1
|
Sekine R, Takeda K, Suenaga T, Tsuno S, Kaiya T, Kiso M, Yamayoshi S, Takaku Y, Ohno S, Yamaguchi Y, Nishizawa S, Sumitomo K, Ikuta K, Kanda T, Kawaoka Y, Nishimura H, Kuge S. G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication. Commun Biol 2025; 8:27. [PMID: 39815031 PMCID: PMC11735773 DOI: 10.1038/s42003-024-07351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice. G12(S) might exhibit a stable G-tetrad with left-handed parallel-stranded G-quadruplex, and inhibit the replication process by impeding interaction between viral nucleoproteins and viral RNA in the cytoplasm. Unlike previous antiviral strategies that target the G-quadruplexes of the viral genome, we now show that excess exogenous G-quadruplex-forming small RNA displaces genomic RNA from ribonucleoprotein, effectively inhibiting viral replication. The approach has the potential to facilitate the creation of versatile middle-molecule antivirals featuring lipid nanoparticle-free delivery.
Collapse
Affiliation(s)
- Ryoya Sekine
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouki Takeda
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tsukasa Suenaga
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Satsuki Tsuno
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Takumi Kaiya
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihide Takaku
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kazuhiro Sumitomo
- Division of Geriatric and Community Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, National Hospital Organization Sendai Medical Center, 2-1-12, Miyagino, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan
| | - Shusuke Kuge
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
2
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
3
|
Wang W, Liu M, Gao W, Sun Y, Dong X. Coassembled Chitosan-Hyaluronic Acid Nanoparticles as a Theranostic Agent Targeting Alzheimer's β-Amyloid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55879-55889. [PMID: 34786930 DOI: 10.1021/acsami.1c17267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Amyloid (Aβ) fibrillogenesis is closely associated with the pathogenesis of Alzheimer's disease (AD), so detection and inhibition of Aβ aggregation are of significance for the theranostics of AD. In this work, the coassembled nanoparticles of chitosan and hyaluronic acid cross-linked with glutaraldehyde (CHG NPs) were found to work as a theranostic agent for imaging/probing and inhibition of Aβ fibrillization both in vitro and in vivo. The biomass-based CHG NPs of high stability exhibited a wide range of excitation/emission wavelengths and showed binding affinity toward Aβ aggregates, especially for soluble Aβ oligomers. CHG NPs displayed weak emission in the monodispersed state, while they remarkably emitted increased red fluorescence upon interacting with Aβ oligomers and fibrils, showing high sensitivity with a detection limit of 0.1 nM. By comparing the different fluorescence responses of CHG NPs and Thioflavin T to Aβ aggregation, the Aβ oligomerization rate during nucleation can be determined. Moreover, the fluorescence recognition behavior of CHG NPs was selective. CHG NPs specifically bind to negatively charged amyloid aggregates but not to positively charged amyloids and negatively charged soluble proteins. Such enhancement in fluorescence emission is attributed to the clustering-triggered emission effect of CHG NPs after interaction with Aβ aggregates via various electronic conjugations and hydrogen bonding, electrostatic, and hydrophobic interactions. Besides fluorescent imaging/probing, CHG NPs over 360 μg/mL could almost completely inhibit the formation of Aβ fibrils, exhibiting the capability of regulating Aβ aggregation. In-vivo assays with Caenorhabditis elegans CL2006 demonstrated the potency of CHG NPs as an effective theranostic nanoagent for imaging Aβ plaques and inhibiting Aβ deposition. The findings proved the potential of CHG NPs for development as a potent agent for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Miaomiao Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
5
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
6
|
