1
|
Davidson M, Stanciu GD, Rabinowitz J, Untu I, Dobrin RP, Tamba BI. Exploring novel therapeutic strategies: Could psychedelic perspectives offer promising solutions for Alzheimer's disease comorbidities? DIALOGUES IN CLINICAL NEUROSCIENCE 2025; 27:1-12. [PMID: 40108882 PMCID: PMC11926901 DOI: 10.1080/19585969.2025.2480566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The increasing prevalence of dementia within an ageing global population, combined with prolonged life expectancy, accentuates Alzheimer's disease (AD) as a multifaceted healthcare challenge. This challenge is further compounded by the limited therapeutic options currently available. Addressing the intricacies of AD management, the mitigation of comorbidities has emerged as a pivotal facet of treatment. Comorbid conditions, such as neurobehavioral symptoms, play a role in shaping the clinical course, management, and outcomes of this pathology; highlighting the importance of comprehensive care approaches for affected individuals. Exploration of psychedelic compounds in psychiatric and palliative care settings has recently uncovered promising therapeutic potential, enhancing neuroplasticity, emotional processing and connection. These effects are particularly relevant in the context of AD, where psychedelic therapy offers hope not only for mitigating core symptoms but also for addressing the array of comorbidities associated with this condition. The integration of this comprehensive method offers a chance to significantly enhance the care provided to those navigating the intricate landscape of AD. Therefore, the current paper reviews the intricate link between more frequent additional health conditions that may coexist with dementia, particularly in the context of AD, and explores the therapeutic potential of psychedelic compounds in addressing these concurrent conditions.
Collapse
Affiliation(s)
- Michael Davidson
- University of Miami School of Medicine, Miami, FL, USA
- Advanced Research and Development Center for Experimental Medicine 'Prof. Ostin C. Mungiu' CEMEX, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Gabriela-Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine 'Prof. Ostin C. Mungiu' CEMEX, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Jonathan Rabinowitz
- Advanced Research and Development Center for Experimental Medicine 'Prof. Ostin C. Mungiu' CEMEX, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Bar Ilan University, Ramat Gan, Israel
| | - Ilinca Untu
- Department of Medicine III, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Institute of Psychiatry 'Socola', Iasi, Romania
| | - Romeo-Petru Dobrin
- Department of Medicine III, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Institute of Psychiatry 'Socola', Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine 'Prof. Ostin C. Mungiu' CEMEX, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, 'Grigore T. Popa' University of Medicine and Pharmacy of Iasi, Iasi, Romania
| |
Collapse
|
2
|
Gupta S, Bhatnagar RK, Gupta D, K MK, Chopra A. The evolution of N, N-Dimethyltryptamine: from metabolic pathways to brain connectivity. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06777-z. [PMID: 40210737 DOI: 10.1007/s00213-025-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
RATIONALE N, N-Dimethyltryptamine (DMT), a potent serotonergic psychedelic, bridges ancient wisdom and modern science. The mechanisms underlying its powerful psychedelic effects and out-of-body experiences continue to intrigue scientists. The functional role of DMT remains ambiguous. This paper explores the endogenous presence of DMT in the human body and its diverse neuroregulatory functions, which influence hierarchical brain connectivity, and the mechanisms driving its psychedelic effects. OBJECTIVE This paper aims to analyze DMT-receptor binding, its effects on neuronal modulation, brain oscillations, and connectivity, and its influence on hallucinations, out-of-body experiences, and cognitive functions. RESULTS DMT administration induces significant changes in brain wave dynamics, including reduced alpha power, increased delta power, and heightened Lempel-Ziv complexity, reflecting enhanced neural signal diversity. Functional neuroimaging studies reveal that DMT enhances global functional connectivity (GFC), particularly in transmodal association cortices such as the salience network, frontoparietal network, and default mode network, correlating with ego dissolution. The receptor density-dependent effects of DMT were mapped to brain regions rich in serotonin 5-HT2A receptors, supporting its role in modulating consciousness and neuroplasticity. CONCLUSION This integrated analysis provides insights into the profound effects of DMT on human cognition, and consciousness, and its role in enhancing natural well-being. As we uncover the endogenous functions of DMT, it becomes clear that the study of its biology reveals a complex interplay between brain chemistry and consciousness.
Collapse
Affiliation(s)
- Swanti Gupta
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Maharaj Kumari K
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Amla Chopra
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India.
| |
Collapse
|
3
|
Ardini M, Angelucci F, Rea F, Paluzzi L, Gabriele F, Palerma M, Di Leandro L, Ippoliti R, Pitari G. Functional and structural characterization of the human indolethylamine N-methyltransferase through fluorometric, thermal and computational docking analyses. Biol Direct 2025; 20:50. [PMID: 40211327 PMCID: PMC11987180 DOI: 10.1186/s13062-025-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND The "psychedelic renaissance" is sparking growing interest in clinical research, along with a rise in clinical trials. Substances such as 3,4-methylenedioxymethamphetamine (MDMA), psilocybin and N,N-dimethyltryptamine (DMT) are involved. The focus of this paper is on indolethylamine N-methyltransferase (INMT), a crucial enzyme in the biosynthesis of key compounds, including DMT, which meets science, medicine and spirituality. The presence of DMT in animals and plants raises many questions about its biological role. Meanwhile, the distribution of INMT in various organs and its involvement in diseases like cancer and mental disorders also fuel investigations worldwide. However, INMT remains largely unexplored, particularly its enzymatic mechanism and structural properties, leaving a significant gap in potential applications. RESULTS This study examines for the first time the catalytic activity of the human INMT (hINMT) using a simple fluorometric steady-state assay employing the substrate quinoline. The findings are supported by thermal shift and docking analyses, providing valuable information about optimal chemical conditions and potential binding sites for substrates. The thermal shift assays indicate that recombinant hINMT is unstable and requires acidic or near-neutral pH and low salt levels. These experiments also allow for the estimation of dissociation constants for its natural coenzymes SAM and SAH, helping to determine the appropriate setup for the fluorometric assays and calculate kinetic constants, which are comparable to other methyltransferases. The docking indicates that quinoline occupies the same site as the natural substrate tryptamine, further validating the fluorometric approach. CONCLUSIONS The paper provides a foundation for thoroughly studying hINMT under consistent conditions, which is crucial for obtaining reliable kinetic data and maintaining molecular stability for future structural analysis. This represents a valid alternative over previous endpoint radioactive-based and chromatography-mass spectrometry assays, which can provide only apparent steady-state parameters. Given the polymorphisms observed in hINMT and their potential association with psychiatric disorders, e.g., schizophrenia, and cancer, this strategy could serve as an invaluable tool for understanding the structure-function relationship of enzyme mutants and their role in diseases. Furthermore, these findings for the first time provide insights into the interaction modalities of hINMT with its substrates and lay the groundwork for inhibition experiments aimed at practical applications.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Rea
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Paluzzi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Science, Technology and Society, University School for Advanced Studies of Pavia, Pavia, Italy
| | - Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marta Palerma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Science, Technology and Society, University School for Advanced Studies of Pavia, Pavia, Italy
| | - Luana Di Leandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
4
|
Motchaalangaram JA, Mahalingam P, Wallace KJ, Miao W. Electrogenerated Chemiluminescence Coupled with Molecularly Imprinted Polymer for Sensitive and Selective Detection of N, N-Dimethyltryptamine. Anal Chem 2025; 97:6163-6174. [PMID: 40083188 PMCID: PMC11948175 DOI: 10.1021/acs.analchem.4c06886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
A simple and efficient approach that combined electrogenerated chemiluminescence (ECL) and molecularly imprinted polymers (MIPs) for selective and sensitive detection of the hallucinogenic drug N,N-dimethyltryptamine (DMT) was developed. ECL, one of the most sensitive analytical techniques for ultratrace analyte detection, offers the advantage of light-free spectroscopic analysis initiated by electrochemistry. MIPs, on the other hand, provide specific binding sites, allowing the target analyte to become selectively imprinted within the polymer matrix. In this study, an ECL coupled-MIP sensor was fabricated using para-aminobenzoic acid (p-ABA) as the monomer and DMT as the template molecule. The MIP was electropolymerized onto a glassy carbon electrode coated with a Nafion film entrapping [Ru(bpy)3]2+ species. Following elution, the imprinted sites were reoccupied by DMT, generating ECL signals in a phosphate buffered solution during anodic potential scanning. The ECL-MIP sensor demonstrated a wide dynamic range for DMT detection, from 0.5 to 300 μM, with an estimated detection limit of 0.5-1.0 μM (S/N = 3). The sensor's reproducibility, stability, and selectivity were also evaluated. Finally, density functional theory was employed to investigate the structure-property relationship of the p-ABA-DMT interaction. This work demonstrated the potential of ECL coupled with MIP technology for identifying structurally related molecules, achieving enhanced selectivity with a simple and cost-effective design.
