1
|
Zong T, Huang X, Zhou W, Hu Z, Jin L, Zhan P, Zhao Y, Sun J, Li G. Advances in the development of phosphodiesterase 5 inhibitors. Eur J Med Chem 2025; 287:117365. [PMID: 39947049 DOI: 10.1016/j.ejmech.2025.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Phosphodiesterase 5 (PDE5) can hydrolyze cyclic guanosine monophosphate (cGMP), which is critical for maintaining various physiological processes in organisms. Currently, clinically approved indications for PDE5 inhibitors encompass therapeutic agents for erectile dysfunction (ED), symptoms associated with lower urinary tract symptoms (LUTS), and pulmonary artery hypertension (PAH). Despite the fact that the development of selective PDE5 inhibitors has been a significant focus in drug development for some time following the proven success of sildenafil as a PDE5 inhibitor for ED treatment, fewer than ten drugs in this therapeutic class have been marketed in the past 25 years, often accompanied by adverse effects. Therefore, the development of novel, isozyme-selective PDE5 inhibitors is highly warranted. In this review, we systematically summarize the research progress of PDE5 inhibitors over the past 20 years, focusing on the meticulously combing and categorizing the structures of PDE5 inhibitors and natural products exhibiting PDE5 inhibitory activities, along with their therapeutic potentials. We hope that this summary will aid in better understanding of PDE5 inhibitors and provide insights for developing novel therapies targeting PDE5.
Collapse
Affiliation(s)
- Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China
| | - Xing Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China
| | - Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, 133002, China.
| |
Collapse
|
2
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
4
|
ElHady AK, El-Gamil DS, Abdel-Halim M, Abadi AH. Advancements in Phosphodiesterase 5 Inhibitors: Unveiling Present and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:1266. [PMID: 37765073 PMCID: PMC10536424 DOI: 10.3390/ph16091266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Phosphodiesterase 5 (PDE5) inhibitors presented themselves as important players in the nitric oxide/cGMP pathway, thus exerting a profound impact on various physiological and pathological processes. Beyond their well-known efficacy in treating male erectile dysfunction (ED) and pulmonary arterial hypertension (PAH), a plethora of studies have unveiled their significance in the treatment of a myriad of other diseases, including cognitive functions, heart failure, multiple drug resistance in cancer therapy, immune diseases, systemic sclerosis and others. This comprehensive review aims to provide an updated assessment of the crucial role played by PDE5 inhibitors (PDE5-Is) as disease-modifying agents taking their limiting side effects into consideration. From a medicinal chemistry and drug discovery perspective, the published PDE5-Is over the last 10 years and their binding characteristics are systemically discussed, and advancement in properties is exposed. A persistent challenge encountered with these agents lies in their limited isozyme selectivity; considering this obstacle, this review also highlights the breakthrough development of the recently reported PDE5 allosteric inhibitors, which exhibit an unparalleled level of selectivity that was rarely achievable by competitive inhibitors. The implications and potential impact of these novel allosteric inhibitors are meticulously explored. Additionally, the concept of multi-targeted ligands is critically evaluated in relation to PDE5-Is by inspecting the broader spectrum of their molecular interactions and effects. The objective of this review is to provide insight into the design of potent, selective PDE5-Is and an overview of their biological function, limitations, challenges, therapeutic potentials, undergoing clinical trials, future prospects and emerging uses, thus guiding upcoming endeavors in both academia and industry within this domain.
Collapse
Affiliation(s)
- Ahmed K. ElHady
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11865, Egypt;
| | - Dalia S. El-Gamil
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
5
|
A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur J Med Chem 2021; 225:113815. [PMID: 34479038 DOI: 10.1016/j.ejmech.2021.113815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
1, 2, 3, 4-Tetrahydro-β-carboline (THβC) scaffold is widespread in many natural products (NPs) and synthetic compounds which show a variety of pharmacological activities. In this article, we reviewed the design, structures and biological characteristics of reported synthetic THβC compounds, and structure and activity relationship (SAR) of them were also discussed. This work might provide a reference for subsequent drug development based on THβC.
