1
|
Xu T, Duan J, Li Y, Wang G, Li S, Li Y, Lu W, Yan X, Ren Y, Guo F, Cao L, Lu J. Generation of a TPH2-EGFP reporter cell line for purification and monitoring of human serotonin neurons in vitro and in vivo. Stem Cell Reports 2022; 17:2365-2379. [PMID: 36150384 PMCID: PMC9561537 DOI: 10.1016/j.stemcr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 10/25/2022] Open
Abstract
Generation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a promising platform to explore the mechanisms of serotonin-associated neuropsychiatric disorders. However, neural differentiation always yields heterogeneous cell populations, making it difficult to identify and purify SNs in vitro or track them in vivo following transplantation. Herein, we generated a TPH2-EGFP reporter hPSC line with insertion of EGFP into the endogenous tryptophan hydroxylase 2 (TPH2) locus using CRISPR-Cas9-mediated gene editing technology. This TPH2-reporter, which faithfully indicated TPH2 expression during differentiation, enabled us to obtain purified SNs for subsequent transcriptional analysis and study of pharmacological responses to antidepressants. In addition, the reporter system showed strong EGFP expression to indicate SNs, which enabled us to explore in vitro and ex vivo electrophysiological properties of SNs. In conclusion, this TPH2-EGFP reporter cell line might be of great significance for studies on human SN-related development and differentiation, drug screening, disease modeling, and cell replacement therapies.
Collapse
Affiliation(s)
- Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenting Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinyi Yan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixuan Ren
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Suzhou Institute of Tongji University, Suzhou 215101, China.
| |
Collapse
|
2
|
Pratelli M, Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019; 161:3-14. [DOI: 10.1016/j.biochi.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023]
|
3
|
Yakoub AM. Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain. Neural Regen Res 2019; 14:757-761. [PMID: 30688257 PMCID: PMC6375034 DOI: 10.4103/1673-5374.249283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multiple protocols have been devised to generate cerebral organoids that recapitulate features of the developing human brain, including the presence of a large, multi-layered, cortical-like neuronal zone. However, the central question is whether these organoids truly present mature, functional neurons and astrocytes, which may qualify the system for in-depth molecular neuroscience studies focused at neuronal and synaptic functions. Here, we demonstrate that cerebral organoids derived under optimal differentiation conditions exhibit mature, fully functional neurons and astrocytes, as validated by immunohistological, gene expression, and electrophysiological, analyses. Neurons in cerebral organoids showed gene expression profiles and electrophysiological properties similar to those reported for fetal human brain. These important findings indicate that cerebral organoids recapitulate the developing human brain and may enhance use of cerebral organoids in modeling human brain development or investigating neural deficits that underlie neurodevelopmental and neuropsychiatric conditions, such as autism or intellectual disorders.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Swain S, Gupta RK, Ratnayake K, Priyanka PD, Singh R, Jana S, Mitra K, Karunarathne A, Giri L. Confocal Imaging and k-Means Clustering of GABA B and mGluR Mediated Modulation of Ca 2+ Spiking in Hippocampal Neurons. ACS Chem Neurosci 2018; 9:3094-3107. [PMID: 30044088 DOI: 10.1021/acschemneuro.8b00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Imaging cytosolic calcium in neurons is emerging as a new tool in neurological disease diagnosis, drug screening, and toxicity testing. Ca2+ oscillation signatures show a significant variation depending on GPCR targeting agonists. Quantification of Ca2+ spike trains in ligand induced Ca2+ oscillations remains challenging due to their inherent heterogeneity in primary culture. Moreover, there is no framework available for identification of optimal number of clusters and distance metric to cluster Ca2+ spike trains. Using quantitative confocal imaging and clustering analysis, we show the characterization of Ca2+ spiking in GPCR targeting drug-treated primary culture of hippocampal neurons. A systematic framework for selection of the clustering method instead of an intuition-based method was used to optimize the cluster number and distance metric. The results discern neurons with diverse Ca2+ response patterns, including higher amplitude fast spiking and lower spiking responses, and their relative percentage in a neuron population in absence and presence of GPCR-targeted drugs. The proposed framework was employed to show that the clustering pattern of Ca2+ spiking can be controlled using GABAB and mGluR targeting drugs. This approach can be used for unbiased measurement of neural activity and identification of spiking population with varying amplitude and frequencies, providing a platform for high-content drug screening.
Collapse
Affiliation(s)
- Sarpras Swain
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Rishikesh Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Pantula Devi Priyanka
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Ranjana Singh
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Soumya Jana
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, India
| |
Collapse
|
5
|
Pérez-Rodríguez M, García-Mendoza E, Farfán-García ED, Das BC, Ciprés-Flores FJ, Trujillo-Ferrara JG, Tamay-Cach F, Soriano-Ursúa MA. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine. Neurotoxicology 2017; 62:92-99. [PMID: 28595910 DOI: 10.1016/j.neuro.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Several striatal toxins can be used to induce motor disruption. One example is MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), whose toxicity is accepted as a murine model of parkinsonism. Recently, 3-Thienylboronic acid (3TB) was found to produce motor disruption and biased neuronal damage to basal ganglia in mice. The aim of this study was to examine the toxic effects of four boronic acids with a close structural relationship to 3TB (all having a five-membered cycle), as well as boric acid and 3TB. These boron-containing compounds were compared to MPTP regarding brain access, morphological disruption of the CNS, and behavioral manifestations of such disruption. Data was collected through acute toxicity evaluations, motor behavior tests, necropsies, determination of neuronal survival by immunohistochemistry, Raman spectroscopic analysis of brain tissue, and HPLC measurement of dopamine in substantia nigra and striatum tissue. Each compound showed a distinct profile for motor disruption. For example, motor activity was not disrupted by boric acid, but was decreased by two boronic acids (caused by a sedative effect). 3TB, 2-Thienyl and 2-furanyl boronic acid gave rise to shaking behavior. The various manifestations generated by these compounds can be linked, in part, to different levels of dopamine (measured by HPLC) and degrees of neuronal damage in the basal ganglia and cerebellum. Clearly, motor disruption is not induced by all boronic acids with a five-membered cycle as substituent. Possible explanations are given for the diverse chemico-morphological changes and degrees of disruption of the motor system, considering the role of boron and the structure-toxicity relationship.
Collapse
Affiliation(s)
- Maribel Pérez-Rodríguez
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Esperanza García-Mendoza
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Del. Tlalpan, México City, Mexico
| | - Eunice D Farfán-García
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Bhaskar C Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Madison Avenue, Box 1243 New York, NY 10029, USA
| | - Fabiola J Ciprés-Flores
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Feliciano Tamay-Cach
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico.
| |
Collapse
|
6
|
Maddaloni G, Bertero A, Pratelli M, Barsotti N, Boonstra A, Giorgi A, Migliarini S, Pasqualetti M. Development of Serotonergic Fibers in the Post-Natal Mouse Brain. Front Cell Neurosci 2017; 11:202. [PMID: 28769763 PMCID: PMC5509955 DOI: 10.3389/fncel.2017.00202] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.
Collapse
Affiliation(s)
- Giacomo Maddaloni
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Alice Bertero
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| | - Marta Pratelli
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Annemarie Boonstra
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Andrea Giorgi
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| |
Collapse
|