin D is also reported for the first time from the genus Salinispora. This study adds two classes of compounds to the natural product collective isolated from the genus Salinispora, which has proven to be a useful model for natural product research.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Kaitlin E Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander B Chase
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Douglas Sweeney
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Müller MJ, Dorst A, Paulus C, Khan I, Sieber S. Catch-enrich-release approach for amine-containing natural products. Chem Commun (Camb) 2022; 58:12560-12563. [DOI: 10.1039/d2cc04905h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective approach to extract amine-containing natural products from complex matrices. The enzymatic release from the probe affords the underivatised compounds as products.
Collapse
Affiliation(s)
| | - Andrea Dorst
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Constanze Paulus
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Imran Khan
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Abstract
Natural products have traditionally been a fruitful source of chemical matter that has been developed into novel therapeutics. Actinomycetes and several other bacterial taxa are especially gifted in biosynthesizing natural products. However, many decades of intense bioactivity-based screening led to a large rediscovery problem, rendering industrial natural product discovery pipelines uneconomical. Numerous methods for circumventing the rediscovery problem have been developed, among them various chemistry-focused strategies, including reactivity-based screening. Emerging from the field of chemical proteomics, reactivity-based screening relies on a reactive probe that chemoselectively modifies a functional group of interest in the context of a complex biological sample. Reactivity-based probes for several distinct functional groups have been deployed to discover new polyketide and peptidic natural products. This chapter describes the protocols to conduct a reactivity-based screening campaign, including bacteria cultivation and screening of cellular extracts with phenylglyoxal-, tetrazine-, thiol-, and aminooxy-functionalized probes, which respectively target primary uriedo, electron-rich olefins, Michael acceptors, and reactive carbonyls. In addition, a recent case study is presented that employs reactivity-based screening as a component of a forward genetics screen to identify a previously unknown peptidyl arginine deiminase. We anticipate that these methods will be useful for those interested in discovering natural products that evade detection by traditional, bioassay-guided methods and others who wish to rapidly connect metabolic chemotype with genotype.
Collapse
Affiliation(s)
- Lonnie A. Harris
- Department of Chemistry, University of Illinois, Urbana, IL, United States
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois, Urbana, IL, United States,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States,Department of Microbiology, University of Illinois, Urbana, IL, United States,Corresponding Author: 600 S. Mathews Avenue, Roger Adams Laboratory, Rm. 361, University of Illinois, Urbana, IL 61801, 217-333-1345,
| |
Collapse
|
13
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
14
|
Wang TSA, Wu RY, Hong Y, Wang ZC, Li TL, Shie JJ, Hsu CC. Labeling and Characterization of Phenol-Containing Glycopeptides Using Chemoselective Probes with Isotope Tags. Chembiochem 2021; 22:2415-2419. [PMID: 33915022 DOI: 10.1002/cbic.202100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Indexed: 11/07/2022]
Abstract
Secondary metabolites are structurally diverse natural products (NPs) and have been widely used for medical applications. Developing new tools to enrich NPs can be a promising solution to isolate novel NPs from the native and complex samples. Here, we developed native and deuterated chemoselective labeling probes to target phenol-containing glycopeptides by the ene-type labeling used in proteomic research. The clickable azido-linker was included for further biotin functionalization to facilitate the enrichment of labeled substrates. Afterward, our chemoselective method, in conjunction with LC-MS and MSn analysis, was demonstrated in bacterial cultures. A vancomycin-related phenol-containing glycopeptide was labeled and characterized by our labeling strategy, showing its potential in glycopeptide discovery in complex environments.
Collapse
Affiliation(s)
- Tsung-Shing Andrew Wang
- Department of Chemistry, College of Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan (R.O.C
| | - Ruo-Yu Wu
- Department of Chemistry, College of Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan (R.O.C
| | - Yu Hong
- Department of Chemistry, College of Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan (R.O.C
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 115, Taiwan (R.O.C
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 115, Taiwan (R.O.C
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 115, Taiwan (R.O.C
| | - Cheng-Chih Hsu
- Department of Chemistry, College of Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan (R.O.C
| |
Collapse
|
15
|
Guo X, Zhang J, Li X, Xiao E, Lange JD, Rienstra CM, Burke MD, Mitchell DA. Sterol Sponge Mechanism Is Conserved for Glycosylated Polyene Macrolides. ACS CENTRAL SCIENCE 2021; 7:781-791. [PMID: 34079896 PMCID: PMC8161476 DOI: 10.1021/acscentsci.1c00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 05/07/2023]
Abstract
Amphotericin-like glycosylated polyene macrolides (GPMs) are a clinically and industrially important family of natural products, but the mechanisms by which they exert their extraordinary biological activities have remained unclear for more than half a century. Amphotericin B exerts fungicidal action primarily via self-assembly into an extramembranous sponge that rapidly extracts ergosterol from fungal membranes, but it has remained unclear whether this mechanism is applicable to other GPMs. Using a highly conserved polyene-hemiketal region of GPMs that we hypothesized to represent a conserved ergosterol-binding domain, we bioinformatically mapped the entirety of the GPM sequence-function space and expanded the number of GPM biosynthetic gene clusters (BGCs) by 10-fold. We further leveraged bioinformatic predictions and tetrazine-based reactivity screening targeting the electron-rich polyene region of GPMs to discover a first-in-class methyltetraene- and diepoxide-containing GPM, kineosporicin, and to assign BGCs to many new producers of previously reported members. Leveraging a range of structurally diverse known and newly discovered GPMs, we found that the sterol sponge mechanism of fungicidal action is conserved.