Collapse
Affiliation(s)
- Jesy Alka Motchaalangaram
- Department
of Chemistry and Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Paramasivam Mahalingam
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Karl J. Wallace
- Department
of Chemistry and Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Wujian Miao
- Department
of Chemistry and Biochemistry, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
5
|
Echeverry C, Pazos M, Torres-Pérez M, Prunell G. Plant-derived compounds and neurodegenerative diseases: Different mechanisms of action with therapeutic potential. Neuroscience 2025; 566:149-160. [PMID: 39725267 DOI: 10.1016/j.neuroscience.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of discrete groups of neurons causing severe disability. The main risk factor is age, hence their incidence is rapidly increasing worldwide due to the rise in life expectancy. Although the causes of the disease are not identified in about 90% of the cases, in the last decades there has been great progress in understanding the basis for neurodegeneration. Different pathological mechanisms including oxidative stress, mitochondrial dysfunction, alteration in proteostasis and inflammation have been addressed as important contributors to neuronal death. Despite our better understanding of the pathophysiology of these diseases, there is still no cure and available therapies only provide symptomatic relief. In an effort to discover new therapeutic approaches, natural products have aroused interest among researchers given their structural diversity and wide range of biological activities. In this review, we focus on three plant-derived compounds with promising neuroprotective potential that have been traditionally used by folk medicine: the flavonoid quercetin (QCT), the phytocannabinoid cannabidiol (CBD)and the tryptamine N,N-dimethyltryptamine (DMT). These compounds exert neuroprotective effects through different mechanisms of action, some overlapping, but each demonstrating a principal biological activity: QCT as an antioxidant, CBD as an anti-inflammatory, and DMT as a promoter of neuroplasticity. This review summarizes current knowledge on these activities, potential therapeutic benefits of these compounds and their limitations as candidates for neuroprotective therapies. We envision that treatments with QCT, CBD, and DMT could be effective either when combined or when targeting different stages of these diseases.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Mariana Pazos
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Maximiliano Torres-Pérez
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Neuroactive Natural Compounds UNESCO Chair, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
6
|
van der Heijden KV, Otto ME, Schoones JW, van Esdonk MJ, Borghans LGJM, van Hasselt JGC, van Gerven JMA, Jacobs G. Clinical Pharmacokinetics of N,N-Dimethyltryptamine (DMT): A Systematic Review and Post-hoc Analysis. Clin Pharmacokinet 2025; 64:215-227. [PMID: 39838235 PMCID: PMC11782443 DOI: 10.1007/s40262-024-01450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND OBJECTIVE N,N-Dimethyltryptamine (DMT) is currently being studied for its therapeutic potential in various psychiatric disorders. An understanding of its pharmacokinetics (PK) is essential to determine appropriate dose ranges in future clinical studies. We conducted a systematic literature review on the PK of DMT. METHODS Clinical studies that administered known amounts of DMT and reported PK data and/or parameters in humans were included. Additionally, raw PK data were requested from authors and/or extracted from publications. RESULTS In total, 219 references were retrieved, of which 13 publications were included, covering eight distinct datasets. All studies administered DMT intravenously in various infusion schemes, except for one intramuscular administration. High variability in dose-normalized exposure parameters and differences in exposure for bolus versus infusion administration were observed. DMT is extensively redistributed to other tissues, based on its biphasic elimination profile and high volume of distribution in the terminal elimination phase (range 123-1084 L). It is eliminated rapidly, with a half-life of 4.8-19.0 min and clearance of 8.1-46.8 L/min. This is a result of the rapid metabolization of DMT to indole-3-acetic acid (IAA), which is also reflected in the fact that the time of maximum concentration of IAA is similar to that of DMT. CONCLUSION This review demonstrates that the PK of DMT in humans have been characterized to a limited extent, and publications lack details with regards to demographics, absolute doses, and PK parameters. Additional studies are necessary to investigate high intersubject variability and differences in exposure following bolus or prolonged infusion. Addressing these issues is essential for the development of DMT as a pharmacotherapeutic in neuropsychiatry.
Collapse
Affiliation(s)
- K V van der Heijden
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands.
- Leiden University Medical Centre (LUMC), Leiden University, Leiden, The Netherlands.
| | - M E Otto
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - J W Schoones
- Directorate of Research Policy, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | | | - J G C van Hasselt
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - J M A van Gerven
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Leiden University Medical Centre (LUMC), Leiden University, Leiden, The Netherlands
| | - G Jacobs
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Chaves C, Dos Santos RG, Dursun SM, Tusconi M, Carta MG, Brietzke E, Hallak JEC. Why N,N-dimethyltryptamine matters: unique features and therapeutic potential beyond classical psychedelics. Front Psychiatry 2024; 15:1485337. [PMID: 39568756 PMCID: PMC11576444 DOI: 10.3389/fpsyt.2024.1485337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Centre (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rafael G Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elisa Brietzke
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Centre (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Egger K, Aicher HD, Cumming P, Scheidegger M. Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors. Cell Mol Life Sci 2024; 81:395. [PMID: 39254764 PMCID: PMC11387584 DOI: 10.1007/s00018-024-05353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
The potent hallucinogen N,N-dimethyltryptamine (DMT) has garnered significant interest in recent years due to its profound effects on consciousness and its therapeutic psychopotential. DMT is an integral (but not exclusive) psychoactive alkaloid in the Amazonian plant-based brew ayahuasca, in which admixture of several β-carboline monoamine oxidase A (MAO-A) inhibitors potentiate the activity of oral DMT, while possibly contributing in other respects to the complex psychopharmacology of ayahuasca. Irrespective of the route of administration, DMT alters perception, mood, and cognition, presumably through agonism at serotonin (5-HT) 1A/2A/2C receptors in brain, with additional actions at other receptor types possibly contributing to its overall psychoactive effects. Due to rapid first pass metabolism, DMT is nearly inactive orally, but co-administration with β-carbolines or synthetic MAO-A inhibitors (MAOIs) greatly increase its bioavailability and duration of action. The synergistic effects of DMT and MAOIs in ayahuasca or synthetic formulations may promote neuroplasticity, which presumably underlies their promising therapeutic efficacy in clinical trials for neuropsychiatric disorders, including depression, addiction, and post-traumatic stress disorder. Advances in neuroimaging techniques are elucidating the neural correlates of DMT-induced altered states of consciousness, revealing alterations in brain activity, functional connectivity, and network dynamics. In this comprehensive narrative review, we present a synthesis of current knowledge on the pharmacology and neuroscience of DMT, β-carbolines, and ayahuasca, which should inform future research aiming to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Klemens Egger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland.
| | - Helena D Aicher
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Hass RM, Stitt D. Neurological Effects of Stimulants and Hallucinogens. Semin Neurol 2024; 44:459-470. [PMID: 38889896 DOI: 10.1055/s-0044-1787572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In this article, we will discuss the history, pharmacodynamics, and neurotoxicity of psychostimulants and hallucinogens. The drugs discussed are widely used and have characteristic toxidromes and potential for neurological injuries with which the practicing clinician should be familiar. Psychostimulants are a class of drugs that includes cocaine, methamphetamine/amphetamines, and cathinones, among others, which produce a crescendoing euphoric high. Seizures, ischemic and hemorrhagic strokes, rhabdomyolysis, and a variety of movement disorders are commonly encountered in this class. Hallucinogens encompass a broad class of drugs, in which the user experiences hallucinations, altered sensorium, distorted perception, and cognitive dysfunction. The experience can be unpredictable and dysphoric, creating a profound sense of anxiety and panic in some cases. Recognizing the associated neurotoxicities and understanding the appropriate management is critical in caring for these patient populations. Several of these agents are not detectable by standard clinical laboratory analysis, making identification and diagnosis an even greater challenge.
Collapse
Affiliation(s)
- Reece M Hass
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Derek Stitt
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Witowski CG, Hess MR, Jones NT, Pellitteri Hahn MC, Razidlo J, Bhavsar R, Beer C, Gonzalez-Velazquez N, Scarlett CO, Wenthur CJ, von Salm JL. Novel extended-release transdermal formulations of the psychedelic N,N-dimethyltryptamine (DMT). Eur J Pharm Sci 2024; 199:106803. [PMID: 38788435 DOI: 10.1016/j.ejps.2024.106803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
There is considerable evidence from the literature that psychedelics, such as N,N-dimethyltryptamine (DMT), are safe and effective treatments for depression. However, clinical administration to induce psychedelic effects and expensive psychotherapy-assisted treatments likely limit accessibility to the average patient. There is emerging evidence that DMT promotes positive behavioral changes in vivo at sub-hallucinogenic dosages, and depending on the target indication, subjecting patients to high, bolus dosages may not be necessary. Due to rapid metabolic degradation, achieving target levels of DMT in subjects is difficult, requiring IV administration, which poses risks to patients during the intense hallucinogenic and subjective drug effects. The chemical and physical properties of DMT make it an excellent candidate for non-invasive, transdermal delivery platforms. This paper outlines the formulation development, in vitro, and in vivo testing of transdermal drug-in-adhesive DMT patches using various adhesives and permeation enhancers. In vivo behavioral and pharmacokinetic studies were performed with lead patch formulation (F5) in male and female Swiss Webster mice, and resulting DMT levels in plasma and brain samples were quantified using LC/MS/MS. Notable differences were seen in female versus male mice during IV administration; however, transdermal administration provided consistent, extended drug release at a non-hallucinogenic dose. The IV half-life of DMT was extended by 20-fold with administration of the transdermal delivery system at sub-hallucinogenic plasma concentrations not exceeding 60 ng/mL. Results of a translational head twitch assay (a surrogate for hallucinogenic effects in non-human organisms) were consistent with absence of hallucinations at low plasma levels achieved with our TDDS. Despite the reported low bioavailability of DMT, the non-invasive transdermal DMT patch F5 afforded an impressive 77 % bioavailability compared to IV at two dosages. This unique transdermal delivery option has the potential to provide an out-patient treatment option for ailments not requiring higher, bolus doses and is especially intriguing for therapeutic indications requiring non-hallucinogenic alternatives.
