1
|
Kenyaga JM, Qiang W. Extraction of In-Cell β-Amyloid Fibrillar Aggregates for Studying Molecular-Level Structural Propagations Using Solid-State NMR Spectroscopy. Biochemistry 2024; 63:2557-2564. [PMID: 39348718 DOI: 10.1021/acs.biochem.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Molecular-level structural polymorphisms of β-amyloid (Aβ) fibrils have recently been recognized as pathologically significant. High-resolution solid-state nuclear magnetic resonance (ssNMR) spectroscopy has been utilized to study these structural polymorphisms, particularly in ex-vivo fibrils seeded from amyloid extracts of post-mortem brain tissues of Alzheimer's disease (AD) patients. One unaddressed question in current ex-vivo seeding protocol is whether fibrillation from exogenous monomeric Aβ peptides, added to the extracted seeds, can be quantitatively suppressed. Addressing this issue is critical because uncontrolled fibrillation could introduce biased molecular structural polymorphisms in the resulting fibrils. Here, we present a workflow to optimize the key parameters of ex-vivo seeding protocols, focusing on the quantification of amyloid extraction and the selection of exogenous monomeric Aβ concentrations to minimize nonseeded fibrillation. We validate this workflow using three structurally different 40-residue Aβ (Aβ40) fibrillar seeds, demonstrating their ability to propagate their structural features to exogenous wild-type Aβ40.
Collapse
Affiliation(s)
- June M Kenyaga
- Department of Chemistry, Binghamton University, the State University of New York, Vestal, New York 13850, United States
| | - Wei Qiang
- Department of Chemistry, Binghamton University, the State University of New York, Vestal, New York 13850, United States
| |
Collapse
|
2
|
Mardanyan S, Sharoyan S, Antonyan A. Diversity of amyloid beta peptide actions. Rev Neurosci 2024; 35:387-398. [PMID: 38281140 DOI: 10.1515/revneuro-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Fibril formation by amyloidogenic proteins and peptides is considered the cause of a number of incurable diseases. One of the most known amyloid diseases is Alzheimer's disease (AD). Traditionally, amyloidogenic beta peptides Aβ40 and Aβ42 (Aβs) are considered as main causes of AD and the foremost targets in AD fight. The main efforts in pharmacology are aimed at reducing Aβs concentration to prevent their accumulation, aggregation, formation of senile plaques, neuronal death, and neurodegeneration. However, a number of publications have demonstrated certain beneficial physiological effects of Aβs. Simultaneously, it is indicated that the effects of Aβs turn into pathological due to the development of certain diseases in the body. The accumulation of C- and N-terminal truncated Aβs under diverse conditions is supposed to play a role in AD development. The significance of transformation of glutamate residue at positions 3 or 11 of Aβs catalyzed by glutaminyl cyclase making them more degradation resistant, hydrophobic, and prone to aggregation, as well as the participation of dipeptidyl peptidase IV in these transformations are discussed. The experimental data presented confirm the maintenance of physiological, nonaggregated state of Aβs by plant preparations. In conclusion, this review suggests that in the fight against AD, instead of removing Aβs, preference should be given to the treatment of common diseases. Glutaminyl cyclase and dipeptidyl peptidase IV can be considered as targets in AD treatment. Flavonoids and plant preparations that possess antiamyloidogenic propensity are proposed as beneficial neuroprotective, anticancer, and antidiabetic food additives.
