1
|
Smith S, Cassada JB, Von Bredow L, Erreger K, Webb EM, Trombley TA, Kalbfleisch JJ, Bender BJ, Zagol-Ikapitte I, Kramlinger VM, Bouchard JL, Mitchell SG, Tretbar M, Shoichet BK, Lindsley CW, Meiler J, Hamm HE. Discovery of Protease-Activated Receptor 4 (PAR4)-Tethered Ligand Antagonists Using Ultralarge Virtual Screening. ACS Pharmacol Transl Sci 2024; 7:1086-1100. [PMID: 38633591 PMCID: PMC11020070 DOI: 10.1021/acsptsci.3c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Here, we demonstrate a structure-based small molecule virtual screening and lead optimization pipeline using a homology model of a difficult-to-drug G-protein-coupled receptor (GPCR) target. Protease-activated receptor 4 (PAR4) is activated by thrombin cleavage, revealing a tethered ligand that activates the receptor, making PAR4 a challenging target. A virtual screen of a make-on-demand chemical library yielded a one-hit compound. From the single-hit compound, we developed a novel series of PAR4 antagonists. Subsequent lead optimization via simultaneous virtual library searches and structure-based rational design efforts led to potent antagonists of thrombin-induced activation. Interestingly, this series of antagonists was active against PAR4 activation by the native protease thrombin cleavage but not the synthetic PAR4 agonist peptide AYPGKF.
Collapse
Affiliation(s)
- Shannon
T. Smith
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jackson B. Cassada
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Lukas Von Bredow
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig 04109, Germany
| | - Kevin Erreger
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma M. Webb
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Trevor A. Trombley
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Jacob J. Kalbfleisch
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Brian J. Bender
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Irene Zagol-Ikapitte
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Valerie M. Kramlinger
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Jacob L. Bouchard
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Sidnee G. Mitchell
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Maik Tretbar
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig 04109, Germany
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Nashville, Tennessee 37067, United States
| | - Jens Meiler
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute
for Drug Discovery, Leipzig University Medical
School, Leipzig 04109, Germany
| | - Heidi E. Hamm
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Bertron JL, Duvernay MT, Mitchell SG, Smith ST, Maeng JG, Blobaum AL, Davis DC, Meiler J, Hamm HE, Lindsley CW. Discovery and Optimization of a Novel Series of Competitive and Central Nervous System-Penetrant Protease-Activated Receptor 4 (PAR4) Inhibitors. ACS Chem Neurosci 2021; 12:4524-4534. [PMID: 34855359 PMCID: PMC8823334 DOI: 10.1021/acschemneuro.1c00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The detailed pharmacology and therapeutic potential of the central PAR4 receptors are poorly understood due to a lack of potent, selective, and brain-penetrant tool compounds. Despite this, robust data with biochemical and genetic tools show the therapeutic potential of PAR4 antagonists in traumatic brain injury, Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders with a neuroinflammatory component. Thus, we performed a functional HTS campaign, identified a fundamentally new PAR4 competitive inhibitor chemotype, optimized this new series (increased potency >45-fold), discovered enantiospecific activity (though opposing preference for human versus mouse PAR4), and engendered high central nervous system penetration (rat Kp's of 0.52 to 4.2 and Kp,uu's of 0.52 to 1.2).
Collapse
Affiliation(s)
- Jeanette L. Bertron
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Matthew T. Duvernay
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Sidnee G. Mitchell
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shannon T. Smith
- Chemical and Physical Biology Program, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jae G. Maeng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Dexter C. Davis
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute for Drug Discovery, Leipzig University, Saxony 04109, Germany
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|