Collapse
Affiliation(s)
| | - Mika R Hess
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Nate T Jones
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Molly C Pellitteri Hahn
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - John Razidlo
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Riya Bhavsar
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Christina Beer
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Natalie Gonzalez-Velazquez
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Cameron O Scarlett
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States
| | - Cody J Wenthur
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Ave., Madison, WI 53705, United States; Transdisciplinary Center for Research in Psychoactive Substances, 777 Highland Ave., Madison, WI 53705, United States.
| | | |
Collapse
|
11
|
Yu Z, Burback L, Winkler O, Xu L, Dennett L, Vermetten E, Greenshaw A, Li XM, Milne M, Wang F, Cao B, Winship IR, Zhang Y, Chan AW. Alterations in brain network connectivity and subjective experience induced by psychedelics: a scoping review. Front Psychiatry 2024; 15:1386321. [PMID: 38807690 PMCID: PMC11131165 DOI: 10.3389/fpsyt.2024.1386321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Intense interest surrounds current research on psychedelics, particularly regarding their potential in treating mental health disorders. Various studies suggest a link between the subjective effects produced by psychedelics and their therapeutic efficacy. Neuroimaging evidence indicates an association of changes in brain functional connectivity with the subjective effects of psychedelics. We conducted a review focusing on psychedelics and brain functional connectivity. The review focused on four psychedelic drugs: ayahuasca, psilocybin and LSD, and the entactogen MDMA. We conducted searches in databases of MEDLINE, Embase, APA PsycInfo and Scopus from inception to Jun 2023 by keywords related to functional connectivity and psychedelics. Using the PRISMA framework, we selected 24 articles from an initial pool of 492 for analysis. This scoping review and analysis investigated the effects of psychedelics on subjective experiences and brain functional connectivity in healthy individuals. The studies quantified subjective effects through psychometric scales, revealing significant experiences of altered consciousness, mood elevation, and mystical experiences induced by psychedelics. Neuroimaging results indicated alterations in the functional connectivity of psychedelics, with consistent findings across substances of decreased connectivity within the default mode network and increased sensory and thalamocortical connectivity. Correlations between these neurophysiological changes and subjective experiences were noted, suggesting a brain network basis of the psychedelics' neuropsychological impact. While the result of the review provides a potential neural mechanism of the subjective effects of psychedelics, direct clinical evidence is needed to advance their clinical outcomes. Our research serves as a foundation for further exploration of the therapeutic potential of psychedelics.
Collapse
Affiliation(s)
- Zijia Yu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Olga Winkler
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Lujie Xu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Liz Dennett
- Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Centre, Leiden, Netherlands
| | - Andrew Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Michaela Milne
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Institute of Human Nutrition at the Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Fei Wang
- Nanjing Medical University Affiliated Brain Hospital, Nanjing, Jiangsu, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Allen W. Chan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Almeida E Silva G, Galvão Wakui V, Kato L, Marquezin CA. Spectroscopic behavior of bufotenine and bufotenine N-oxide: Solvent and pH effects and interaction with biomembrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184304. [PMID: 38408695 DOI: 10.1016/j.bbamem.2024.184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Bufotenine is a fluorescent analog of Dimethyltryptamine (DMT) that has been widely studied due to its psychedelic properties and biological activity. However, little is known about its spectroscopic properties in different media. Thus, we present in this work, for the first time, the spectroscopic behavior of bufotenine and bufotenine N-oxide by means of their fluorescence properties. Both molecules exhibit changes in optical absorption and emission spectra with variations in pH of the medium and in different solvents. Assays in the presence of biomembranes models, like micelles and liposomes, were also performed. In surfactants titration experiments, the spectral shift observed in fluorescence shows the interaction of both molecules with pre-micellar structures and with micelles. Steady state anisotropy measurements show that both bufotenine and bufotenine N-oxide, in the studied concentration range, interact with liposomes without causing changes in the fluidity of the lipid bilayer. These results can be useful in studies that aim at searching for new compounds, inspired by bufotenine and bufotenine N-oxide, with relevant pharmacological activities and also in studies that use these molecules as markers of psychiatric disorders.
Collapse
Affiliation(s)
| | - Vinícius Galvão Wakui
- Instituto de Química, Universidade Federal de Goiás, CEP 74690-900, Goiânia, GO, Brazil
| | - Lucília Kato
- Instituto de Química, Universidade Federal de Goiás, CEP 74690-900, Goiânia, GO, Brazil
| | - Cássia A Marquezin
- Instituto de Física, Universidade Federal de Goiás, CEP 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Shinozuka K, Tabaac BJ, Arenas A, Beutler BD, Cherian K, Evans VD, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-N,N-Dimethyltryptamine and Ayahuasca. Am J Ther 2024; 31:e112-e120. [PMID: 38518268 DOI: 10.1097/mjt.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND N,N-dimethyltryptamine (DMT) is a naturally occurring serotonergic psychedelic found in natural plants around the globe. As the main psychoactive component in ayahuasca, which also contains monoamine oxidase inhibitors, DMT has been consumed as plant-based brew by indigenous peoples for centuries. Further research is required to delineate the therapeutic utility of DMT. AREAS OF UNCERTAINTY Although previous research has shown that DMT is synthesized endogenously, it may not be produced at physiologically relevant concentrations. Additionally, the phenomenological similarities between the DMT-induced state and near-death experiences led to the popular hypothesis that endogenous DMT is released during the dying process. However, this hypothesis continues to be debated. Generally, DMT and ayahuasca seem to be physiologically and psychiatrically safe, although ayahuasca is known to cause transient vomiting. THERAPEUTIC ADVANCES A double-blind, randomized controlled trial showed that, within 1 week, ayahuasca causes remission in 36% of patients with treatment-resistant depression. According to top-line results from a recent phase IIa trial, 57% of patients with major depressive disorder experienced remission 12 weeks after receiving a single intravenous dose of DMT. LIMITATIONS There has only been a single published double-blind randomized controlled trial on ayahuasca and 2 on DMT. All clinical trials have had small sample sizes (≤34 participants). DMT requires further research to understand its therapeutic and clinical potential as a psychedelic. CONCLUSIONS Preliminary evidence indicates that ayahuasca and DMT may be more effective than existing antidepressants for treating major depressive disorder and treatment-resistant depression.
Collapse
Affiliation(s)
- Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Bryce D Beutler
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA
| | - Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Owen S Muir
- Fermata Health, Brooklyn, New York, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
14
|
Sen AK, Jones JA. Unlocking the biosynthesis of psychedelic-inspired indolethylamines. Trends Biochem Sci 2024; 49:189-191. [PMID: 38160063 DOI: 10.1016/j.tibs.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
A recent report by Chen et al. describes the discovery of RmNMT, a highly active and promiscuous tryptamine N-methyltransferase from the cane toad, Rhinella marina. N,N-dimethyltryptamine derivatives produced by this enzyme were then evaluated for their potential to serve as next-generation treatments for mental health disorders.
Collapse
Affiliation(s)
- Abhishek K Sen
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - J Andrew Jones
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
15
|
Jayakodiarachchi N, Maurer MA, Schultz DC, Dodd CJ, Thompson Gray A, Cho HP, Boutaud O, Jones CK, Lindsley CW, Bender AM. Evaluation of the Indazole Analogs of 5-MeO-DMT and Related Tryptamines as Serotonin Receptor 2 Agonists. ACS Med Chem Lett 2024; 15:302-309. [PMID: 38352850 PMCID: PMC10860182 DOI: 10.1021/acsmedchemlett.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Herein, we report the synthesis and characterization of a novel set of substituted indazole-ethanamines and indazole-tetrahydropyridines as potent serotonin receptor subtype 2 (5-HT2) agonists. Specifically, we examine the 5-HT2 pharmacology of the direct indazole analogs of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and related serotonergic tryptamines, and highlight the need for rigorous characterization of 5-HT2 subtype selectivity for these analogs, particularly for the 5-HT2B receptor subtype. Within this series, the potent analog VU6067416 (19d) was optimized to have suitable preclinical pharmacokinetic properties for in vivo dosing, although potent 5-HT2B agonist activity precluded further characterization for this series. Additionally, in silico docking studies suggest that the high potency of 19d may be a consequence of a halogen-bonding interaction with Phe2345.38 in the 5-HT2A orthosteric pocket.
Collapse
Affiliation(s)
- Navoda Jayakodiarachchi
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mallory A. Maurer
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Daniel C. Schultz
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Cayden J. Dodd
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Analisa Thompson Gray
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren Center for Neuroscience Drug
Discovery and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of hallucinogenic drugs on the human heart. Front Pharmacol 2024; 15:1334218. [PMID: 38370480 PMCID: PMC10869618 DOI: 10.3389/fphar.2024.1334218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Hallucinogenic drugs are used because they have effects on the central nervous system. Their hallucinogenic effects probably occur via stimulation of serotonin receptors, namely, 5-HT2A-serotonin receptors in the brain. However, a close study reveals that they also act on the heart, possibly increasing the force of contraction and beating rate and may lead to arrhythmias. Here, we will review the inotropic and chronotropic actions of bufotenin, psilocin, psilocybin, lysergic acid diethylamide (LSD), ergotamine, ergometrine, N,N-dimethyltryptamine, and 5-methoxy-N,N-dimethyltryptamine in the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Münster, Münster, Germany
| | - Britt Hofmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Barman R, Kumar Bora P, Saikia J, Konwar P, Sarkar A, Kemprai P, Proteem Saikia S, Haldar S, Slater A, Banik D. Hypothetical biosynthetic pathways of pharmaceutically potential hallucinogenic metabolites in Myristicaceae, mechanistic convergence and co-evolutionary trends in plants and humans. PHYTOCHEMISTRY 2024; 218:113928. [PMID: 38035973 DOI: 10.1016/j.phytochem.2023.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
The family Myristicaceae harbour mind-altering phenylpropanoids like myristicin, elemicin, safrole, tryptamine derivatives such as N,N-dimethyltryptamine (DMT) and 5-methoxy N,N-dimethyltryptamine (5-MeO-DMT) and β-carbolines such as 1-methyl-6-methoxy-dihydro-β-carboline and 2-methyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline. This study aimed to systematically review and propose the hypothetical biosynthetic pathways of hallucinogenic metabolites of Myristicaceae which have the potential to be used pharmaceutically. Relevant publications were retrieved from online databases, including Google Scholar, PubMed Central, Science Direct and the distribution of the hallucinogens among the family was compiled. The review revealed that the biosynthesis of serotonin in plants was catalysed by tryptamine 5-hydroxylase (T5H) and tryptophan 5-hydroxylase (TPH), whereas in invertebrates and vertebrates only by tryptophan 5-hydroxylase (TPH). Indolethylamine-N-methyltransferase catalyses the biosynthesis of DMT in plants and the brains of humans and other mammals. Caffeic acid 3-O-methyltransferase catalyses the biosynthesis of both phenylpropanoids and tryptamines in plants. All the hallucinogenic markers exhibited neuropsychiatric effects in humans as mechanistic convergence. The review noted that DMT, 5-MeO-DMT, and β-carbolines were natural protectants against both plant stress and neurodegenerative human ailments. The protein sequence data of tryptophan 5-hydroxylase and tryptamine 5-hydroxylase retrieved from NCBI showed a co-evolutionary relationship in between animals and plants on the phylogenetic framework of a Maximum Parsimony tree. The review also demonstrates that the biosynthesis of serotonin, DMT, 5-MeO-DMT, 5-hydroxy dimethyltryptamine, and β-carbolines in plants, as well as endogenous secretion of these compounds in the brain and blood of humans and rodents, reflects co-evolutionary mutualism in plants and humans.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Parthapratim Konwar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Aditya Sarkar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Adrian Slater
- Faculty of School of Health and Allied Sciences, Biomolecular Technology Group, Hawthorn Building HB1.12, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad - 201002, India.