Collapse
Affiliation(s)
- Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| |
Collapse
|
3
|
Scheidt HA, Korn A, Schwarze B, Krueger M, Huster D. Conformation of Pyroglutamated Amyloid β (3-40) and (11-40) Fibrils - Extended or Hairpin? J Phys Chem B 2024; 128:1647-1655. [PMID: 38334278 PMCID: PMC10895672 DOI: 10.1021/acs.jpcb.3c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Amyloid β (Aβ) is a hallmark protein of Alzheimer's disease. One physiologically important Aβ variant is formed by initial N-terminal truncation at a glutamic acid position (either E3 or E11), which is subsequently cyclized to a pyroglutamate (either pE3 or pE11). Both forms have been found in high concentrations in the core of amyloid plaques and are likely of high importance in the pathology of Alzheimer's disease. However, the molecular structure of the fibrils of these variants is not entirely clear. Solid-state NMR spectroscopy studies have reported a molecular contact between Gly25 and Ile31, which would disagree with the conventional hairpin model of wildtype (WT-)Aβ1-40 fibrils, most often described in the literature. We investigated the conformation of the monomeric unit of pE3-Aβ3-40 and pE11-Aβ11-40 (and for comparison also wildtype (WT)-Aβ1-40) fibrils to find out whether the hairpin or a newly suggested extended structure dominates the structure of the Aβ monomers in these fibrils. To this end, solid-state NMR spectroscopy was applied probing the inter-residual contacts between Phe19/Leu34, Ala21/Leu34, and especially Gly25/Ile31 using suitable isotopic labeling schemes. In the second part, the flexible turn of the Aβ40 peptides was replaced by a (3-(3-aminomethyl)phenylazo)phenylacetic acid (AMPP)-based photoswitch, which can predefine the peptide conformation to either an extended (trans) or hairpin (cis) conformation. This enables simultaneous spectroscopic assessment of the conformation of the AMPP-photoswitch, allowing in situ structural investigations during fibrillation in contrast to structural techniques such as NMR spectroscopy or cryo-EM, which can only be applied to stable conformers. Both methods confirm an extended structure for the peptidic monomers in fibrils of all investigated Aβ variants. Especially the Gly25/Ile31 contact is a decisive indicator for the extended structure along with the characteristic absorption spectra of trans-AMPP-Aβ.
Collapse
Affiliation(s)
- Holger A. Scheidt
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Alexander Korn
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Benedikt Schwarze
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| | - Martin Krueger
- Institute
of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany
| | - Daniel Huster
- Institute
for Medical Physics and Biophysics, Leipzig
University Härtelstr. 16/18, D-04107 Leipzig, Germany
| |
Collapse
|
4
|
Vugmeyster L, Au DF, Frazier B, Qiang W, Ostrovsky D. Rigidifying of the internal dynamics of amyloid-beta fibrils generated in the presence of synaptic plasma vesicles. Phys Chem Chem Phys 2024; 26:5466-5478. [PMID: 38277177 PMCID: PMC10956644 DOI: 10.1039/d3cp04824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigated the changes in internal flexibility of amyloid-β1-40 (Aβ) fibrils grown in the presence of rat synaptic plasma vesicles. The fibrils are produced using a modified seeded growth protocol, in which the Aβ concentration is progressively increased at the expense of the decreased lipid to protein ratio. The morphologies of each generation are carefully assessed at several fibrils' growth time points using transmission electron microscopy. The side-chain dynamics in the fibrils is investigated using deuterium solid-state NMR measurements, with techniques spanning line shapes analysis and several NMR relaxation rates measurements. The dynamics is probed in the site-specific fashion in the hydrophobic C-terminal domain and the disordered N-terminal domain. An overall strong rigidifying effect is observed in comparison with the wild-type fibrils generated in the absence of the membranes. In particular, the overall large-scale fluctuations of the N-terminal domain are significantly reduced, and the activation energies of rotameric inter-conversion in methyl-bearing side-chains of the core (L17, L34, M35, V36), as well as the ring-flipping motions of F19 are increased, indicating a restricted core environment. Membrane-induced flexibility changes in Aβ aggregates can be important for the re-alignment of protein aggregates within the membrane, which in turn would act as a disruption pathway of the bilayers' integrity.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Bailey Frazier