Collapse
Affiliation(s)
- Xiaorui Guo
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiabao Zhang
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Xinyi Li
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emily Xiao
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin D. Lange
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department
of Biochemistry and National Magnetic Resonance Facility at Madison, DeLuca Biochemistry Laboratories, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Martin D. Burke
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Microbiology, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
17
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
18
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
19
|
Harris LA, Saint-Vincent PMB, Guo X, Hudson GA, DiCaprio AJ, Zhu L, Mitchell DA. Reactivity-Based Screening for Citrulline-Containing Natural Products Reveals a Family of Bacterial Peptidyl Arginine Deiminases. ACS Chem Biol 2020; 15:3167-3175. [PMID: 33249828 DOI: 10.1021/acschembio.0c00685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products defined by a genetically encoded precursor peptide that is processed by associated biosynthetic enzymes to form the mature product. Lasso peptides are a class of RiPP defined by an isopeptide linkage between the N-terminal amine and an internal Asp/Glu residue with the C-terminal sequence threaded through the macrocycle. This unique lariat topology, which typically provides considerable stability toward heat and proteases, has stimulated interest in lasso peptides as potential therapeutics. Post-translational modifications beyond the class-defining, threaded macrolactam have been reported, including one example of Arg deimination to yield citrulline (Cit). Although a Cit-containing lasso peptide (i.e., citrulassin) was serendipitously discovered during a genome-guided campaign, the gene(s) responsible for Arg deimination has remained unknown. Herein, we describe the use of reactivity-based screening to discriminate bacterial strains that produce Arg- versus Cit-bearing citrulassins, yielding 13 new lasso peptide variants. Partial phylogenetic profiling identified a distally encoded peptidyl arginine deiminase (PAD) gene ubiquitous to the Cit-containing variants. Absence of this gene correlated strongly with lasso peptide variants only containing Arg (i.e., des-citrulassin). Heterologous expression of the PAD gene in a des-citrulassin producer resulted in the production of the deiminated analog, confirming PAD involvement in Arg deimination. The PADs were then bioinformatically surveyed to provide a deeper understanding of their taxonomic distribution and genomic contexts and to facilitate future studies that will evaluate any additional biochemical roles for the superfamily.
Collapse
|
20
|
Tryon JH, Rote JC, Chen L, Robey MT, Vega MM, Phua WC, Metcalf WW, Ju KS, Kelleher NL, Thomson RJ. Genome Mining and Metabolomics Uncover a Rare d-Capreomycidine Containing Natural Product and Its Biosynthetic Gene Cluster. ACS Chem Biol 2020; 15:3013-3020. [PMID: 33151679 DOI: 10.1021/acschembio.0c00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the metabolomics-driven genome mining of a new cyclic-guanidino incorporating non-ribosomal peptide synthetase (NRPS) gene cluster and full structure elucidation of its associated hexapeptide product, faulknamycin. Structural studies unveiled that this natural product contained the previously unknown (R,S)-stereoisomer of capreomycidine, d-capreomycidine. Furthermore, heterologous expression of the identified gene cluster successfully reproduces faulknamycin production without an observed homologue of VioD, the pyridoxal phosphate (PLP)-dependent enzyme found in all previous l-capreomycidine biosynthesis. An alternative NRPS-dependent pathway for d-capreomycidine biosynthesis is proposed.