| |
Collapse
|
18
|
Videira NB, Nair V, Paquet V, Calhoun D. The changing outlook of psychedelic drugs: The importance of risk assessment and occupational exposure limits. J Appl Toxicol 2024; 44:216-234. [PMID: 37646119 DOI: 10.1002/jat.4533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Serotonergic psychedelics, such as lysergic acid diethylamide (LSD), psilocybin, dimethyltryptamine (DMT), and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are currently being investigated for the treatment of psychiatric disorders such as depression and anxiety. Clinical trials with psilocybin and LSD have shown improvement in emotional and psychological scores. Although these drugs are reported to be safe in a controlled environment (such as clinical trials), exposure to low doses of these drugs can result in psychedelic effects, and therefore, occupational safety is an important consideration to prevent adverse effects in the workplace from low daily exposure. This article will discuss the factors involved in the derivation of occupational exposure limits (OELs) and risk assessment of these psychedelic drugs. To support the OEL derivations of psychedelic drugs, information regarding their mechanism of action, adverse effect profiles, pharmacokinetics, clinical effects, and nonclinical toxicity were considered. Additionally, psilocybin and LSD, which are the most extensively researched psychedelic substances, are employed as illustrative examples in case studies. The OELs derived for psilocybin and for LSD are 0.05 and 0.002 μg/m3 , respectively, which indicates that these are highly hazardous compounds, and it is important to take into account suitable safety measures and risk-management strategies in order to minimize workplace exposure.
Collapse
Affiliation(s)
| | | | - Valérie Paquet
- formerly Affygility Solutions, Broomfield, Colorado, USA
| | | |
Collapse
|
19
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
20
|
Madrid-Gambin F, Fabregat-Safont D, Gomez-Gomez A, Olesti E, Mason NL, Ramaekers JG, Pozo OJ. Present and future of metabolic and metabolomics studies focused on classical psychedelics in humans. Biomed Pharmacother 2023; 169:115775. [PMID: 37944438 DOI: 10.1016/j.biopha.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Psychedelics are classical hallucinogen drugs that induce a marked altered state of consciousness. In recent years, there has been renewed attention to the possible use of classical psychedelics for the treatment of certain mental health disorders. However, further investigation to better understand their biological effects in humans, their mechanism of action, and their metabolism in humans is needed when considering the development of future novel therapeutic approaches. Both metabolic and metabolomics studies may help for these purposes. On one hand, metabolic studies aim to determine the main metabolites of the drug. On the other hand, the application of metabolomics in human psychedelics studies can help to further understand the biological processes underlying the psychedelic state and the mechanisms of action underlying their therapeutic potential. This review presents the state of the art of metabolic and metabolomic studies after lysergic acid diethylamide (LSD), mescaline, N,N-dimethyltryptamine (DMT) and β-carboline alkaloids (ayahuasca brew), 5-methoxy-DMT and psilocybin administrations in humans. We first describe the characteristics of the published research. Afterward, we reviewed the main results obtained by both metabolic and metabolomics (if available) studies in classical psychedelics and we found out that metabolic and metabolomics studies in psychedelics progress at two different speeds. Thus, whereas the main metabolites for classical psychedelics have been robustly established, the main metabolic alterations induced by psychedelics need to be explored. The integration of metabolomics and pharmacokinetics for investigating the molecular interaction between psychedelics and multiple targets may open new avenues in understanding the therapeutic role of psychedelics.
Collapse
Affiliation(s)
- Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| | - David Fabregat-Safont
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071 Castelló, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain; CERBA Internacional, Chromatography Department, 08203 Sabadell, Spain
| | - Eulàlia Olesti
- Department of Clinical Pharmacology, Area Medicament, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; Clinical Pharmacology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Research Institute, 08003 Barcelona, Spain.
| |
Collapse
|
21
|
Coutinho LP, Silva SRB, de Lima-Neto P, Monteiro NDKV. A mechanistic insight for the biosynthesis of N,N-dimethyltryptamine: An ONIOM theoretical approach. Biochem Biophys Res Commun 2023; 678:148-157. [PMID: 37640000 DOI: 10.1016/j.bbrc.2023.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Psychoactive natural products are potent serotonergic agonists capable of modulating brain functions such as memory and cognition. These substances have shown therapeutic potential for treating various mental disorders. The fact that N,N-dimethyltryptamine (DMT) is produced endogenously in several plants and animals, including humans, makes it particularly attractive. As an amino acid-derived alkaloid, the DMT biosynthetic pathway is part of the L-tryptophan biochemical cascade and can be divided into the decarboxylation by an aromatic L-amino acid decarboxylase (AADC) for tryptamine formation and the subsequent double-methylation by the indolethylamine-N-methyltransferase (INMT) through the cofactor S-adenosyl-L-methionine (SAM), a methyl donor. Unlike the decarboxylation mechanism of L-tryptophan, the molecular details of the double methylation of tryptamine have not been elucidated. Therefore, we propose an in silico model using molecular dynamics (MD), non-covalent interaction index (NCI) and density functional theory (DFT) calculations with the ONIOM QM:MM B3LYP/6-31+G(d,p):MM/UFF level of theory. Based on the obtained energetic data, the potential energy surface (PES) indicates an SN2 mechanism profile, with the second methylation energy barrier being the rate-limiting step with δG‡=60kJ∙mol-1 larger than the previous methylation, following the NCI analysis showing more repulsive interactions for the second transition state. In addition, the hybridization information of each reaction step provides geometric details about the double-methylation.
Collapse
Affiliation(s)
- Lucas Pinheiro Coutinho
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | | | - Pedro de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Norberto de Kássio Vieira Monteiro
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Layzell M, Rands P, Good M, Joel Z, Cousins R, Benway T, James E, Routledge C. Discovery and In Vitro Characterization of SPL028: Deuterated N, N-Dimethyltryptamine. ACS Med Chem Lett 2023; 14:1216-1223. [PMID: 37736183 PMCID: PMC10510671 DOI: 10.1021/acsmedchemlett.3c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
The psychedelic N,N- dimethyltryptamine (DMT) is in clinical development for the treatment of major depressive disorder. However, when administered via intravenous infusion, its effects are short-lived due to rapid clearance. Here we describe the synthesis of deuterated analogues of DMT with the aim of prolonging the half-life and decreasing the clearance rate while maintaining similar pharmacological effects. The molecule with the greatest degree of deuteration at the α-carbon (N,N-D2-dimethyltryptamine, D2-DMT) demonstrated the longest half-life and intrinsic clearance in hepatocyte mitochondrial fractions when compared with DMT. The in vitro receptor binding profile of D2-DMT was comparable to that of DMT, with the highest affinity at the 5-HT1A, 5-HT2A, and 5-HT2C receptors. D2-DMT was therefore the preferred candidate to consider for further evaluation.
Collapse
Affiliation(s)
- Marie Layzell
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Peter Rands
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Meghan Good
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Zelah Joel
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Rick Cousins
- Cinnabar
Consulting Ltd., 43 Pedley
Lane, Clifton, Beds SG17
5QT, U.K.
| | - Tiffanie Benway
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Ellen James
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| | - Carol Routledge
- Small
Pharma., 50 Featherstone
Street, London EC1Y 8RT, U.K.
| |
Collapse
|
23
|
Al-Imam A, Motyka MA, Hoffmann B, Magowska A, Michalak M. Infoveillance and Critical Analysis of the Systematically Reviewed Literature on Dimethyltryptamine and the "God Molecule". Pharmaceuticals (Basel) 2023; 16:831. [PMID: 37375778 DOI: 10.3390/ph16060831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Aboriginals of Latin America have used DMT (N,N-dimethyltryptamine) in ritualistic ceremonies for centuries. Nevertheless, there are limited data on web users' interest concerning DMT. We aim to review the literature and explore the spatial-temporal mapping of online search behavior concerning DMT, 5-MeO-DMT, and the Colorado River toad via Google Trends over the past 10 years (2012-2022) while using 5 search terms: "N,N-dimethyltryptamine", "5-methoxy-N,N-dimethyltryptamine", "5-MeO-DMT", "Colorado River toad", and "Sonoran Desert toad". Literature analysis conveyed novel information concerning DMT's past shamanic and present-day illicit uses, showcased experimental trials on DMT uses for neurotic disorders, and highlighted potential uses in modern medicine. DMT's geographic mapping signals originated mainly from Eastern Europe, the Middle East, and Far East Asia. In contrast, 5-MeO-DMT signals prevailed in Western Europe, Indo-China, and Australasia. Signals concerning the toad originated from the Americas, Australia, India, the Philippines, and Europe. Web users searched the most for "N,N-dimethyltryptamine" and "5-MeO-DMT". Three terms exhibited significant upgoing linear temporal trends: "5-MeO-DMT" (β = 0.37, p < 0.001), "Sonoran Desert toad" (β = 0.23, p < 0.001), and "Colorado River toad" (β = 0.17, p < 0.001). The literature and Infoedemiology data provided crucial information concerning DMT's legal status, risks and benefits, and potential for abuse. Nonetheless, we opine that in the upcoming decades, physicians might use DMT to manage neurotic disorders pending a change in its legal status.