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, New York, USA, 13902
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, USA, 80204
| |
Collapse
|
5
|
Cruceta L, Sun Y, Kenyaga JM, Ostrovsky D, Rodgers A, Vugmeyster L, Yao L, Qiang W. Modulation of aggregation and structural polymorphisms of β-amyloid fibrils in cellular environments by pyroglutamate-3 variant cross-seeding. J Biol Chem 2023; 299:105196. [PMID: 37633335 PMCID: PMC10518720 DOI: 10.1016/j.jbc.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
Amyloidogenic deposition of β-amyloid (Aβ) peptides in human brain involves not only the wild-type Aβ (wt-Aβ) sequences, but also posttranslationally modified Aβ (PTM-Aβ) variants. Recent studies hypothesizes that the PTM-Aβ variants may trigger the deposition of wt-Aβ, which underlies the pathology of Sporadic Alzheimer's disease. Among PTM-Aβ variants, the pyroglutamate-3-Aβ (pyroE3-Aβ) has attracted much attention because of their significant abundances and broad distributions in senile plaques and dispersible and soluble oligomers. pyroE3-specific antibodies are being tested as potential anti-Aβ drugs in clinical trials. However, evidence that support the triggering effect of pyroE3-Aβ on wt-Aβ in cells remain lacking, which diminishes its pathological relevance. We show here that cross-seeding with pyroE3-Aβ40 leads to accelerated extracellular and intracellular aggregation of wt-Aβ40 in different neuronal cells. Cytotoxicity levels are elevated through the cross-seeded aggregation, comparing with the self-seeded aggregation of wt-Aβ40 or the static presence of pyroE3-Aβ40 seeds. For the extracellular deposition in mouse neuroblastoma Neuro2a (N2a) cells, the cytotoxicity elevation correlates positively with the seeding efficiency. Besides aggregation rates, cross-seeding with pyroE3-Aβ40 also modulates the molecular level structural polymorphisms of the resultant wt-Aβ40 fibrils. Using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, we identified key structural differences between the parent pyroE3/ΔE3 and wt-Aβ40 fibrils within their fibrillar cores. Structural propagation from seeds to daughter fibrils is demonstrated to be more pronounced in the extracellular seeding in N2a cells by comparing the ssNMR spectra from different seeded wt-Aβ40 fibrils, but less significant in the intracellular seeding process in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Letticia Cruceta
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, USA
| | - Yan Sun
- Small Scale System Integration and Packaging (S(3)IP), Binghamton University, Vestal, New York, USA
| | - June M Kenyaga
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver Colorado, USA
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver Colorado, USA
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver Colorado, USA
| | - Lan Yao
- Small Scale System Integration and Packaging (S(3)IP), Binghamton University, Vestal, New York, USA
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Vestal, New York, USA.
| |
Collapse
|
6
|
Kenyaga JM, Oteino SA, Sun Y, Qiang W. In-cell 31P solid-state NMR measurements of the lipid dynamics and influence of exogeneous β-amyloid peptides on live neuroblastoma neuro-2a cells. Biophys Chem 2023; 297:107008. [PMID: 36989875 PMCID: PMC11837396 DOI: 10.1016/j.bpc.2023.107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Non-specific disruption of cellular membranes induced by aggregation of exogeneous β-amyloid (Aβ) peptides is considered a viable pathological mechanism in Alzheimer's disease (AD). The solid-state nuclear magnetic resonance (ssNMR) spectroscopy has been widely applied in model liposomes to provide important insights on the molecular interactions between membranes and Aβ aggregates. Yet, the feasibility of in-cell ssNMR spectroscopy to probe Aβ-membrane interactions in native cellular environments has rarely been tested. Here we report the application of in-cell31P ssNMR spectroscopy on live mouse neuroblastoma Neuro-2a (N2a) cells under moderate magic angle spinning (MAS) conditions. Both cell viability and cytoplasmic membrane integrity are retained for up to six hours under 5 kHz MAS frequency at 277 K, which allow applications of direct-polarization 31P spectroscopy and 31P spin-spin (T2) relaxation measurements. The 31P T2 relaxation time constant of N2a cells is significantly increased compared with the model liposome prepared with comparable major phospholipid compositions. With the addition of 5 μM 40-residue Aβ (Aβ1-40) peptides, the 31P T2 relaxation is instantly accelerated. This work demonstrates the feasibility of using in-cell31P ssNMR to investigate the Aβ-membrane interactions in the biologically relevant cellular system.
