1
|
Ghaffarinasab M, Kaeidi A, Hassanshahi J. Mitigating Remote Organ-Induced Brain Injury in Renal Ischemia-Reperfusion: The Role of Oleuropein in Inhibiting Oxidative Stress, Inflammation, Ferroptosis, and Apoptosis in Male Rats. J Neuroimmune Pharmacol 2025; 20:24. [PMID: 40056289 DOI: 10.1007/s11481-025-10184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/26/2025] [Indexed: 03/10/2025]
Abstract
Renal ischemia-reperfusion (RIR) induces brain damage as a distant organ. Oleuropein has antioxidant properties. This study aimed to explore oleuropein's protective effects against brain injury following RIR in rats. Thirty-six male Wistar rats were divided into six groups (n = 6) including sham, oleuropein (200 mg/kg), RIR, and RIR groups treated with oleuropein (50, 100, and 200 mg/kg). 48 h after injury, blood urea nitrogen (BUN) and creatinine levels were surveyed. The western blotting analysis was performed to assay the interleukin-1 beta (IL-1β), IL-10, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa-light-chain-enhancer of activated B cells p65 (NF-κB p65), Bcl-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), cleaved caspase-3, glutathione peroxidase-4 (GPX4), nuclear factor erythroid-related factor-2 (NRF2), solute carrier family 7, member 11 (SLC7A11), and anti-acyl-CoA synthetase long-chain family 4 (ACSL4) proteins in kidney and/or brain tissues. Also, malondialdehyde (MDA) and total antioxidant capacity (TAC) levels, the activity of GPx, catalase, and superoxide dismutase (SOD) were evaluated. Kidney and brain tissues damage scores (KTDS and BTDS) were determined by H&E staining method. Prussian blue staining was conducted to identify iron accumulation. RIR significantly increased BUN, serum creatinine levels, KTDS, BTDS, iron deposition, MDA concentration, Bax, cleaved caspase-3, IL-1β, TNF-α, NF-κB p65, ACSL4 proteins expression levels, while decreasing TAC content, SOD, GPx, and catalase activity, Bcl-2, GPX4, SLC7A11 and NRF2 proteins expression in kidney and/or brain tissue of RIR group versus the sham (P < 0.05). Moreover, oleuropein attenuated these indicators in the RIR + oleuropein (200 mg/kg) group versus the RIR group (P < 0.05). Our study showed that RIR induced brain damage, and oleuropein exhibited protective effects against brain injury induced by RIR, through inhibiting oxidative stress, inflammation, ferroptosis, and apoptosis mechanisms.
Collapse
Affiliation(s)
- Mohammad Ghaffarinasab
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Khalije Fars Blvd., Pistachio Co. Street, P.O. Box 77175-835, Rafsanjan, 7719617996, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Khalije Fars Blvd., Pistachio Co. Street, P.O. Box 77175-835, Rafsanjan, 7719617996, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jalal Hassanshahi
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Demirer B, Samur G. Health Benefits of Olive Leaf: The Focus on Efficacy of Antiglycation Mechanisms. Nutr Rev 2025; 83:551-561. [PMID: 39530765 DOI: 10.1093/nutrit/nuae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Olive leaves have been a therapeutic herbal agent for diseases for centuries. Olive leaves contain many health-beneficial nutrients and bioactive components. There is much evidence for the positive effects of the phenolic compounds they contain on health. The main active phenolic component in olive leaves is oleuropein, which can constitute 6%-9% of the leaf's dry matter and has been intensively studied for its promising results/effects on human health. In addition, olive leaf provides health benefits through bioactive components, such as secoiridoids, flavonoids, triterpenes, and lignans. The anti-inflammatory, antioxidant, anticancer, antidiabetic, and antihypertensive properties of bioactive components, especially oleuropein, are well known. In addition, various health benefits, such as neuroprotective effects and microbiota modulation, are also mentioned. In recent years, in vitro studies have shown that olive leaves and bioactive components from olive leaves may have antiglycation effects. Currently, it is thought that the components found in olive leaves have a direct or indirect antiglycation effect. It is thought that, their direct effects include reducing the interaction between sugars and amino acids, nucleic acids, and lipids and sequestering reactive dicarbonyl species, and their indirect effects include preventing the formation of advanced glycation end-products (AGEs) by reducing inflammation and oxidative stress. However, in vivo and clinical studies are needed to prove these mechanisms and understand how their metabolism works in the human body. This review examines the beneficial health effects of olive leaves and their potential antiglycation role.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk 78050, Turkey
| | - Gülhan Samur
- Nutrition and Dietetics, Hacettepe University, Ankara 06320, Turkey
| |
Collapse
|
3