Collapse
Affiliation(s)
- Ahmed Al-Imam
- Department of Computer Science and Statistics, Doctoral School, Poznan University of Medical Sciences, 61-806 Poznan, Poland
- Department of Anatomy and Cellular Biology, College of Medicine, University of Baghdad, Baghdad 10047, Iraq
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | - Marek A Motyka
- Institute of Sociological Sciences, University of Rzeszow, 35-959 Rzeszów, Poland
| | - Beata Hoffmann
- Institute of Applied Social Sciences, University of Warsaw, 00-927 Warsaw, Poland
| | - Anita Magowska
- Department of History and Philosophy of Medical Sciences, Poznan University of Medical Sciences, 61-806 Poznan, Poland
| | - Michal Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-806 Poznan, Poland
| |
Collapse
|
24
|
Daldegan-Bueno D, Simionato NM, Favaro VM, Maia LO. The current state of ayahuasca research in animal models: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110738. [PMID: 36863501 DOI: 10.1016/j.pnpbp.2023.110738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
RATIONALE The psychedelic brew ayahuasca is increasingly being investigated for its therapeutic potential. Animal models are essential to investigate the pharmacological effects of ayahuasca since they can control important factors influencing it, such as the set and setting. OBJECTIVE Review and summarise data available on ayahuasca research using animal models. METHODS We systematically searched five databases (PubMed, Web of Science, EMBASE, LILACS and PsycInfo) for peer-reviewed studies in English, Portuguese or Spanish published up to July 2022. The search strategy included ayahuasca- and animal model-related terms adapted from the SYRCLE search syntax. RESULTS We identified 32 studies investigating ayahuasca effects on toxicological, behavioural and (neuro)biological parameters in rodents, primates and zebrafish. Toxicological results show that ayahuasca is safe at ceremonial-based doses but toxic at high doses. Behavioural results indicate an antidepressant effect and a potential to reduce the reward effects of ethanol and amphetamines, while the anxiety-related outcomes are yet inconclusive; also, ayahuasca can influence locomotor activity, highlighting the importance of controlling the analysis for locomotion when using tasks depending on it. Neurobiological results show that ayahuasca affects brain structures involved in memory, emotion and learning and that other neuropathways, besides the serotonergic action, are important in modulating its effects. CONCLUSIONS Studies using animal models indicate that ayahuasca is toxicologically safe in ceremonial-comparable doses and indicates a therapeutic potential for depression and substance use disorder while not supporting an anxiolytic effect. Essential gaps in the ayahuasca field can still be sufficed using animal models.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil; Centre for Applied Research in Mental Health and Addiction, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | | | - Vanessa Manchim Favaro
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas Oliveira Maia
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil; Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Interdisciplinary Center for Studies in Palliative Care (CIECP), School of Nursing, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| |
Collapse
|
25
|
Burkhardt RN, Artyukhin AB, Aprison EZ, Curtis BJ, Fox BW, Ludewig AH, Palomino DF, Luo J, Chaturbedi A, Panda O, Wrobel CJJ, Baumann V, Portman DS, Lee SS, Ruvinsky I, Schroeder FC. Sex-specificity of the C. elegans metabolome. Nat Commun 2023; 14:320. [PMID: 36658169 PMCID: PMC9852247 DOI: 10.1038/s41467-023-36040-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.
Collapse
Affiliation(s)
- Russell N Burkhardt
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andreas H Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jintao Luo
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Victor Baumann
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, 14642, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Ayahuasca's therapeutic potential: What we know - and what not. Eur Neuropsychopharmacol 2023; 66:45-61. [PMID: 36368095 DOI: 10.1016/j.euroneuro.2022.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
The therapeutic potential of the psychedelic brew ayahuasca has been investigated in preclinical and clinical studies. Currently, the most consistent evidence refers to depression. However, various studies suggest that ayahuasca may comprise therapeutic benefits in other health conditions. This narrative review provides a comprehensive, up-to-date overview of ayahuasca's therapeutic effects in diverse clinical conditions in human (clinical, cross-sectional, observational, and qualitative) and preclinical (animal and in vitro) studies. In addition to summarizing and discussing the most commonly studied conditions, such as depression, anxiety, and substance use disorders (SUD), we also examine less frequently studied psychiatric, neurological, and physical conditions. Moreover, we discuss evidence from epidemiological studies on the impact of regular, long-term ayahuasca use on health and psychosocial outcomes. Overall, evidence for depression and SUD is more consistent, with numerous and diverse studies. However, a growing body of evidence suggests that other conditions equally relevant to public health might be promising targets for ayahuasca's therapeutic effects. This includes preliminary studies indicating potential for grief, eating disorders, posttraumatic stress disorder, personality disorders, Parkinson's and Alzheimer's disease, and severe physical illnesses (e.g., cancer, chronic conditions). Moreover, preliminary evidence in long-term ayahuasca users does not suggest detrimental effects but possible benefits for individual and collective health. In light of the emerging evidence of psychedelic drugs as therapeutic agents, it is essential to further investigate in rigorous designs the therapeutic potential of ayahuasca in conditions other than depression.
Collapse
|
27
|
Politi M, Tresca G, Menghini L, Ferrante C. Beyond the Psychoactive Effects of Ayahuasca: Cultural and Pharmacological Relevance of Its Emetic and Purging Properties. PLANTA MEDICA 2022; 88:1275-1286. [PMID: 34794194 DOI: 10.1055/a-1675-3840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The herbal preparation ayahuasca has been an important part of ritual and healing practices, deployed to access invisible worlds in several indigenous groups in the Amazon basin and among mestizo populations of South America. The preparation is usually known to be composed of two main plants, Banisteriopsis caapi and Psychotria viridis, which produce both hallucinogenic and potent purging and emetic effects; currently, these are considered its major pharmacological activities. In recent decades, the psychoactive and visionary effect of ayahuasca has been highly sought after by the shamanic tourism community, which led to the popularization of ayahuasca use globally and to a cultural distancing from its traditional cosmological meanings, including that of purging and emesis. Further, the field of ethnobotany and ethnopharmacology has also produced relatively limited data linking the phytochemical diversity of ayahuasca with the different degrees of its purging and emetic versus psychoactive effects. Similarly, scientific interest has also principally addressed the psychological and mental health effects of ayahuasca, overlooking the cultural and pharmacological importance of the purging and emetic activity. The aim of this review is therefore to shed light on the understudied purging and emetic effect of ayahuasca herbal preparation. It firstly focuses on reviewing the cultural relevance of emesis and purging in the context of Amazonian traditions. Secondly, on the basis of the main known phytochemicals described in the ayahuasca formula, a comprehensive pharmacological evaluation of their emetic and purging properties is presented.
Collapse
Affiliation(s)
- Matteo Politi
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Giorgia Tresca
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| |
Collapse
|
28
|
Varani AM, Silva SR, Lopes S, Barbosa JBF, Oliveira D, Corrêa MA, Moraes AP, Miranda VF, Prosdocimi F. The complete organellar genomes of the entheogenic plant Psychotria viridis (Rubiaceae), a main component of the ayahuasca brew. PeerJ 2022; 10:e14114. [PMID: 36275467 PMCID: PMC9586082 DOI: 10.7717/peerj.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Psychotria viridis (Rubioideae: Rubiaceae), popularly known as chacrona, is commonly found as a shrub in the Amazon region and is well-known to produce psychoactive compounds, such as the N,N-dimethyltryptamine (DMT). Together with the liana Banisteropsis caapi, P. viridis is one of the main components of the Amerindian traditional, entheogenic beverage known as ayahuasca. In this work, we assembled and annotated the organellar genomes (ptDNA and mtDNA), presenting the first genomics resources for this species. The P. viridis ptDNA exhibits 154,106 bp, encoding all known ptDNA gene repertoire found in angiosperms. The Psychotria genus is a complex paraphyletic group, and according to phylogenomic analyses, P. viridis is nested in the Psychotrieae clade. Comparative ptDNA analyses indicate that most Rubiaceae plastomes present conserved ptDNA structures, often showing slight differences at the junction sites of the major four regions (LSC-IR-SSC). For the mitochondrion, assembly graph-based analysis supports a complex mtDNA organization, presenting at least two alternative and circular mitogenomes structures exhibiting two main repeats spanning 24 kb and 749 bp that may symmetrically isomerize the mitogenome into variable arrangements and isoforms. The circular mtDNA sequences (615,370 and 570,344 bp) encode almost all plant mitochondrial genes (except for the ccmC, rps7, rps10, rps14, rps19, rpl2 and rpl16 that appears as pseudogenes, and the absent genes sdh3, rps2, rsp4, rsp8, rps11, rpl6, and rpl10), showing slight variations related to exclusive regions, ptDNA integration, and relics of previous events of LTR-RT integration. The detection of two mitogenomes haplotypes is evidence of heteroplasmy as observed by the complex organization of the mitochondrial genome using graph-based analysis. Taken together, these results elicit the primary insights into the genome biology and evolutionary history of Psychotria viridis and may be used to aid strategies for conservation of this sacred, entheogenic species.