Collapse
|
6
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
7
|
Beato A, Gori A, Boucherle B, Peuchmaur M, Haudecoeur R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer's Disease Therapy. J Med Chem 2021; 64:1392-1422. [PMID: 33528252 DOI: 10.1021/acs.jmedchem.0c01887] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure-activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
Collapse
Affiliation(s)
| | - Anthonin Gori
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.,CHANEL Parfums Beauté, F-93500 Pantin, France
| | | | | | | |
Collapse
|
8
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
9
|
Vaidya GN, Rana P, Venkatesh A, Chatterjee DR, Contractor D, Satpute DP, Nagpure M, Jain A, Kumar D. Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions. Eur J Med Chem 2020; 209:112844. [PMID: 33143937 DOI: 10.1016/j.ejmech.2020.112844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
'Epigenetic' regulation of genes via post-translational modulation of proteins is the current mainstay approach for the disease therapies, particularly explored in the Histone Deacetylase (HDAC) class of enzymes. Mainly sight saw in cancer chemotherapeutics, HDAC inhibitors have also found a promising role in other diseases (neurodegenerative disorders, cardiovascular diseases, and viral infections) and successfully entered in various combination therapies (pre-clinical/clinical stages). The prevalent flexibility in the structural design of HDAC inhibitors makes them easily tuneable to merge with other pharmacophore modules for generating multi-targeted single hybrids as a novel tactic to overcome drawbacks of polypharmacy. Herein, we reviewed the putative role of prevalent HDAC hybrids inhibitors in the current and prospective stage as a translational approach to overcome the limitations of the existing conventional drug candidates (parent molecule) when used either alone (drug resistance, solubility issues, adverse side effects, selectivity profile) or in combination (pharmacokinetic interactions, patient compliance) for treating various diseases.
Collapse
Affiliation(s)
- Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pooja Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ashwini Venkatesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Darshan Contractor
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India; Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
10
|
Rodrigues DA, Pinheiro PDSM, Sagrillo FS, Bolognesi ML, Fraga CAM. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med Res Rev 2020; 40:2177-2211. [DOI: 10.1002/med.21701] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro de S. M. Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Fernanda S. Sagrillo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| |
Collapse
|
11
|
Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Therapeutic Potential of Phosphodiesterase Inhibitors against Neurodegeneration: The Perspective of the Medicinal Chemist. ACS Chem Neurosci 2020; 11:1726-1739. [PMID: 32401481 PMCID: PMC8007108 DOI: 10.1021/acschemneuro.0c00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Increasing human
life expectancy prompts the development of novel
remedies for cognitive decline: 44 million people worldwide are affected
by dementia, and this number is predicted to triple by 2050. Acetylcholinesterase
and N-methyl-d-aspartate receptors represent
the targets of currently available drugs for Alzheimer’s disease,
which are characterized by limited efficacy. Thus, the search for
therapeutic agents with alternative or combined mechanisms of action
is wide open. Since variations in 3′,5′-cyclic adenosine
monophosphate, 3′,5′-cyclic guanosine monophosphate,
and/or nitric oxide levels interfere with downstream pathways involved
in memory processes, evidence supporting the potential of phosphodiesterase
(PDE) inhibitors in contrasting neurodegeneration should be
critically considered. For the preparation of this Review, more than
140 scientific papers were retrieved by searching PubMed and Scopus
databases. A systematic approach was adopted when overviewing the
different PDE isoforms, taking into account details on brain localization,
downstream molecular mechanisms, and inhibitors currently under study,
according to available in vitro and in vivo data. In the context of drug repurposing, a section focusing on
PDE5 was introduced. Original computational studies were performed
to rationalize the emerging evidence that suggests the role of PDE5
inhibitors as multi-target agents against neurodegeneration.