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Kumar V, Kumar P. Pathophysiological role of high mobility group box-1 signaling in neurodegenerative diseases. Inflammopharmacology 2025; 33:703-727. [PMID: 39546221 DOI: 10.1007/s10787-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD). HMGB1 displays a wide array of roles in the extracellular environment as it interacts with several receptors, including CXCR4, TLR2, TLR4, TLR8, and RAGE, by engaging in these connections, HMGB1 can effectively regulate subsequent signaling pathways, hence exerting an impact on the progression of brain disorders through neuroinflammation. Therefore, focusing on treating neuroinflammation could offer a common therapeutic strategy for several disorders. The objective of the current literature is to demonstrate the pathological role of HMGB1 in various neurological disorders. This review also offers insights into numerous therapeutic targets that promise to advance multiple treatments intended to alleviate brain illnesses.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
5
|
Hoang LN, Lee H, Lee SJ. Improving cognitive impairment through chronic consumption of natural compounds/extracts: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci 2025; 16:1531278. [PMID: 39949865 PMCID: PMC11821934 DOI: 10.3389/fnagi.2024.1531278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This systematic review and meta-analysis aimed to compare the efficacy of extended supplementation (≥6 weeks) with natural compounds or extracts in improving cognitive function in patients with mild cognitive impairment (MCI) or Alzheimer's disease (AD). Methods A comprehensive literature search was conducted across Cochrane, PubMed, PsycARTICLES, Scopus, and Web of Science databases from inception to April 10, 2024. Eligible studies were randomized controlled trials evaluating cognitive outcomes in patients with MCI or AD using the Mini-Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Results From an initial pool of 6,687 articles, 45 were deemed relevant for qualitative analysis. Of these, 37 studies demonstrated improvements or positive trends in cognitive outcomes with natural compound or extract supplementation. A total of 35 studies met the criteria for meta-analysis. The meta-analysis, involving 4,974 participants, revealed significant improvements in ADAS-Cog scores (pooled standardized mean difference = -2.88, 95% confidence interval [CI]: -4.26 to -1.50; t24 = -4.31, p < 0.01) following supplementation. Additionally, a suggestive trend toward improvement in MMSE scores was observed in a subgroup analysis of 1,717 participants (pooled standardized mean difference = 0.76, 95% CI: 0.06 to 1.46, t18 = 2.27, p = 0.04). Conclusion These findings support the potential cognitive benefits of extended (≥6 weeks) supplementation with natural compounds or extracts in individuals with MCI or AD. Further research is warranted to confirm these results and elucidate the underlying mechanisms. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
| | | | - Sook Jeong Lee
- Department of Bioactive Material Sciences and Research Centre of Bioactive Materials, Jeonbuk National University, Jeonju, Jeonbuk-do, Republic of Korea
| |
Collapse
|
6
|
Loukou S, Papantoniou G, Pantazaki A, Tsolaki M. The Role of Greek Olive Leaf Extract in Patients with Mild Alzheimer's Disease (the GOLDEN Study): A Randomized Controlled Clinical Trial. Neurol Int 2024; 16:1247-1265. [PMID: 39585054 PMCID: PMC11587000 DOI: 10.3390/neurolint16060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Background: Olive leaves are a significant source of biophenols, which have a beneficial impact on cognitive performance. Objective: To examine, for the first time, in humans the effect of the daily consumption of a beverage containing olive leaf extract (OLE) versus a Mediterranean diet (MeDi) on patients diagnosed with mild Alzheimer's Disease (AD), in addition to their regular treatment. Methods: A randomized clinical trial compared OLE's effects on cognitive and functional performance in 55 mild AD patients. Each participant was randomly assigned to two groups: (1) Group 1 was given olive leaves for making a daily beverage and MeDi instructions through monthly diet programs; (2) Group 2 received only the MeDi instructions. After six months, all participants underwent a second neuropsychological evaluation. Results: Group 1 participants had statistically significantly higher MMSE scores compared to Group 2 with a p-value of 0.0135. Specifically, the mean MMSE difference in patients receiving OLE was close to 0, indicating no memory deterioration, whereas in controls it was -4.1, indicative of cognitive decline. The remaining neuropsychological assessments (FRSSD, FUCAS, ADAS-Cog, CDR, GDS, and NPI) revealed better results in the OLE group, except for GDS, which showed no change, but without statistically significant differences between the two groups.