Zhou X, Wang S, Zhang C, Lin Y, Lv J, Hu S, Zhang S, Li M. Colorimetric determination of amyloid-β peptide using MOF-derived nanozyme based on porous ZnO-Co 3O 4 nanocages. Mikrochim Acta 2021; 188:56. [PMID: 33502585 DOI: 10.1007/s00604-021-04705-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and rapid colorimetric biosensor has been developed for determination of amyloid-β peptide (Aβ) and study of amyloidogenesis based on the high peroxidase-like activity of porous bimetallic ZnO-Co3O4 nanocages (NCs). Due to the high binding ability of Aβ monomer to ZnO-Co3O4 NCs, the catalytic activity of ZnO-Co3O4 NCs can be significantly suppressed by Aβ monomer. This finding forms the basis for a colorimetric assay for Aβ monomer detection. The detection limit for Aβ monomer is 3.5 nM with a linear range of 5 to 150 nM (R2 = 0.997). The system was successfully applied to the determination of Aβ monomer in rat cerebrospinal fluid. Critically, the different inhibition effects of monomeric and aggregated Aβ species on the catalytic activity of ZnO-Co3O4 NCs enabled the sensor to be used for tracking the dynamic progress of Aβ aggregation and screening Aβ inhibitors. Compared with the commonly used thioflavin T fluorescence assay, this method provided higher sensitivity to the formation of Aβ oligomer at the very early assembly stage. Our assay shows potential application in early diagnosis and therapy of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xi Zhou
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Cong Zhang
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Yulong Lin
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuyang Hu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shanshan Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng Li
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
7
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
8
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Dual-functional AIE fluorescent probes for imaging β-amyloid plaques and lipid droplets. Anal Chim Acta 2020; 1133:109-118. [PMID: 32993862 DOI: 10.1016/j.aca.2020.07.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease. Better imaging and early diagnosis of biomarkers of AD is extremely important for therapeutic interventions. The amyloid cascade hypothesis and its revised version identify insoluble β-amyloid deposition as a good diagnostic biomarker for AD. Moreover, lipid droplets may also act as an auxiliary biomarker related to AD pathology based on recent studies. Herein, two quinoline-based AIE probes were designed and synthesized for the imaging of Aβ plaques and lipid droplets. The probes exhibited remarkable turn-on fluorescence enhancements with the Aβ aggregates. The lipid droplets-targeting probe FB exhibited high selectivity and binding affinity towards the Aβ aggregates with a detection limit as low as 26.9 nM. Furthermore, FB was capable of readily imaging Aβ plaques and lipid droplets at the cellular level and in brain sections of transgenic AD mice. The probe FB can serve as a promising tool for developing early diagnosis and innovative therapeutics of AD.
Collapse
|
10
|
Yett A, Lin LY, Beseiso D, Miao J, Yatsunyk LA. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J PORPHYR PHTHALOCYA 2019; 23:1195-1215. [PMID: 34385812 PMCID: PMC8356643 DOI: 10.1142/s1088424619300179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N-methyl mesoporphyrin IX (NMM) is a water-soluble, non-symmetric porphyrin with excellent optical properties and unparalleled selectivity for G-quadruplex (GQ) DNA. G-quadruplexes are non-canonical DNA structures formed by guanine-rich sequences. They are implicated in genomic stability, longevity, and cancer. The ability of NMM to selectively recognize GQ structures makes it a valuable scaffold for designing novel GQ binders. In this review, we survey the literature describing the GQ-binding properties of NMM as well as its wide utility in chemistry and biology. We start with the discovery of the GQ-binding properties of NMM and the development of NMM-binding aptamers. We then discuss the optical properties of NMM, focusing on the light-switch effect - high fluorescence of NMM induced upon its binding to GQ DNA. Additionally, we examine the affinity and selectivity of NMM for GQs, as well as its ability to stabilize GQ structures and favor parallel GQ conformations. Furthermore, a portion of the review is dedicated to the applications of NMM-GQ complexes as biosensors for heavy metals, small molecules (e.g. ATP and pesticides), DNA, and proteins. Finally and importantly, we discuss the utility of NMM as a probe to investigate the roles of GQs in biological processes.