Collapse
Affiliation(s)
- June M Kenyaga
- Department of Chemistry, Binghamton University, Vestal, NY 13850, USA
| | - Sarah A Oteino
- Department of Chemistry, Binghamton University, Vestal, NY 13850, USA
| | - Yan Sun
- Small Scale Systems Integration and Packaging (S3IP), Binghamton University, Vestal, NY 13850, USA
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Vestal, NY 13850, USA.
| |
Collapse
|
7
|
Rodgers A, Sawaged M, Ostrovsky D, Vugmeyster L. Effect of Cross-Seeding of Wild-Type Amyloid-β 1-40 Peptides with Post-translationally Modified Fibrils on Internal Dynamics of the Fibrils Using Deuterium Solid-State NMR. J Phys Chem B 2023; 127:2887-2899. [PMID: 36952330 PMCID: PMC10257444 DOI: 10.1021/acs.jpcb.2c07817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Post-translationally modified (PTM) amyloid-β (Aβ) species can play an important role in modulating Alzheimer's disease pathology. These relatively less populated modifications can cross-seed the wild-type Aβ peptides to produce fibrils that retain many structural and functional features of the original PTM variants. We focus on studies of internal flexibility in the cross-seeded Aβ1-40 fibrils originating from seeding with two PTM variants with modifications in the disordered N-terminal domain: ΔE3 truncation and S8-phosphorylation. We employ an array of 2H solid-state NMR techniques, including line shape analysis over a broad temperature range, longitudinal relaxation, and quadrupolar CPMG, to assess the dynamics of the cross-seeded fibrils. The focus is placed on selected side-chain sites in the disordered N-terminal domain (G9 and V12) and hydrophobic core methyl and aromatic groups (L17, L34, M35, V36, and F19). We find that many of the essential features of the dynamics present in the original PTM seeds persist in the cross-seeded fibrils, and several of the characteristic features are even enhanced. This is particularly true for the activation energies of the rotameric motions and large-scale rearrangements of the N-terminal domain. Thus, our results on the dynamics complement prior structural and cell toxicity studies, suggesting that many PTM Aβ species can aggressively cross-seed the wild-type peptide in a manner that propagates the PTM's signature.
Collapse
Affiliation(s)
- Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew Sawaged
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
8
|
Geerts H, Walker M, Rose R, Bergeler S, van der Graaf PH, Schuck E, Koyama A, Yasuda S, Hussein Z, Reyderman L, Swanson C, Cabal A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer's disease. CPT Pharmacometrics Syst Pharmacol 2023; 12:444-461. [PMID: 36632701 PMCID: PMC10088087 DOI: 10.1002/psp4.12912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-mediated removal of aggregated β-amyloid (Aβ) is the current, most clinically advanced potential disease-modifying treatment approach for Alzheimer's disease. We describe a quantitative systems pharmacology (QSP) approach of the dynamics of Aβ monomers, oligomers, protofibrils, and plaque using a detailed microscopic model of Aβ40 and Aβ42 aggregation and clearance of aggregated Aβ by activated microglia cells, which is enhanced by the interaction of antibody-bound Aβ. The model allows for the prediction of Aβ positron emission tomography (PET) imaging load as measured by a standardized uptake value ratio. A physiology-based pharmacokinetic model is seamlessly integrated to describe target exposure of monoclonal antibodies and simulate dynamics of cerebrospinal fluid (CSF) and plasma biomarkers, including CSF Aβ42 and plasma Aβ42 /Aβ40 ratio biomarkers. Apolipoprotein E genotype is implemented as a difference in microglia clearance. By incorporating antibody-bound, plaque-mediated macrophage activation in the perivascular compartment, the model also predicts the incidence of amyloid-related imaging abnormalities with edema (ARIA-E). The QSP platform is calibrated with pharmacological and clinical information on aducanumab, bapineuzumab, crenezumab, gantenerumab, lecanemab, and solanezumab, predicting adequately the change in PET imaging measured amyloid load and the changes in the plasma Aβ42 /Aβ40 ratio while slightly overestimating the change in CSF Aβ42 . ARIA-E is well predicted for all antibodies except bapineuzumab. This QSP model could support the clinical trial design of different amyloid-modulating interventions, define optimal titration and maintenance schedules, and provide a first step to understand the variability of biomarker response in clinical practice.