Collapse
Affiliation(s)
- Alessandro M. Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Saura R. Silva
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Simone Lopes
- Laboratory of Genetics and Molecular Biology, State University of Paraíba (UEPB), Campina Grande, Paraíba, Brazil
| | | | - Danilo Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Corrêa
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Moraes
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, São Paulo, Brazil
| | - Vitor F.O. Miranda
- School of Agricultural and Veterinarian Sciences, Department of Biology, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Kargbo R. Application of Deuterated N, N-Dimethyltryptamine in the Potential Treatment of Psychiatric and Neurological Disorders. ACS Med Chem Lett 2022; 13:1402-1404. [PMID: 36105328 PMCID: PMC9465894 DOI: 10.1021/acsmedchemlett.2c00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/30/2022] Open
|
30
|
Madureira-Carvalho A, Brito-da-Costa A, Dias-da-Silva D, Dinis-Oliveira R. P03-20 Ayahuasca and N,N-dimethyltryptamine (DMT): Toxicokinetics, toxicodynamics, and biological effects. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Bosch OG, Halm S, Seifritz E. Psychedelics in the treatment of unipolar and bipolar depression. Int J Bipolar Disord 2022; 10:18. [PMID: 35788817 PMCID: PMC9256889 DOI: 10.1186/s40345-022-00265-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
This is a narrative review about the role of classic and two atypical psychedelics in the treatment of unipolar and bipolar depression. Since the 1990s, psychedelics experience a renaissance in biomedical research. The so-called classic psychedelics include lysergic acid diethylamide (LSD), psilocybin, mescaline and ayahuasca. Characteristic effects like alterations in sensory perception, as well as emotion- and self-processing are induced by stimulation of serotonin 2A receptors in cortical areas. The new paradigm of psychedelic-assisted psychotherapy suggests a therapeutic framework in which a safely conducted psychedelic experience is integrated into a continuous psychotherapeutic process. First randomized, controlled trials with psilocybin show promising efficacy, tolerability, and adherence in the treatment of unipolar depression. On the other hand, classic psychedelics seem to be associated with the induction of mania, which is an important issue to consider for the design of research and clinical protocols. So called atypical psychedelics are a heterogeneous group with overlapping subjective effects but different neurobiological mechanisms. Two examples of therapeutic value in psychiatry are 3,4-methylenedioxymethamphetamine (MDMA) and ketamine. Since 2020 the ketamine enantiomer esketamine has been granted international approval for treatment-resistant unipolar depression, and also first evidence exists for the therapeutic efficacy of ketamine in bipolar depression. Whether psychedelics will fulfil current expectations and find their way into broader clinical use will depend on future rigorous clinical trials with larger sample sizes. A well-considered therapeutic and legal framework will be crucial for these substances to create new treatment settings and a potential paradigm shift.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, PO Box 1931, 8032, Zurich, Switzerland.
| | - Simon Halm
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, PO Box 1931, 8032, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, PO Box 1931, 8032, Zurich, Switzerland
| |
Collapse
|
32
|
Vorobyeva N, Kozlova AA. Three Naturally-Occurring Psychedelics and Their Significance in the Treatment of Mental Health Disorders. Front Pharmacol 2022; 13:927984. [PMID: 35837277 PMCID: PMC9274002 DOI: 10.3389/fphar.2022.927984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 12/20/2022] Open
Abstract
Classical psychedelics represent a family of psychoactive substances with structural similarities to serotonin and affinity for serotonin receptors. A growing number of studies have found that psychedelics can be effective in treating various psychiatric conditions, including post-traumatic stress disorder, major depressive disorder, anxiety, and substance use disorders. Mental health disorders are extremely prevalent in the general population constituting a major problem for the public health. There are a wide variety of interventions for mental health disorders, including pharmacological therapies and psychotherapies, however, treatment resistance still remains a particular challenge in this field, and relapse rates are also quite high. In recent years, psychedelics have become one of the promising new tools for the treatment of mental health disorders. In this review, we will discuss the three classic serotonergic naturally occurring psychedelics, psilocybin, ibogaine, and N, N-dimethyltryptamine, focusing on their pharmacological properties and clinical potential. The purpose of this article is to provide a focused review of the most relevant research into the therapeutic potential of these substances and their possible integration as alternative or adjuvant options to existing pharmacological and psychological therapies.
Collapse
Affiliation(s)
- Nataliya Vorobyeva
- Hive Bio Life Sciences Ltd., London, United Kingdom
- *Correspondence: Nataliya Vorobyeva,
| | - Alena A. Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
33
|
Lenz C, Dörner S, Trottmann F, Hertweck C, Sherwood A, Hoffmeister D. Assessment of Bioactivity-Modulating Pseudo-Ring Formation in Psilocin and Related Tryptamines. Chembiochem 2022; 23:e202200183. [PMID: 35483009 PMCID: PMC9401598 DOI: 10.1002/cbic.202200183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Indexed: 11/12/2022]
Abstract
Psilocybin (1) is the major alkaloid found in psychedelic mushrooms and acts as a prodrug to psilocin (2, 4‐hydroxy‐N,N‐dimethyltryptamine), a potent psychedelic that exerts remarkable alteration of human consciousness. In contrast, the positional isomer bufotenin (7, 5‐hydroxy‐N,N‐dimethyltryptamine) differs significantly in its reported pharmacology. A series of experiments was designed to explore chemical differences between 2 and 7 and specifically to test the hypothesis that the C‐4 hydroxy group of 2 significantly influences the observed physical and chemical properties through pseudo‐ring formation via an intramolecular hydrogen bond (IMHB). NMR spectroscopy, accompanied by quantum chemical calculations, was employed to compare hydrogen bond behavior in 4‐ and 5‐hydroxylated tryptamines. The results provide evidence for a pseudo‐ring in 2 and that sidechain/hydroxyl interactions in 4‐hydroxytryptamines influence their oxidation kinetics. We conclude that the propensity to form IMHBs leads to a higher number of uncharged species that easily cross the blood‐brain barrier, compared to 7 and other 5‐hydroxytryptamines, which cannot form IMHBs. Our work helps understand a fundamental aspect of the pharmacology of 2 and should support efforts to introduce it (via the prodrug 1) as an urgently needed therapeutic against major depressive disorder.
Collapse
Affiliation(s)
- Claudius Lenz
- Friedrich-Schiller-Universitat Jena, Pharmaceutical Microbiology, GERMANY
| | - Sebastian Dörner
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena, Pharmaceutical Microbiology, 07745, Jena, GERMANY
| | - Felix Trottmann
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie eV Hans-Knöll-Institut: Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Biomolecular Chemistry, 07745, Jena, GERMANY
| | - Christian Hertweck
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie eV Hans-Knöll-Institut: Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Biomolecular Chemistry, GERMANY
| | - Alexander Sherwood
- Usona Institute, Chemistry, 2800 Woods Hollow Road, 53711, Madison, UNITED STATES
| | - Dirk Hoffmeister
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Pharmaceutical Microbiology at the Hans-Kn�ll-Institute, Beutenbergstrasse 11a, 07745, Jena, GERMANY
| |
Collapse
|
34
|
Rodríguez L, López A, Moyna G, Seoane GA, Davyt D, Vázquez Á, Hernández G, Carrera I. New Insights into the Chemical Composition of Ayahuasca. ACS OMEGA 2022; 7:12307-12317. [PMID: 35449956 PMCID: PMC9016809 DOI: 10.1021/acsomega.2c00795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Ayahuasca is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for medicinal, spiritual, and cultural purposes. It is prepared by boiling in water an admixture of the Amazonian vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, with plants containing N,N-dimethyltryptamine, usually Psychotria viridis. While previous studies have focused on the detection and quantification of the alkaloids present in the drink, less attention has been given to other nonalkaloid components or the composition of the solids suspended in the beverage, which may also affect its psychoactive properties. In this study, we used nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to study the composition of ayahuasca samples, to determine their alkaloid qualitative and quantitative profiles, as well as other major soluble and nonsoluble components. For the first time, fructose was detected as a major component of the samples, while harmine (a β-carboline previously described as an abundant alkaloid in ayahuasca) was found to be present in the solids suspended in the beverage. In addition, N,N-dimethyltryptamine (DMT), harmine, tetrahydroharmine, harmaline, and harmol were identified as the major alkaloids present in extracts of all samples. Finally, a novel, easy, and fast method using quantitative NMR was developed and validated to simultaneously quantify the content of these alkaloids found in each ayahuasca sample.