Collapse
Affiliation(s)
- Ariana Yett
- Swarthmore College, Department of Chemistry and Biochemistry, 500 College Ave, Swarthmore, PA 19081, USA
| | - Linda Yingqi Lin
- Swarthmore College, Department of Chemistry and Biochemistry, 500 College Ave, Swarthmore, PA 19081, USA
| | - Dana Beseiso
- Swarthmore College, Department of Chemistry and Biochemistry, 500 College Ave, Swarthmore, PA 19081, USA
| | - Joanne Miao
- Swarthmore College, Department of Chemistry and Biochemistry, 500 College Ave, Swarthmore, PA 19081, USA
| | - Liliya A. Yatsunyk
- Correspondence to: Liliya A. Yatsunyk, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA. tel.: 610-328-8558,
| |
Collapse
|
11
|
Aliyan A, Cook NP, Martí AA. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem Rev 2019; 119:11819-11856. [DOI: 10.1021/acs.chemrev.9b00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Aliyan
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran 1991633361
- Khatam University, Tehran, Iran 1991633356
| | - Nathan P. Cook
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | | |
Collapse
|
12
|
Umar MI, Ji D, Chan CY, Kwok CK. G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules 2019; 24:E2416. [PMID: 31262059 PMCID: PMC6650947 DOI: 10.3390/molecules24132416] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023] Open
Abstract
Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles in various cellular events in both macro- and micro-organisms. The identification and characterization of G4s can help to understand their different biological roles and potential applications in diagnosis and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4 fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly identified in DNA and RNA aptamers against targets that include proteins and small molecules, which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent development of G4-containing aptamers and highlight their applications in biosensing, bioimaging, and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent turn-on ligands and G4-containing aptamers.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Danyang Ji
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Lee D, Kim SM, Kim HY, Kim Y. Fluorescence Chemicals To Detect Insoluble and Soluble Amyloid-β Aggregates. ACS Chem Neurosci 2019; 10:2647-2657. [PMID: 31009195 DOI: 10.1021/acschemneuro.9b00199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Misfolded amyloid-β (Aβ) is the key biomarker of Alzheimer's disease (AD), and discoveries of fluorescence chemicals visualizing such Aβ aggregates in the brain have made major contributions in postmortem and antemortem diagnosis of the disorder. Insoluble senile plaques of Aβ in brain tissues are commonly stained with thioflavin and congo red dyes and observed through microscopy, while those in living patient brains are detected via radioisotope-labeled fluorescence chemicals for positron emission tomography. Clinical evidence strongly supports the view that plaques are well-associated with the onset but not with the progression of AD. Plaques could accumulate while cognitive functions of at-risk individuals are still intact, and thus, another biomarker is needed to monitor neurodegeneration. Soluble Aβ oligomers are considered to have strong correlation with neuronal loss and brain atrophy as they are the most neurotoxic forms of misfolded Aβ. However, oligomer-targeting probes encounter several major difficulties in development. There is a significant structural distinction between two Aβ species-plaques are β-sheet-rich while oligomers are unordered-and it is still difficult to isolate and stabilize the oligomeric forms of Aβ. Due to these challenges, soluble oligomer-detecting imaging probes are relatively rare compared to the plaque-targeting chemical probes. This Review describes biochemical and optical characteristics of up-to-date fluorescence chemicals targeting insoluble plaques and soluble oligomers of Aβ. We also highlight the contributions of Aβ fluorescence chemicals to the clinical diagnosis of AD and technical challenges in searching for enhanced imaging probes.
Collapse
|
14
|
Yao Y, Liu Y, Zhang H, Wang X. A highly sensitive and low-background fluorescence assay for pesticides residues based on hybridization chain reaction amplification assisted by magnetic separation. Methods Appl Fluoresc 2019; 7:035006. [PMID: 31042679 DOI: 10.1088/2050-6120/ab1e7a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the concern over food safety, it is important to detect the pesticides residues in agricultural products. Here, a highly sensitive and low background fluorescent strategy for the detection of pesticides residues has been developed. The fluorescence intensity of N-methyl mesoporphyrin IX (NMM) binding G-quadruplex could be turn off because of inhibiting effect of the pesticides on the acetylcholinesterase (AChE) activity. For that, four single-stranded DNAs (named linker, trigger, H1 and H2, respectively) are rational designed and T-Hg-T mismatches duplex DNAs as a recognizer combined with the separation of magnetic beads. The design of hybridization chain reaction (HCR) amplification strategy assisted by magnetic separation has been adopted to improve the detection sensitivity. In the presence of pesticides, the amount of the thiol group generated by hydrolysis reaction of acetylcholine (ACh) is reduced, lead to release of less trigger DNA. Therefor subsequent HCR process is retarded with decreased fluorescence intensity. The reduced fluorescence intensity has a quantitative relationship with the pesticide concentration. The limit of detection of chlorpyrifos was estimated to be 2.0 ng ml-1. It has been applied to detect the pesticides residues in real samples.