Moreover, since such compounds must cross the blood–brain barrier
and reach inhibitory concentrations in the central nervous system
to exert their therapeutic activity, physicochemical parameters
were analyzed and discussed. Taken together, literature and computational
data suggest that some PDE5 inhibitors, such as tadalafil, represent
promising candidates.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
12
|
ElHady AK, Shih SP, Chen YC, Liu YC, Ahmed NS, Keeton AB, Piazza GA, Engel M, Abadi AH, Abdel-Halim M. Extending the use of tadalafil scaffold: Development of novel selective phosphodiesterase 5 inhibitors and histone deacetylase inhibitors. Bioorg Chem 2020; 98:103742. [PMID: 32199305 DOI: 10.1016/j.bioorg.2020.103742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
Herein we present the synthesis and characterization of a novel chemical series of tadalafil analogues that display different pharmacological profiles. Compounds that have the 6R, 12aR configuration and terminal carboxylic acid group at the side chain arising from the piperazinedione nitrogen were potent PDE5 inhibitors, with compound 11 having almost equal potency to tadalafil and superior selectivity over PDE11, the most common off-target for tadalafil. Modifying the stereochemistry into 6S, 12aS configuration and adopting the hydroxamic acid moiety as a terminal group gave rise to compounds that only inhibited HDAC. Dual PDE5/HDAC inhibition could be achieved with compounds having 6R, 12aR configuration and hydroxamic acid moiety as a terminal group. The anticancer activity of the synthesized compounds was evaluated against a diverse number of cell lines of different origin. The compounds elicited anticancer activity against cell lines belonging to lymphoproliferative cancer as well as solid tumors. Despite the previous reports suggesting anticancer activity of PDE5 inhibitors, the growth inhibitory activity of the compounds seemed to be solely dependent on HDAC inhibition. Compound 26 (pan HDAC IC50 = 14 nM, PDE5 IC50 = 46 nM) displayed the most potent anticancer activity in the present series and was shown to induce apoptosis in Molt-4 cells. HDAC isoform selectivity testing for compound 26 showed that it is more selective for HDAC6 and 8 over HDAC1 by more than 20-fold.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
13
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
14
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
15
|
Dichiara M, Amata B, Turnaturi R, Marrazzo A, Amata E. Tuning Properties for Blood-Brain Barrier Permeation: A Statistics-Based Analysis. ACS Chem Neurosci 2020; 11:34-44. [PMID: 31793759 DOI: 10.1021/acschemneuro.9b00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the effort to define a set of rules useful in tuning the properties for a successful blood-brain barrier (BBB) permeation, we statistically analyzed a set of 328 compounds and correlated their experimental in vivo logBB with a series of computed descriptors. Contingency tables were constructed, observed and expected distributions were calculated, and chi-square (χ2) distributions were evaluated. This allowed to point out a significant dependence of certain physicochemical properties in influencing the BBB permeation. Of over 15 computed descriptors, 9 resulted to be particularly important showing highly significant χ2 distribution: polar surface area (χ2 = 66.79; p = 1.08 × 10-13), nitrogen and oxygen count (χ2 = 51.17; p = 2.06 × 10-10), logP (χ2 = 47.38; p = 1.27 × 10-9), nitrogen count (χ2 = 38.29; p = 9.77 × 10-8), logD (χ2 = 36.80; p = 36.80), oxygen count (χ2 = 35.83; p = 3.13 × 10-7), ionization state (χ2 = 33.02, p = 3.19 × 10-7), hydrogen bond acceptors (χ2 = 30.80; p = 3.36 × 10-6), and hydrogen bond donors (χ2 = 29.29; p = 6.81 × 10-6). Other parameters describing the mass and size of the molecules (molecular weight: 11.18; p = 2.46 × 10-2) resulted in being not significant since the population within the observed and expected distribution was similar. Depending on the combination of the significant descriptors, we set a three cases probabilistic scenario (BBB+, BBB-, BBB+/BBB-) that would prospectively be used to tune properties for BBB permeation.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Benedetto Amata