Collapse
|
9
|
Nguyen PH, Derreumaux P. Insights into the Mixture of Aβ24 and Aβ42 Peptides from Atomistic Simulations. J Phys Chem B 2022; 126:10689-10696. [PMID: 36493347 DOI: 10.1021/acs.jpcb.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) oligomers play a central role in Alzheimer's disease (AD). Plaques of AD patients consist of Aβ40 and Aβ42 peptides and truncated Aβ peptides. The Aβ24 peptide, identified in human AD brains, was found to impair Aβ42 clearance through the brain-blood barrier. The Aβ24 peptide was also shown to reduce Aβ42 aggregation kinetics in pure buffer, but the underlying mechanism is unknown at atomistic level. In this study, we explored the conformational ensemble of the equimolar mixture of Aβ24 and Aβ42 by replica exchange molecular dynamics simulations and compared it to our previous results on the pure Aβ42 dimer. Our simulations demonstrate that the truncation at residue 24 changes the secondary, tertiary, and quaternary structures of the dimer, offering an explanation of the slower aggregation kinetics of the mixture.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
10
|
Kenyaga JM, Cheng Q, Qiang W. Early-Stage β-Amyloid-Membrane Interactions Modulate Lipid Dynamics and Influence Structural Interfaces and Fibrillation. J Biol Chem 2022; 298:102491. [PMID: 36115457 PMCID: PMC9556791 DOI: 10.1016/j.jbc.2022.102491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Molecular interactions between β-amyloid (Aβ) peptide and membranes contribute to the neuronal toxicity of Aβ and the pathology of Alzheimer's disease (AD). Neuronal plasma membranes serve as biologically relevant environments for the Aβ aggregation process as well as affect the structural polymorphisms of Aβ aggregates. However, the nature of these interactions is unknown. Here, we utilized solid-state NMR spectroscopy to explore the site-specific interactions between Aβ peptides and lipids in synaptic plasma membranes at the membrane-associated nucleation stage. The key results show that different segments in the hydrophobic sequence of Aβ initiate membrane binding and inter-strand assembling. We demonstrate early-stage Aβ-lipid interactions modulate lipid dynamics, leading to more rapid lipid headgroup motion and reduced lateral diffusive motion. These early events influence the structural polymorphisms of yielded membrane-associated Aβ fibrils with distinct C-terminal quaternary interface structure compared to fibrils grown in aqueous solutions. Based on our results, we propose a schematic mechanism by which Aβ-lipid interactions drive membrane-associated nucleation processes, providing molecular insights into the early events of fibrillation in biological environments.
Collapse
Affiliation(s)
- June M Kenyaga
- Department of Chemistry, Binghamton University, the State University of New York
| | - Qinghui Cheng
- Department of Chemistry, Binghamton University, the State University of New York
| | - Wei Qiang
- Department of Chemistry, Binghamton University, the State University of New York.
| |
Collapse
|
11
|
Vugmeyster L, Au DF, Smith MC, Ostrovsky D. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation. Chemphyschem 2022; 23:e202100709. [PMID: 34837296 PMCID: PMC9484291 DOI: 10.1002/cphc.202100709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Post-translational modifications (PTMs) of amyloid-β (Aβ) species are implicated in the modulation of overall toxicities and aggregation propensities. We investigated the internal dynamics in the hydrophobic core of the truncated ΔE3 mutant fibrils of Aβ1-40 and compared them with prior and new data for wild-type fibrils as well as with phosphorylated S8 fibrils. Deuteron static solid-state NMR techniques, spanning line-shape analysis, longitudinal relaxation, and chemical exchange saturation transfer methods, were employed to assess the rotameric jumps of several methyl-bearing and aromatic groups in the core of the fibrils. Taken together, the results indicate the rather significant influence of the PTMs on the hydrophobic core dynamics, which propagates far beyond the local site of the chemical modification. The phosphorylated S8 fibrils display an overall rigidifying of the core based on the higher activation barriers of motions than the wild-type fibrils, whereas the ΔE3 fibrils induce a broader variety of changes, some of which are thermodynamic in nature rather than the kinetic ones.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew C. Smith
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
12
|
Pyroglutamate Aβ cascade as drug target in Alzheimer's disease. Mol Psychiatry 2022; 27:1880-1885. [PMID: 34880449 PMCID: PMC9126800 DOI: 10.1038/s41380-021-01409-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AβpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AβpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AβpE, its biochemical properties, and the intervention points as a drug target in AD.
Collapse
|