Collapse
Affiliation(s)
- Luisina Rodríguez
- Laboratorio
de Farmacognosia, Departamento de Química Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
- Laboratorio
de Síntesis Orgánica, Departamento de Química
Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
- Arché-
Núcleo Interdisciplinario de Estudios sobre Psicodélicos-
Espacio Interdisciplinario, Universidad
de la República, José Enrique Rodó 1843, Montevideo 11200, Uruguay
| | - Andrés López
- Departamento
de Química del Litoral, Centro Universitario Regional Litoral
Norte, Universidad de la República, Ruta 3, km 363, Paysandú 60000, Uruguay
| | - Guillermo Moyna
- Departamento
de Química del Litoral, Centro Universitario Regional Litoral
Norte, Universidad de la República, Ruta 3, km 363, Paysandú 60000, Uruguay
| | - Gustavo A. Seoane
- Laboratorio
de Síntesis Orgánica, Departamento de Química
Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
- Arché-
Núcleo Interdisciplinario de Estudios sobre Psicodélicos-
Espacio Interdisciplinario, Universidad
de la República, José Enrique Rodó 1843, Montevideo 11200, Uruguay
| | - Danilo Davyt
- Laboratorio
de Química Farmacéutica, Departamento de Química
Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
| | - Álvaro Vázquez
- Laboratorio
de Farmacognosia, Departamento de Química Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
- Arché-
Núcleo Interdisciplinario de Estudios sobre Psicodélicos-
Espacio Interdisciplinario, Universidad
de la República, José Enrique Rodó 1843, Montevideo 11200, Uruguay
| | - Gonzalo Hernández
- Laboratorio
de Resonancia Magnética Nuclear, Departamento de Química
Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
| | - Ignacio Carrera
- Laboratorio
de Síntesis Orgánica, Departamento de Química
Orgánica, Universidad de la República, Avenue General Flores 2124, Montevideo 11800, Uruguay
- Arché-
Núcleo Interdisciplinario de Estudios sobre Psicodélicos-
Espacio Interdisciplinario, Universidad
de la República, José Enrique Rodó 1843, Montevideo 11200, Uruguay
| |
Collapse
|
35
|
Daldegan-Bueno D, Favaro VM, Morais P, Sussulini A, Oliveira MGM. Effects of repeated ayahuasca administration on behaviour and c-Fos expression in male rats exposed to the open field. Behav Brain Res 2022; 427:113878. [DOI: 10.1016/j.bbr.2022.113878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
|
36
|
Gianfratti B, Tabach R, Sakalem ME, Stessuk T, Maia LO, Carlini EA. Ayahuasca blocks ethanol preference in an animal model of dependence and shows no acute toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114865. [PMID: 34822961 DOI: 10.1016/j.jep.2021.114865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayahuasca, a psychoactive beverage prepared from Banisteriopsis caapi and Psychotria viridis, is originally used by Amazon-based indigenous and mestizo groups for medicinal and ritualistic purposes. Nowadays, ayahuasca is used in religious and shamanic contexts worldwide, and preliminary evidence from preclinical and observational studies suggests therapeutic effects of ayahuasca for the treatment of substance (including alcohol) use disorders. AIM OF THE STUDY To investigate the initial pharmacological profile of ayahuasca and its effects on ethanol rewarding effect using the conditioned place preference (CPP) paradigm in mice. MATERIALS AND METHODS Ayahuasca beverage was prepared using extracts of B. caapi and P. viridis, and the concentration of active compounds was assessed through high performance liquid chromatography (HPLC). The following behavioral tests were performed after ayahuasca administration: general pharmacological screening (13, 130, or 1300 mg/kg - intraperitoneally - i.p., and 65, 130, 1300, or 2600 mg/kg - via oral - v.o.); acute toxicity test with elevated doses (2600 mg/kg - i.p., and 5000 mg/kg - v.o.); motor activity, motor coordination, and hexobarbital-induced sleeping time potentiation (250, 500, or 750 mg/kg ayahuasca or vehicle - v.o.). For the CPP test, the animals received ayahuasca (500 mg/kg - v.o.) prior to ethanol (1.8 g/kg - i.p.) or vehicle (control group - i.p.) during conditioning sessions. RESULTS Ayahuasca treatment presented no significant effect on motor activity, motor coordination, hexobarbital-induced sleeping latency or total sleeping time, and did not evoke signs of severe acute toxicity at elevated oral doses. Ayahuasca pre-treatment successfully inhibited the ethanol-induced CPP and induced CPP when administered alone. CONCLUSIONS Our results indicate that ayahuasca presents a low-risk acute toxicological profile when administered orally, and presents potential pharmacological properties that could contribute to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Bruno Gianfratti
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil.
| | - Ricardo Tabach
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil; UNISA - Universidade Santo Amaro, Rua Prof Eneas de Siqueira Neto, 340 - Jardim das Imbuias, CEP 04829-300, São Paulo, SP, Brazil.
| | - Marna Eliana Sakalem
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil; Department of Anatomy, State University of Londrina (UEL), Centro de Ciências Biológicas, Campus Universitário s/n, Caixa Postal 10011, CEP 86057-970, Londrina, PR, Brazil.
| | - Talita Stessuk
- Interunits Graduate Program in Biotechnology, University of São Paulo (USP), Avenida Prof. Lineu Prestes, 2415 - Edifício ICB - III Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil; Department of Biotechnology, São Paulo State University (UNESP), Campus Assis, Avenida Dom Antônio 2100, CEP 19806-900, Assis, SP, Brazil.
| | - Lucas Oliveira Maia
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, CEP 13083-887, Campinas, SP, Brazil.
| | - Elisaldo Araujo Carlini
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Borbély E, Varga V, Szögi T, Schuster I, Bozsó Z, Penke B, Fülöp L. Impact of Two Neuronal Sigma-1 Receptor Modulators, PRE084 and DMT, on Neurogenesis and Neuroinflammation in an Aβ 1-42-Injected, Wild-Type Mouse Model of AD. Int J Mol Sci 2022; 23:2514. [PMID: 35269657 PMCID: PMC8910266 DOI: 10.3390/ijms23052514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by cognitive dysfunctions. Pharmacological interventions to slow the progression of AD are intensively studied. A potential direction targets neuronal sigma-1 receptors (S1Rs). S1R ligands are recognized as promising therapeutic agents that may alleviate symptom severity of AD, possibly via preventing amyloid-β-(Aβ-) induced neurotoxicity on the endoplasmic reticulum stress-associated pathways. Furthermore, S1Rs may also modulate adult neurogenesis, and the impairment of this process is reported to be associated with AD. We aimed to investigate the effects of two S1R agonists, dimethyltryptamine (DMT) and PRE084, in an Aβ-induced in vivo mouse model characterizing neurogenic and anti-neuroinflammatory symptoms of AD, and the modulatory effects of S1R agonists were analyzed by immunohistochemical methods and western blotting. DMT, binding moderately to S1R but with high affinity to 5-HT receptors, negatively influenced neurogenesis, possibly as a result of activating both receptors differently. In contrast, the highly selective S1R agonist PRE084 stimulated hippocampal cell proliferation and differentiation. Regarding neuroinflammation, DMT and PRE084 significantly reduced Aβ1-42-induced astrogliosis, but neither had remarkable effects on microglial activation. In summary, the highly selective S1R agonist PRE084 may be a promising therapeutic agent for AD. Further studies are required to clarify the multifaceted neurogenic and anti-neuroinflammatory roles of these agonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm Tér 8, H-6720 Szeged, Hungary; (E.B.); (V.V.); (T.S.); (I.S.); (Z.B.); (B.P.)
| |
Collapse
|
38
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Kelley DP, Venable K, Destouni A, Billac G, Ebenezer P, Stadler K, Nichols C, Barker S, Francis J. Pharmahuasca and DMT Rescue ROS Production and Differentially Expressed Genes Observed after Predator and Psychosocial Stress: Relevance to Human PTSD. ACS Chem Neurosci 2022; 13:257-274. [PMID: 34990116 DOI: 10.1021/acschemneuro.1c00660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with cognitive deficits, oxidative stress, and inflammation. Animal models have recapitulated features of PTSD, but no comparative RNA sequencing analysis of differentially expressed genes (DEGs) in the brain between PTSD and animal models of traumatic stress has been carried out. We compared DEGs from the prefrontal cortex (PFC) of an established stress model to DEGs from the dorsolateral PFC (dlPFC) of humans. We observed a significant enrichment of rat DEGs in human PTSD and identified 20 overlapping DEGs, of which 17 (85%) are directionally concordant. N,N-dimethyltryptamine (DMT) is a known indirect antioxidant, anti-inflammatory, and neuroprotective compound with antidepressant and plasticity-facilitating effects. We tested the capacity of DMT, the monoamine oxidase inhibitor (MAOI) harmaline, and "pharmahuasca" (DMT + harmaline) to reduce reactive oxygen species (ROS) production and inflammatory gene expression and to modulate neuroplasticity-related gene expression in the model. We administered DMT (2 mg/kg IP), harmaline (1.5 mg/kg IP), pharmahuasca, or vehicle every other day for 5 days, following a 30 day stress regiment. We measured ROS production in the PFC and hippocampus (HC) by electron paramagnetic resonance spectroscopy and sequenced total mRNA in the PFC. We also performed in vitro assays to measure the affinity and efficacy of DMT and harmaline at 5HT2AR compared to 5-HT. DMT and pharmahuasca reduced ROS production in the PFC and HC, while harmaline had mixed effects. Treatments normalized 9, 12, and 14 overlapping DEGs, and pathway analysis implicated that genes were involved in ROS production, inflammation, growth factor signaling, neurotransmission, and neuroplasticity.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Katy Venable
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Aspasia Destouni
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Gerald Billac
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Philip Ebenezer
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Krisztian Stadler
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| | - Charles Nichols
- Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Steven Barker
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Joseph Francis
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
40
|
van Oorsouw K, Toennes SW, Ramaekers JG. Therapeutic effect of an ayahuasca analogue in clinically depressed patients: a longitudinal observational study. Psychopharmacology (Berl) 2022; 239:1839-1852. [PMID: 35072760 PMCID: PMC8785027 DOI: 10.1007/s00213-021-06046-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Studies have suggested mental health improvements following the use of the psychotropic plant concoction ayahuasca in non-clinical and clinical samples. OBJECTIVES The present observational study assessed depressive symptomatology in 20 clinically depressed patients (symptom score > 13 on the Beck's Depression Inventory) before attendance of an ayahuasca ceremony and 1 month and 1 year after. Secondary measures included ratings of altered states of consciousness and ego dissolution during the ayahuasca ceremony as well as global measures of mindfulness, satisfaction with life, depression, anxiety, and stress. RESULTS Twenty participants completed baseline and 1-day follow-up, 19 completed measures at 1-month follow-up, and 17 completed measures at 1-year follow-up. BDI scores reduced from baseline (M = 22.7) to all post-ceremony measures (Ms 11.45, 12.89, and 8.88, for 1-day, 1-month, and 1-year follow-up, respectively). After 1 day, 12/20 participants were in remission (BDI < 13). Remission rates after 1 month and 1 year were 13/19 and 12/17, respectively. Three participants remained mildly depressed (BDI 14-19) at the 1-month and 1-year follow-up. Two participants did not respond and remained at a moderate/severe level of depression at 1-year follow-up. Reductions on the secondary mental health measures and increases in mindfulness and satisfaction with life were found up to 1 year post-ceremony. Improvements in clinical depression and mental health correlated with levels of experienced ego dissolution and oceanic boundlessness during the ceremony up to 1 month after the ceremony. Engagement in additional mental health treatments or use of another psychedelic during study participation may have contributed to improved mental health ratings at 1-year follow-up. CONCLUSION Ayahuasca produces long-term mental health improvements in clinically depressed patients, which highlights its therapeutic potential.