Collapse
Affiliation(s)
- Sofia Loukou
- 1st Department of Neurology, Medical School, “AHEPA” General Hospital Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, 54124 Thessaloniki, Greece;
- Greek Association of Alzheimer’s Disease and Related Disorders—GAADRD, 54124 Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
| | - Georgia Papantoniou
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
- Laboratory of Psychology, Department of Early Childhood Education, School of Education, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia Pantazaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Magdalini Tsolaki
- 1st Department of Neurology, Medical School, “AHEPA” General Hospital Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, 54124 Thessaloniki, Greece;
- Greek Association of Alzheimer’s Disease and Related Disorders—GAADRD, 54124 Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
| |
Collapse
|
7
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
9
|
Chen Z, Wang X, Du S, Liu Q, Xu Z, Guo Y, Lin X. A review on traditional Chinese medicine natural products and acupuncture intervention for Alzheimer's disease based on the neuroinflammatory. Chin Med 2024; 19:35. [PMID: 38419106 PMCID: PMC10900670 DOI: 10.1186/s13020-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset and progressive development. It is clinically characterized by cognitive impairment, memory impairment and behavioral change. Chinese herbal medicine and acupuncture are important components of traditional Chinese medicine (TCM), and are commonly used in clinical treatment of AD. This paper systematically summarizes the research progress of traditional Chinese medicine natural products and acupuncture treatment of AD, which combined with existing clinical and preclinical evidence, based on a comprehensive review of neuroinflammation, and discusses the efficacy and potential mechanisms of traditional Chinese medicine natural products and acupuncture treatment of AD. Resveratrol, curcumin, kaempferol and other Chinese herbal medicine components can significantly inhibit the neuroinflammation of AD in vivo and in vitro, and are candidates for the treatment of AD. Acupuncture can alleviate the memory and cognitive impairment of AD by improving neuroinflammation, synaptic plasticity, nerve cell apoptosis and reducing the production and aggregation of amyloid β protein (Aβ) in the brain. It has the characteristics of early, safe, effective and benign bidirectional adjustment. The purpose of this paper is to provide a basis for improving the clinical strategies of TCM for the treatment of AD.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xinrui Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Simin Du
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qi Liu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhifang Xu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Xiaowei Lin
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
10
|
Alkhalifa AE, Al-Ghraiybah NF, Kaddoumi A. Extra-Virgin Olive Oil in Alzheimer's Disease: A Comprehensive Review of Cellular, Animal, and Clinical Studies. Int J Mol Sci 2024; 25:1914. [PMID: 38339193 PMCID: PMC10856527 DOI: 10.3390/ijms25031914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, increased oxidative stress, and neuroinflammation. Current treatment options include monoclonal antibody drugs, acetylcholinesterase, and n-methyl-d-aspartate (NMDA) antagonists. Although those treatments provide some improvements in patients' quality of life, they fail to prevent or cure AD. Current research aims to identify novel targets and tools for AD prevention and modification. In this context, several studies showed the beneficial effect of the Mediterranean diet in the prevention and treatment of AD. One integral component of the Mediterranean diet is olive oil and extra-virgin olive oil (EVOO), which is high in phenolic compounds. EVOO and other olive-related phenolic compounds have been shown to reduce the risk of developing mild cognitive impairment (MCI) and AD. In this review, we discuss the mechanisms by which EVOO and phenolic compounds exert neuroprotective effects, including modulation of AD pathologies and promotion of cognitive health. Findings indicate that EVOO and its phenolic constituents influence key pathological processes of AD, such as Aβ aggregation, tau phosphorylation, and neuroinflammation, while also enhancing BBB integrity and reducing oxidative stress. The human studies cited reveal a consistent trend where the consumption of olive oil is associated with cognitive benefits and a decreased risk of AD and related dementias. In conclusion, EVOO and its phenolic compounds hold promising potential for the prevention and treatment of AD, representing a significant shift towards more effective strategies against this complex neurodegenerative disorder.