Collapse
Affiliation(s)
- James H. Tryon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jennifer C. Rote
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Li Chen
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew T. Robey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Marvin M. Vega
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Wan Cheng Phua
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology and The Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- The Division of Medicinal Chemistry and Pharmacognosy, Center for Applied Plant Sciences, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Kuranaga T, Minote M, Morimoto R, Pan C, Ogawa H, Kakeya H. Highly Sensitive Labeling Reagents for Scarce Natural Products. ACS Chem Biol 2020; 15:2499-2506. [PMID: 32865386 DOI: 10.1021/acschembio.0c00517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Scarce natural products that possess unique biological activities have been ideal drug leads for decades. However, their identification and structural determinations are problematic owing to sample amount limitation. Inspired by an extremely rare natural product yaku'amide B (10), highly sensitive labeling reagents that would be powerful tools for scarce natural product chemistry were designed and synthesized in this study. By fusion with the key structural motif for the structural revision of 10, the detection sensitivities of amino acid labeling reagents were drastically enhanced in LC-MS analysis. These advanced labeling reagents enabled the detection of infinitesimal amounts of amino acids and peptide hydrolysates. This sensitivity-enhancement design concept was also applicable to reagents for labeling saccharides and reactivity-guided isolation of electrophilic natural products. Details of these reagents, including their practical preparations and extended applications, are also provided.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mayuri Minote
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Morimoto
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruka Ogawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Jiang Q, Zhu Z, Shou P, Teng F, Zhu Y, Zhao H, Yang B. Targeting pharmacophore with probe-reactivity-guided fractionation to precisely identify electrophilic sesquiterpenes and its activity of anti-TNBC. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:322-332. [PMID: 31849131 DOI: 10.1002/pca.2898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Innovative strategy is urgently needed to precisely discover novel natural products as lead compounds for development of new drugs against orphan diseases such as triple-negative breast cancer (TNBC). Herein, we describe a targeting pharmacophore with probe-reactivity-guided strategy for the discovery of electrophilic sesquiterpene (ES), a class of bioactive natural product. OBJECTIVE This study aimed to identify pharmacophore, based on pharmacophore with probe-reactivity-guided strategy for precisely discovering ESs from ethyl acetate extract of Eupatorium chinense L. (EEEChL) METHODOLOGY: MTT assay combined with ultra-performance liquid chromatography (UPLC) analysis was used to identify pharmacophore. UPLC-mass spectrometry (MS) was applied to carefully compare the intrinsic reactivity characteristics of two chemoselective nucleophilic probes: glutathione (GSH) and 4-bromothiophenol (BTP) reaction with ESs. ESs was isolated and identified from EEEChL by phytochemical methods. Furthermore, stoichiometric ratio and binding site of one typical ES 8β-[4'-hydroxytigloyloxy]-5-desoxy-8-desacyleuparotin (HDDE) reaction with BTP were studied by UPLC-quadrupole time-of-flight (Q-TOF)-MS and two-dimensional nuclear magnetic resonance (NMR). RESULTS Eleven ESs were identified from EEEChL, MTT assay illustrated that all of the 11 ESs possess fairly good anti-TNBC activity CONCLUSIONS: Electrophilic groups were confirmed as pharmacophore of bioactive compounds contained in EEEChL. An optimised halogenated aromatic probe BTP furnishes ES-BTP conjugates that are highly conspicuous via MS by virtue of a unique isotopic bromine signature, conjugates also have a considerable separation on C18 column. The new probe-reactivity-guided strategy can effectively improve the traditional bioassay-guided approaches, and significantly increase the probability of obtaining designated bioactive compounds.
Collapse
Affiliation(s)
- QingLi Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - ZhiHui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - PanTing Shou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - Fei Teng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - Ying Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - HuaJun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| |
Collapse
|
23
|
Moss NA, Seiler G, Leão TF, Castro-Falcón G, Gerwick L, Hughes CC, Gerwick WH. Nature's Combinatorial Biosynthesis Produces Vatiamides A-F. Angew Chem Int Ed Engl 2019; 58:9027-9031. [PMID: 31071229 DOI: 10.1002/anie.201902571] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Hybrid type I PKS/NRPS biosynthetic pathways typically proceed in a collinear manner wherein one molecular building block is enzymatically incorporated in a sequence that corresponds to gene arrangement. In this work, genome mining combined with the use of a fluorogenic azide-based click probe led to the discovery and characterization of vatiamides A-F, three structurally diverse alkynylated lipopeptides, and their brominated analogues, from the cyanobacterium Moorea producens ASI16Jul14-2. These derive from a unique combinatorial non-collinear PKS/NRPS system encoded by a 90 kb gene cluster in which an upstream PKS cassette interacts with three separate cognate NRPS partners. This is facilitated by a series of promiscuous intermodule PKS-NRPS docking motifs possessing identical amino acid sequences. This interaction confers a new type of combinatorial capacity for creating molecular diversity in microbial systems.
Collapse
Affiliation(s)
- Nathan A Moss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Grant Seiler
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tiago F Leão
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Moss NA, Seiler G, Leão TF, Castro‐Falcón G, Gerwick L, Hughes CC, Gerwick WH. Nature's Combinatorial Biosynthesis Produces Vatiamides A–F. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathan A. Moss
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Grant Seiler
- Department of Chemistry and BiochemistryUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Tiago F. Leão
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Gabriel Castro‐Falcón
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Lena Gerwick
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Chambers C. Hughes
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - William H. Gerwick
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|