Collapse
Affiliation(s)
- Yueyue Yao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Yang L, Ding P, Luo Y, Wang J, Lv H, Li W, Cao Y, Pei R. Exploration of Catalytic Nucleic Acids on Porphyrin Metalation and Peroxidase Activity by in Vitro Selection of Aptamers for N-Methyl Mesoporphyrin IX. ACS COMBINATORIAL SCIENCE 2019; 21:83-89. [PMID: 30602113 DOI: 10.1021/acscombsci.8b00129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To develop a novel light-up probe and DNAzyme, we selected aptamers for N-methyl mesoporphyrin IX (NMM), a common fluorogenic analogue of coenzyme hemin, by a modified affinity chromatography-based systematic evolution of ligands by exponential enrichment (SELEX). Two truncated aptamers Nm1 and Nm2 with low micromolar dissociation constants (0.75 and 13.27 μM) were obtained after 11 rounds of selection and the final minimized 39-mer aptamer Nm2.1 showed 24-fold fluorescence enhancement for NMM at saturated concentration. Study of the interactions between aptamers and other porphyrin compounds by circular dichroism (CD) and absorption spectroscopy showed that Nm1 mainly assembled as a stem-loop structure, which exhibited a catalytic activity for the metal insertion reaction of mesoporphyrin IX with 3.3-fold rate enhancement. In contrast, the G-rich Nm2 and Nm2.1 were likely to form G-quadruplexes in the presence of alkali metal cations (K+ and Na+), which displayed excellent peroxidase activity exhibiting 19-fold higher catalytic efficiency than hemin alone. The selected aptamers could therefore be used as novel light-up fluorescent probes and DNAzymes by pairing with porphyrin compounds that have potential to construct sensors for various applications.
Collapse
Affiliation(s)
- Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haiyin Lv
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Zhang H, Dong X, Sun Y. Carnosine-LVFFARK-NH 2 Conjugate: A Moderate Chelator but Potent Inhibitor of Cu 2+-Mediated Amyloid β-Protein Aggregation. ACS Chem Neurosci 2018; 9:2689-2700. [PMID: 30036471 DOI: 10.1021/acschemneuro.8b00133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aggregation of amyloid-β (Aβ) protein stimulated by Cu2+ has been recognized as a crucial step in the neurodegenerative process of Alzheimer's disease. Hence, it is of significance to develop bifunctional agents capable of inhibiting Aβ aggregation as well as Cu2+-mediated Aβ toxicity. Herein, a novel bifunctional nonapeptide, carnosine-LVFFARK-NH2 ( Car-LK7), was proposed by integrating native chelator carnosine ( Car) and an Aβ aggregation inhibitor, Ac-LVFFARK-NH2 (LK7). Results revealed the bifunctionality of Car-LK7, including remarkably enhanced inhibition capability on Aβ aggregation as compared to LK7 and a moderate Cu2+ chelating affinity ( KD = 28.2 ± 2.1 μM) in comparison to the binding affinity for Aβ40 ( KD = 1.02 ± 0.13 μM). The moderate Cu2+ affinity was insufficient for Car-LK7 to sequester Cu2+ from Aβ40-Cu2+ species, but it was sufficient to form ternary Aβ40-Cu2+- Car-LK7 complexes. Formation of the ternary complexes directed the aggregation into small, unstructured aggregates with little β-sheet structure. Car-LK7 also showed higher activity on arresting Aβ40-Cu2+-catalyzed reactive oxygen species production than Car. Cell viability assays confirmed the prominent protection activity of Car-LK7 against Cu2+-mediated Aβ40 cytotoxicity; Car-LK7 could almost eliminate Aβ40 cytotoxicity at an equimolar dose (cell viability increased from 59% to 99%). The research has thus provided new insight into the design of potent bifunctional agents against metal-mediated amyloid toxicity by conjugating moderate metal chelators and existing inhibitors.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
17
|