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
16
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
17
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
18
|
Liu L, Xu H, Ding S, Wang D, Song G, Huang X. Phosphodiesterase 5 inhibitors as novel agents for the treatment of Alzheimer's disease. Brain Res Bull 2019; 153:223-231. [PMID: 31493542 DOI: 10.1016/j.brainresbull.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), characterized by a progressive impairment of memory and cognition, is a major health problem in both developing and developed countries. Currently, no drugs can reverse the progression of AD. Phosphodiesterase 5 (PDE5) is a critical component of the cyclic guanosine monophosphate/protein kinase G (cGMP/PKG) signaling pathway in neurons, the inhibition of which has produced neuroprotective effects, and PDE5 inhibitors have recently been thought to be potential therapeutic agents for AD. In this paper, we summarized the outstanding progress that has been made in PDE5 inhibitors as anti-AD agents with encouraging results in animal studies, clinical trials and the investigations on the underlying mechanisms. The novel PDE5 inhibitors reported recently in the treatment of AD were also reviewed and discussed.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Huang Xu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shumin Ding
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Dongyan Wang
- Department of Medicine, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Guoqiang Song
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xianfeng Huang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
19
|
Abstract
Dementia is an overarching term which describes a group of symptoms that result in long-term decline in cognitive functioning that is significant enough to affect daily function. It is caused by a number of different diseases, the most common of which is Alzheimer's disease. Currently, there are no definitive biomarkers for preclinical or diagnostic use, or which differentiate between underlying disease types. The purpose of this review is to highlight several important areas of research on blood-based biomarkers of dementia, with a specific focus on epigenetic biomarkers. A systematic search of the literature identified 77 studies that compared blood DNA methylation between individuals with dementia and controls and 45 studies that measured microRNA. Very few studies were identified that focused on histone modifications. There were many promising findings from studies in the field of blood-based epigenetic biomarkers of dementia, however, a lack of consistency in study design, technologies, and platforms used for the biomarker measurement, as well as statistical analysis methods, have hampered progress. To date, there are very few findings that have been independently replicated across more than one study, indicating a preponderance of false-positive findings and the field has likely been plagued by positive publication bias. Here, we highlight and discuss several of the limitations of existing studies and provide recommendations for how these could be overcome in future research. A robust framework should be followed to enable development of the most valid and reproducible biomarkers with the strongest clinical utility. Defining a series of biomarkers that may be complimentary to each other could permit a stronger multifactorial biomarker to be developed that would allow for not only accurate dementia diagnosis but preclinical detection.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University , Melbourne , Australia.,Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Australia
| |
Collapse
|
20
|
Cuadrado-Tejedor M, Pérez-González M, García-Muñoz C, Muruzabal D, García-Barroso C, Rabal O, Segura V, Sánchez-Arias JA, Oyarzabal J, Garcia-Osta A. Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Front Aging Neurosci 2019; 11:149. [PMID: 31281249 PMCID: PMC6597953 DOI: 10.3389/fnagi.2019.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
The discouraging results with therapies for Alzheimer’s disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aβ, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.