Collapse
Affiliation(s)
| | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.)
| |
Collapse
|
11
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
12
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Tancheva L, Kalfin R, Minchev B, Uzunova D, Tasheva K, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Solak A, Lazarova M, Hodzhev Y, Grigorova V, Yarkov D, Petkova-Kirova P. Memory Recovery Effect of a New Bioactive Innovative Combination in Rats with Experimental Dementia. Antioxidants (Basel) 2023; 12:2050. [PMID: 38136170 PMCID: PMC10740861 DOI: 10.3390/antiox12122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease manifests as a complex pathological condition, with neuroinflammation, oxidative stress and cholinergic dysfunction being a few of the many pathological changes. Due to the complexity of the disease, current therapeutic strategies aim at a multitargeted approach, often relying on a combination of substances with versatile and complementary effects. In the present study, a unique combination of α-lipoic acid, citicoline, extracts of leaves from olive tree and green tea, vitamin D3, selenium and an immune-supporting complex was tested in scopolamine-induced dementia in rats. Using behavioral and biochemical methods, we assessed the effects of the combination on learning and memory, and elucidated the mechanisms of these effects. Our results showed that, compared to its components, the experimental combination was most efficient in improving short- and long-term memory as assessed by the step-through method as well as spatial memory as assessed by T-maze and Barnes maze underlined by decreases in AChE activity (p < 0.05) and LPO (p < 0.001), increases in SOD activity in the cortex (p < 0.05) and increases in catalase (p < 0.05) and GPx (p < 0.01) activities and BDNF (p < 0.001) and pCREB (p < 0.05) levels in the hippocampus. No significant histopathological changes or blood parameter changes were detected, making the experimental combination an effective and safe candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria;
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- National Sports Academy, Department of Physiology and Biochemistry, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Ayten Solak
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd 53, 1407 Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, Yanko Sakazov Blvd 26, 1504 Sofia, Bulgaria;
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Dobri Yarkov
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| |
Collapse
|
14
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
15
|
Khalil AA, Rahman MM, Rauf A, Islam MR, Manna SJ, Khan AA, Ullah S, Akhtar MN, Aljohani ASM, Abdulmonem WA, Simal-Gandara J. Oleuropein: Chemistry, extraction techniques and nutraceutical perspectives-An update. Crit Rev Food Sci Nutr 2023; 64:9933-9954. [PMID: 37272499 DOI: 10.1080/10408398.2023.2218495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Olive family (Oleaceae) contains several species among which Olea europaea L. is mostly used for production of olive oils. Various parts of olive tree are rich source of diverse bioactive compounds such as Apigenin, elenolic acid, Hydroxytyrosol, Ligstroside, Oleoside, Oleuropein, Oleuropein aglycone, Tyrosol, etc. Among these, oleuropein, a secoiridoid is predominantly found in olive leaves and young olive fruits of different species of Oleaceae family. Scientists have adopted numerous extraction methods (conventional & latest) to increase the yield of oleuropein. Among these techniques, maceration, soxhlet, microwave-assisted, ultrasonication, and supercritical fluid methods are most commonly employed for extraction of oleuropein. Evidently, this review emphasizes on various in-vitro and in-vivo studies focusing on nutraceutical properties of oleuropein. Available literature highlights the pharmaceutical potential of oleuropein against various diseases such as obesity, diabetes, cardiovascular complications, neurodegenerative diseases, cancer, inflammation, microbial infections, and oxidation. This review will benefit the scientific community as it narrates comprehensive literature regarding absorption, metabolism, bioavailability, extraction techniques, and nutraceutical perspectives associated with oleuropein.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sultana Juhara Manna
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Ammar Ahmed Khan
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Samee Ullah
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
16
|
Current trends in natural products for the treatment and management of dementia: Computational to clinical studies. Neurosci Biobehav Rev 2023; 147:105106. [PMID: 36828163 DOI: 10.1016/j.neubiorev.2023.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