Zhu W, Wang Y, Xie D, Cheng L, Wang P, Zeng Q, Li M, Zhao Y. In Situ Monitoring the Aggregation Dynamics of Amyloid-β Protein Aβ42 in Physiological Media via a Raman-Based Frequency Shift Method. ACS APPLIED BIO MATERIALS 2018; 1:814-824. [DOI: 10.1021/acsabm.8b00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenfeng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Dan Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Linxiu Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| |
Collapse
|
18
|
Kim S, Lee HJ, Nam E, Jeong D, Cho J, Lim MH, You Y. Tailoring Hydrophobic Interactions between Probes and Amyloid-β Peptides for Fluorescent Monitoring of Amyloid-β Aggregation. ACS OMEGA 2018; 3:5141-5154. [PMID: 31458729 PMCID: PMC6641720 DOI: 10.1021/acsomega.8b00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/23/2018] [Indexed: 05/30/2023]
Abstract
Despite their unique advantages, the full potential of molecular probes for fluorescent monitoring of amyloid-β (Aβ) aggregates has not been fully exploited. This limited utility stems from the lack of knowledge about the hydrophobic interactions between the molecules of Aβ probes, as well as those between the probe and the Aβ aggregate. Herein, we report the first mechanistic study, which firmly establishes a structure-signaling relationship of fluorescent Aβ probes. We synthesized a series of five fluorescent Aβ probes based on an archetypal donor-acceptor-donor scaffold (denoted as SN1-SN5). The arylamino donor moieties were systematically varied to identify molecular factors that could influence the interactions between molecules of each probe and that could influence their fluorescence outcomes in conditions mimicking the biological milieu. Our probes displayed different responses to aggregates of Aβ, Aβ40 and Aβ42, two major isoforms found in Alzheimer's disease: SN2, having pyrrolidine donors, showed noticeable ratiometric fluorescence responses (Δν = 797 cm-1) to the Aβ40 and Aβ42 samples that contained oligomeric species, whereas SN4, having N-methylpiperazine donors, produced significant fluorescence turn-on signaling in response to Aβ aggregates, including oligomers, protofibrils, and fibrils (with turn-on ratios of 14 and 10 for Aβ42 and Aβ40, respectively). Mechanistic investigations were carried out by performing field-emission scanning electron microscopy, X-ray crystallography, UV-vis absorption spectroscopy, and steady-state and transient photoluminescence spectroscopy experiments. The studies revealed that the SN probes underwent preassembly prior to interacting with the Aβ species and that the preassembled structures depended profoundly on the subtle differences between the amino moieties of the different probes. Importantly, the studies demonstrated that the mode of fluorescence signaling (i.e., ratiometric response versus turn-on response) was primarily governed by stacking geometries within the probe preassemblies. Specifically, ratiometric fluorescence responses were observed for probes capable of forming J-assembly, whereas fluorescence turn-on responses were obtained for probes incapable of forming J-aggregates. This finding provides an important guideline to follow in future efforts at developing fluorescent probes for Aβ aggregation. We also conclude, on the basis of our study, that the rational design of such fluorescent probes should consider interactions between the probe molecules, as well as those between Aβ peptides and the probe molecule.
Collapse
Affiliation(s)
- Sonam Kim
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
19
|
Zhang H, Dong X, Liu F, Zheng J, Sun Y. Ac-LVFFARK-NH 2 conjugation to β-cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid β-protein fibrillogenesis and cytotoxicity. Biophys Chem 2018; 235:40-47. [DOI: 10.1016/j.bpc.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 11/16/2022]
|