Collapse
Affiliation(s)
- Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Cristina García-Muñoz
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Damián Muruzabal
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Víctor Segura
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
21
|
De Simone A, Milelli A. Histone Deacetylase Inhibitors as Multitarget Ligands: New Players in Alzheimer's Disease Drug Discovery? ChemMedChem 2019; 14:1067-1073. [PMID: 30958639 DOI: 10.1002/cmdc.201900174] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 01/14/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) are responsible for controlling gene expression by modulating the acetylation status of histone proteins. Furthermore, they modulate the activity of cytoplasmic non-histone proteins. Due to the involvement of HDACs in neurodevelopment, memory formation, and cognitive processes, HDACIs have been suggested as innovative agents for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Given their mechanisms of action and the complex nature of AD, HDACIs have been proposed for the design of novel multitarget ligands (MTLs). To this aim, the fragment responsible for HDAC inhibition has been coupled with other structures that are able to provide additional biological actions, such as antioxidant activity or the inhibition of phosphodiesterase 5, transglutaminase 2, and glycogen synthase kinase 3β. Herein we discuss recent efforts to design HDACI-based MTLs as potential disease-modifying entities.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| |
Collapse
|
22
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Haizhong T, Wei W, Musheng X, Garcia-Osta A, Oyarzabal J. Discovery of in Vivo Chemical Probes for Treating Alzheimer's Disease: Dual Phosphodiesterase 5 (PDE5) and Class I Histone Deacetylase Selective Inhibitors. ACS Chem Neurosci 2019; 10:1765-1782. [PMID: 30525452 DOI: 10.1021/acschemneuro.8b00648] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In order to determine the contributions of histone deacetylase (HDAC) isoforms to the beneficial effects of dual phosphodiesterase 5 (PDE5) and pan-HDAC inhibitors on in vivo models of Alzheimer's disease (AD), we have designed, synthesized, and tested novel chemical probes with the desired target compound profile of PDE5 and class I HDAC selective inhibitors. Compared to previous hydroxamate-based series, these molecules exhibit longer residence times on HDACs. In this scenario, shorter or longer preincubation times may have a significant impact on the IC50 values of these compounds and therefore on their corresponding selectivity profiles on the different HDAC isoforms. On the other hand, different chemical series have been explored and, as expected, some pairwise comparisons show a clear impact of the scaffold on biological responses (e.g., 35a vs 40a). The lead identification process led to compound 29a, which shows an adequate ADME-Tox profile and in vivo target engagement (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation) in the central nervous system (CNS), suggesting that this compound represents an optimized chemical probe; thus, 29a has been assayed in a mouse model of AD (Tg2576).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Anatomy Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | - Tan Haizhong
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, PR China
| | - Wu Wei
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, PR China
| | - Xu Musheng
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, PR China
| | | | | |
Collapse
|
23
|
Hu J, An B, Pan T, Li Z, Huang L, Li X. Design, synthesis, and biological evaluation of histone deacetylase inhibitors possessing glutathione peroxidase-like and antioxidant activities against Alzheimer’s disease. Bioorg Med Chem 2018; 26:5718-5729. [DOI: 10.1016/j.bmc.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
|
24
|
Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 2018; 842:20-32. [PMID: 30342950 DOI: 10.1016/j.ejphar.2018.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Icariin is a major active component of the traditional herb Epimedium, also known as Horny Goat Weed. It has been extensively studied throughout the past several years and is known to exert anti-oxidative, anti-neuroinflammatory, and anti-apoptotic effects. It is now being considered as a potential therapeutic agent for a wide variety of disorders, ranging from neoplasm to cardiovascular disease. More recent studies have shown that icariin exhibits potential preventive and/or therapeutic effects in the nervous system. For example, icariin can prevent the production of amyloid β (1-42) and inhibit the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE-1) in animal models of Alzheimer's disease (AD). Icariin has been shown to mitigate pro-inflammatory responses of microglia in culture and in animal models of cerebral ischemia, depression, Parkinson's disease (PD), and multiple sclerosis (MS). Icariin also prevents the neurotoxicity induced by hydrogen peroxide (H2O2), endoplasmic reticulum (ER) stress, ibotenic acid, and homocysteine. In addition, icariin is implicated in facilitating learning and memory in both normal aging animals and disease models. To date, we still have no consolidated source of knowledge about the pharmacological effects of icariin in the nervous system, though its roles in other tissues have been reviewed in recent years. Here, we summarize the pharmacological development of icariin as well as its possible mechanisms in prevention and/or therapy of disorders afflicting the nervous system in hope of expanding the knowledge about the preventive and/or therapeutic effect of icariin in brain disorders.