The number of preclinical and clinical studies evaluating natural products-based management of dementia has gradually increased, with an exponential rise in 2020 and 2021. Keeping this in mind, we examined current trends from 2016 to 2021 in order to assess the growth potential of natural products in the treatment of dementia. Publicly available literature was collected from various databases like PubMed and Google Scholar. Oxidative stress-related targets, NF-κB pathway, anti-tau aggregation, anti-AChE, and A-β aggregation were found to be common targets and pathways. A retrospective analysis of 33 antidementia natural compounds identified 125 sustainable resources distributed among 65 families, 39 orders, and 7 classes. We found that families such as Berberidaceae, Zingiberaceae, and Fabaceae, as well as orders such as Lamiales, Sapindales, and Myrtales, appear to be important and should be researched further for antidementia compounds. Moreover, some natural products, such as quercetin, curcumin, icariside II, berberine, and resveratrol, have a wide range of applications. Clinical studies and patents support the importance of dietary supplements and natural products, which we will also discuss. Finally, we conclude with the broad scope, future challenges, and opportunities for field researchers.
Collapse
|
17
|
Romero-Márquez JM, Forbes-Hernández TY, Navarro-Hortal MD, Quirantes-Piné R, Grosso G, Giampieri F, Lipari V, Sánchez-González C, Battino M, Quiles JL. Molecular Mechanisms of the Protective Effects of Olive Leaf Polyphenols against Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054353. [PMID: 36901783 PMCID: PMC10001635 DOI: 10.3390/ijms24054353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's Disease (AD) is the cause of around 60-70% of global cases of dementia and approximately 50 million people have been reported to suffer this disease worldwide. The leaves of olive trees (Olea europaea) are the most abundant by-products of the olive grove industry. These by-products have been highlighted due to the wide variety of bioactive compounds such as oleuropein (OLE) and hydroxytyrosol (HT) with demonstrated medicinal properties to fight AD. In particular, the olive leaf (OL), OLE, and HT reduced not only amyloid-β formation but also neurofibrillary tangles formation through amyloid protein precursor processing modulation. Although the isolated olive phytochemicals exerted lower cholinesterase inhibitory activity, OL demonstrated high inhibitory activity in the cholinergic tests evaluated. The mechanisms underlying these protective effects may be associated with decreased neuroinflammation and oxidative stress via NF-κB and Nrf2 modulation, respectively. Despite the limited research, evidence indicates that OL consumption promotes autophagy and restores loss of proteostasis, which was reflected in lower toxic protein aggregation in AD models. Therefore, olive phytochemicals may be a promising tool as an adjuvant in the treatment of AD.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - Vivian Lipari
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Department of Prohect Management, Universidade Internacional do Cuanza, Cuito 250, Bié, Angola
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Correspondence:
| |
Collapse
|
18
|
Comparison of Oleocanthal-Low EVOO and Oleocanthal against Amyloid-β and Related Pathology in a Mouse Model of Alzheimer's Disease. Molecules 2023; 28:molecules28031249. [PMID: 36770920 PMCID: PMC9921117 DOI: 10.3390/molecules28031249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, and neuroinflammation. Growing evidence support the neuroprotective effects of extra-virgin olive oil (EVOO) and oleocanthal (OC). In this work, we aimed to evaluate and compare the beneficial effects of equivalent doses of OC-low EVOO (0.5 mg total phenolic content/kg) and OC (0.5 mg OC/kg) on Aβ and related pathology and to assess their effect on neuroinflammation in a 5xFAD mouse model with advanced pathology. Homozygous 5xFAD mice were fed with refined olive oil (ROO), OC-low EVOO, or OC for 3 months starting at the age of 3 months. Our findings demonstrated that a low dose of 0.5 mg/kg EVOO-phenols and OC reduced brain Aβ levels and neuroinflammation by suppressing the nuclear factor-κB (NF-κB) pathway and reducing the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. On the other hand, only OC suppressed the receptor for advanced glycation endproducts/high-mobility group box 1 (RAGE/HMGB1) pathway. In conclusion, our results indicated that while OC-low EVOO demonstrated a beneficial effect against Aβ-related pathology in 5xFAD mice, EVOO rich with OC could provide a higher anti-inflammatory effect by targeting multiple mechanisms. Collectively, diet supplementation with EVOO or OC could prevent, halt progression, and treat AD.