Collapse
Affiliation(s)
- Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854 New Jersey, United States
| | - Xiaoying Hua
- Department of Pharmacology, Wuxi Ninth People's Hospital, #999 Liangxi Road, Wu xi, Jiangsu 226001, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China.
| |
Collapse
|
25
|
Ni W, Wang H, Li X, Zheng X, Wang M, Zhang J, Gong Q, Ling D, Mao F, Zhang H, Li J. Novel Tadalafil Derivatives Ameliorates Scopolamine-Induced Cognitive Impairment in Mice via Inhibition of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5). ACS Chem Neurosci 2018; 9:1625-1636. [PMID: 29616790 DOI: 10.1021/acschemneuro.8b00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the basis of the drug-repositioning and redeveloping strategy, first-generation dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) have been recently reported as a potentially novel therapeutic method for the treatment of Alzheimer's disease (AD), and the lead compound 2 has proven this method was feasible in AD mouse models. In this study, our work focused on exploring alternative novel tadalafil derivatives (3a-s). Among the 19 analogues, compound 3c exhibited good selective dual-target AChE/PDE5 inhibition and good blood-brain barrier (BBB) permeability. Moreover, its citrate (3c·Cit) possessed improved water solubility and good effects against scopolamine-induced cognitive impairment with inhibition of cortical AChE activities and enhancement of cAMP response element-binding protein (CREB) phosphorylation ex vivo.
Collapse
Affiliation(s)
- Wei Ni
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaokang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Manjiong Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jian Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dazheng Ling
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Fei Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
26
|
Zheng H, Li L, Sun B, Gao Y, Song W, Zhao X, Gao Y, Xie Z, Zhang N, Ji J, Yuan H, Lou H. Design and synthesis of furyl/thineyl pyrroloquinolones based on natural alkaloid perlolyrine, lead to the discovery of potent and selective PDE5 inhibitors. Eur J Med Chem 2018; 150:30-38. [DOI: 10.1016/j.ejmech.2018.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
|
27
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Haizhong T, Wei W, Musheng X, Garcia-Osta A, Oyarzabal J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2018; 150:506-524. [PMID: 29549837 DOI: 10.1016/j.ejmech.2018.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
We have identified chemical probes that act as dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors (>1 log unit difference versus class I HDACs) to decipher the contribution of HDAC isoforms to the positive impact of dual-acting PDE5 and HDAC inhibitors on mouse models of Alzheimer's disease (AD) and fine-tune this systems therapeutics approach. Structure- and knowledge-based approaches led to the design of first-in-class molecules with the desired target compound profile: dual PDE5 and HDAC6-selective inhibitors. Compound 44b, which fulfilled the biochemical, functional and ADME-Tox profiling requirements and exhibited adequate pharmacokinetic properties, was selected as pharmacological tool compound and tested in a mouse model of AD (Tg2576) in vivo.
Collapse
Affiliation(s)
- Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain; Anatomy Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Irene de Miguel
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Ana Ugarte
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Ander Estella-Hermoso de Mendoza
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Elena Sáez
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Maria Espelosin
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Susana Ursua
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Tan Haizhong
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Wu Wei
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Xu Musheng
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, 4th Avenue, Tianjin, 300456, PR China
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, E-31008, Pamplona, Spain.
| |
Collapse
|
28
|
Mao F, Wang H, Ni W, Zheng X, Wang M, Bao K, Ling D, Li X, Xu Y, Zhang H, Li J. Design, Synthesis, and Biological Evaluation of Orally Available First-Generation Dual-Target Selective Inhibitors of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2018; 9:328-345. [PMID: 29068218 DOI: 10.1021/acschemneuro.7b00345] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Through drug discovery strategies of repurposing and redeveloping existing drugs, a series of novel tadalafil derivatives were rationally designed, synthesized, and evaluated to seek dual-target AChE/PDE5 inhibitors as good candidate drugs for Alzheimer's disease (AD). Among these derivatives, 1p and 1w exhibited excellent selective dual-target AChE/PDE5 inhibitory activities and improved blood-brain barrier (BBB) penetrability. Importantly, 1w·Cit (citrate of 1w) could reverse the cognitive dysfunction of scopolamine-induced AD mice and exhibited an excellent effect on enhancing cAMP response element-binding protein (CREB) phosphorylation in vivo, a crucial factor in memory formation and synaptic plasticity. Moreover, the molecular docking simulations of 1w with hAChE and hPDE5A confirmed that our design strategy was rational. In summary, our research provides a potential selective dual-target AChE/PDE5 inhibitor as a good candidate drug for the treatment of AD, and it could also be regarded as a small molecule probe to validate the novel AD therapeutic approach in vivo.
Collapse
Affiliation(s)
- Fei Mao
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Huan Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Ni
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xinyu Zheng
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Manjiong Wang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Keting Bao
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Dazheng Ling
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiaokang Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yixiang Xu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Haiyan Zhang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
29
|
Tran TP, Fisher EL, Wright AS, Yang J. Concise Synthesis of Versatile Imidazo[5,1-f][1,2,4]triazin-4(3H)-ones. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuan P. Tran
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ethan L. Fisher
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ann S. Wright
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jiao Yang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
30
|
Allende M, Molina E, Lecumberri R, Sanchez-Arias JA, Ugarte A, Guruceaga E, Oyarzabal J, Hermida J. Inducing heat shock protein 70 expression provides a robust antithrombotic effect with minimal bleeding risk. Thromb Haemost 2017; 117:1722-1729. [PMID: 28837204 DOI: 10.1160/th17-02-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/11/2017] [Indexed: 01/03/2023]
Abstract
Antithrombotic medications target coagulation factors. Their use is associated with an increased bleeding risk. Safer drugs are needed. The heat shock protein 70 (Hsp70) exhibits antithrombotic properties that do not influence bleeding. By using murine models, we aimed to test the hypothesis that overexpressing Hsp70 with CM-695, a first in class dual inhibitor of HDAC6 and phosphodiesterase 9, protects against thrombosis while leaves bleeding tendency unaltered. CM-695 was used to induce Hsp70 overexpression. Hsp70 overexpressing mice were submitted to three thrombosis-triggering procedures. The ferric chloride carotid artery model was used to compare the antithrombotic role of CM-695 and rivaroxaban, a direct oral anticoagulant. The mouse tail transection model was used to compare the bleeding tendency upon CM-695 or rivaroxaban administration. Intraperitoneal (i. p.) 20 mg/kg CM-695 increased Hsp70 expression markedly in the murine aortic tissue. This treatment delayed thrombosis in the collagen/epinephrine [p=0.04 (Log-Rank test), n=10], Rose Bengal/laser [median vessel occlusion time (OT): 58.6 vs 39.0 minutes (min) in the control group (CG), p=0.008, n≥10] and ferric chloride (OT: 14.7 vs 9.2 min in the CG, p=0.032, n≥10) models. I.p. 80 mg/kg CM-695 (n≥9) and intravenous 3 mg/kg rivaroxaban (n≥8) significantly delayed thrombosis. CM-695 did not induce bleeding [median bleeding time (BT): 8.5 vs 7.5 min in the CG, n≥10]. However, BT was dramatically increased by rivaroxaban (30.0 vs 13.7 min in the CG, p=0.001, n=10). In conclusion, CM-695 is a new antithrombotic small molecule devoid of bleeding risk that may be envisioned as a useful clinical tool.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - José Hermida
- José Hermida, MD,PhD, University of Navarra, Center for Applied Medical Research (CIMA), Laboratory of Thrombosis and Haemostasis, Pío XII 55, Pamplona 31008, Spain, Tel.: +34948194700×3027, Fax: +34948194716, E-mail:
| |
Collapse
|