Collapse
|
19
|
Yang Z, Liu J, Wei S, Deng J, Feng X, Liu S, Liu M. A novel strategy for bioactive natural products targeting NLRP3 inflammasome in Alzheimer's disease. Front Pharmacol 2023; 13:1077222. [PMID: 36699095 PMCID: PMC9868240 DOI: 10.3389/fphar.2022.1077222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is an ageing-related progressive neurodegenerative brain disorder. Extracellular neuritic plaques composed of misfolded amyloid β (Aβ) proteins and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein are the two classical characteristics of AD. Aβ and tau pathologies induce neurite atrophy and neuronal apoptosis, leading to cognitive, language, and behavioral deficits. For decades, researchers have made great efforts to explore the pathogens and therapeutics of AD; however, its intrinsic mechanism remains unclear and there are still no well-established strategies to restore or even prevent this disease. Therefore, it would be beneficial for the establishment of novel therapeutic strategy to determine the intrinsic molecular mechanism that is interrelated with the initiation and progression of AD. A variety of evidence indicates that neuroinflammation plays a crucial role in the pathogenesis of AD. Nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3) is a key inflammasome sensor of cellular stress and infection that is involved in the innate immune system. In response to a wide range of stimuli like Aβ, NLRP3 assembles apoptosis-associated speck-like protein (ASC) and procaspase-1 into an inflammasome complex to induce the caspase-1 mediated secretion of interleukin (IL)-1β/IL-18 in M1 polarized microglia, triggering the pathophysiological changes and cognitive decline of AD. Therefore, targeting NLRP3 inflammasome seems an efficient path for AD treatment via regulating brain immune microenvironment. Furthermore, accumulating evidence indicates that traditional Chinese medicine (TCM) exerts beneficial effects on AD via NLRP3 inflammasome inactivation. In this review, we summarize current reports on the role and activated mechanisms of the NLRP3 inflammasome in the pathogenesis of AD. We also review the natural products for attenuating neuroinflammation by targeting NLRP3 inflammasome activation, which provides useful clues for developing novel AD treatments.
Collapse
Affiliation(s)
- Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Junxin Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.,Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Mingxin Liu
- College of Electrical and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
20
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
21
|
Wang X, Gao H, Zhang X, Qian S, Wang C, Deng L, Zhong M, Qing G. Aspartic Acid-Modified Phospholipids Regulate Cell Response and Rescue Memory Deficits in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2022; 13:2154-2163. [PMID: 35818957 DOI: 10.1021/acschemneuro.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Misfolding and accumulation of amyloid-β (Aβ) to form senile plaques are the main neuropathological signatures of Alzheimer's disease (AD). Decreasing Aβ production, inhibiting Aβ aggregation, and clearing Aβ plaques are thus considered an important strategy for AD treatment. However, numerous drugs cannot enter the AD clinical trials due to unsatisfactory biocompatibility, poor blood-brain barrier penetration, little biomarker impact, and/or low therapeutic indicators. Here, a pair of chiral aspartic acid-modified 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (l- and d-Asp-DPPE) are prepared to build stabilized chiral liposomes. We find that both l- and d-liposomes are able to rescue Aβ aggregation-induced apoptosis, oxidative stress, and calcium homeostasis, in which the effect of d-liposomes is more obvious than that of l-ones. Furthermore, in AD model mice (APPswe/PS1d9 double-transgenic mice), chiral liposomes not only show biosafety but also strongly improve cognitive deficits and reduce Aβ deposition in the brain. Our results suggest that chiral liposomes, particularly, d-liposomes, could be a potential therapeutic approach for AD treatment. This study opens new horizons by showing that liposomes will be used for drug development in addition to delivery and targeting functions.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shengxu Qian
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cunli Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lijing Deng
- Department of Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|