Collapse
Affiliation(s)
- Kim van Oorsouw
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands.
| | - S. W. Toennes
- Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - J. G. Ramaekers
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Daldegan-Bueno D, Révész D, Morais PR, Barbosa PCR, Maia LO. Psychosocial and Drug Use Assessment of Regular vs. Non-Regular Ayahuasca Users in a Brazilian Sample: a Web-Based Survey. Subst Use Misuse 2022; 57:1072-1081. [PMID: 35466853 DOI: 10.1080/10826084.2022.2063896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background: Preliminary evidence suggests that long-term ayahuasca use is associated with better psychosocial outcomes and less drug use; however, available data on the association between ayahuasca intake frequency and psychosocial outcomes is limited. Objectives: We sought to characterize and investigate the association of regular ayahuasca use, as compared to non-regular use, on licit (alcohol and tobacco) and illicit (cannabis, psychostimulants, psychedelics, and non-medical opioids) drug use and psychosocial outcomes. Methods: An online-based cross-sectional survey was taken among people who use ayahuasca in Brazil assessing sociodemographic, drug and ayahuasca use, anxiety and depression (HAD-S), intrinsic religiosity (IRI), negative and positive affects (PANAS), satisfaction with life (SWLS), and five quality of life domains (WHOQOL-Brief). Multivariate regressions for each psychosocial outcome and drug use were performed comparing regular to non-regular ayahuasca users while correcting for sociodemographic variables. Results: A total of 286 valid answers were retrieved, divided into people with regular (n = 101) and non-regular (n = 185) ayahuasca use. Groups had similar sociodemographic profiles and lifetime use of drugs. In the multivariate analysis, regular use of ayahuasca was associated with lower anxiety (B: -0.97), negative affect (B: -2.62), general (B: 0.22) and physical (B: 0.17) quality of life, higher intrinsic religiosity scores (B: 4.16), and less past-month licit (OR = 0.30) and illicit (OR = 0.49) use of substances. Conclusions: Our results show that ceremonial regular ayahuasca compared to non-regular use is associated with better psychosocial and mental health outcomes and less drug use. Studies with repeated ayahuasca administration and extended follow-ups are essential to clarify the nature of ayahuasca's therapeutic effects and to guide future clinical research.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, Brazil.,Centre for Applied Research in Mental Health and Addiction, Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
| | | | - Paulo Rogério Morais
- Department of Psychology, Federal University of Rondônia, Porto Velho, Brazil.,Observatory of Violence, Health and Work (OBSAT), Federal University of Rondônia, Porto Velho, Brazil
| | | | - Lucas Oliveira Maia
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
42
|
Overcoming Depression with 5-HT2A Receptor Ligands. Int J Mol Sci 2021; 23:ijms23010010. [PMID: 35008436 PMCID: PMC8744644 DOI: 10.3390/ijms23010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/25/2023] Open
Abstract
Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.
Collapse
|
43
|
Saeger HN, Olson DE. Psychedelic-inspired approaches for treating neurodegenerative disorders. J Neurochem 2021; 162:109-127. [PMID: 34816433 DOI: 10.1111/jnc.15544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Psychedelics are increasingly being recognized for their potential to treat a wide range of brain disorders including depression, post-traumatic stress disorder (PTSD), and substance use disorder. Their broad therapeutic potential might result from an ability to rescue cortical atrophy common to many neuropsychiatric and neurodegenerative diseases by impacting neurotrophic factor gene expression, activating neuronal growth and survival mechanisms, and modulating the immune system. While the therapeutic potential of psychedelics has not yet been extended to neurodegenerative disorders, we provide evidence suggesting that approaches based on psychedelic science might prove useful for treating these diseases. The primary target of psychedelics, the 5-HT2A receptor, plays key roles in cortical neuron health and is dysregulated in Alzheimer's disease. Moreover, evidence suggests that psychedelics and related compounds could prove useful for treating the behavioral and psychological symptoms of dementia (BPSD). While more research is needed to probe the effects of psychedelics in models of neurodegenerative diseases, the robust effects of these compounds on structural and functional neuroplasticity and inflammation clearly warrant further investigation.
Collapse
Affiliation(s)
- Hannah N Saeger
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, California, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
44
|
Houle SKD, Evans D, Carter CA, Schlagenhauf P. Ayahuasca and the traveller: A scoping review of risks and possible benefits. Travel Med Infect Dis 2021; 44:102206. [PMID: 34785376 DOI: 10.1016/j.tmaid.2021.102206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ayahuasca is a psychotropic drink made from the Amazonian vine Banisteriopsis caapi. Active components include beta-carboline alkaloids and the hallucinogen N-N-dimethyltryptamine (DMT). This review aimed to identify and summarize the literature on the safety and effectiveness of ayahuasca among recreational users. METHOD A comprehensive literature search was done on November 1, 2019 in the following six databases: PubMed(MEDLINE), Ovid Embase, Ovid International Pharmaceutical Abstracts, LILACS, Scopus, and Web of Science. Articles were included if they were original research published in English, Spanish, or Portuguese, among human participants using oral ayahuasca for neuropsychiatric effects. Chemical or pharmacological analyses, brain imaging studies, and studies examining the use of ayahuasca within a religious context were excluded. RESULTS 5750 unique titles were identified through the database searches, with an additional 19 titles identified through manual searches. Ultimately, 39 met all the criteria for inclusion. Articles were organized into 4 themes: (1) Case reports and case series; (2) The use of ayahuasca for depression or grief; (3) The use of ayahuasca and other psychiatric or neuropsychological outcomes; and (4) Studies examining ayahuasca use and physiologic outcomes. Ayahuasca use is associated with a risk of both psychiatric and non-psychiatric events including hallucinations, agitation or aggression, vomiting, seizure, and rhabdomyolysis. Five fatalities have been reported in the literature following ayahuasca use. Open-label studies assessing ayahuasca use in depression found favorable results persisting across 21 days. Ayahuasca was also found to influence the MINDSENS scale for mindfulness, with mixed results observed for impact of ayahuasca on cognitive function and creativity, and benefits observed for measures of self-acceptance and overall wellbeing. CONCLUSIONS To date, evidence on benefits for the management of depression, anxiety, and other mental health disorders is mixed, with some evidence suggesting improvements in mindfulness measures and creativity that are generally short-lived, and multiple case reports suggesting the potential for harm and interactions.
Collapse
Affiliation(s)
| | - Derek Evans
- School of Pharmacy, Keck Graduate Institute, United States
| | | | - Patricia Schlagenhauf
- University of Zürich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Epidemiology Biostatistics and Prevention Institute, Zürich, Switzerland
| |
Collapse
|
45
|
van Oorsouw KI, Uthaug MV, Mason NL, Broers NJ, Ramaekers JG. Sub-acute and long-term effects of ayahuasca on mental health and well-being in healthy ceremony attendants: A replication study. JOURNAL OF PSYCHEDELIC STUDIES 2021. [DOI: 10.1556/2054.2021.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Background and aims
There is a growing body of evidence suggesting that the psychedelic plant tea, ayahuasca, holds therapeutic potential. Uthaug et al. (2018) demonstrated that a single dose of ayahuasca improved mental health sub-acutely and 4-weeks post-ceremony in healthy participants. The present study aimed to replicate and extend these findings. A first objective was to assess the sub-acute and long-term effects of ayahuasca on mental health and well-being in first-time and experienced users. A second aim was to extend the assessment of altered states of consciousness and how they relate to changes in mental health.
Method
Ayahuasca ceremony attendants (N = 73) were assessed before, the day after, and four weeks following the ceremony.
Results
We replicated the reduction in self-reported stress 4-weeks post ceremony, but, in contrast, found no reduction in depression. Also, increased satisfaction with life and awareness the day after the ceremony, and its return to baseline 4 weeks later, were replicated. New findings were: reduced ratings of anxiety and somatization, and increased levels of non-judging 4-weeks post-ceremony. We replicated the relation between altered states of consciousness (e.g., experienced ego dissolution during the ceremony) and mental health outcomes sub-acutely. The effects of ayahuasca did not differ between experienced and first-time users.
Conclusion
Partly in line with previous findings, ayahuasca produces long-term improvements in affect in non-clinical users. Furthermore, sub-acute mental health ratings are related to the intensity of the psychedelic experience. Although findings replicate and highlight the therapeutic potential of ayahuasca, this needs to be confirmed in placebo-controlled studies.
Collapse
Affiliation(s)
- Kim I. van Oorsouw
- 1 Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Malin V. Uthaug
- 1 Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
- 2 Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Natasha L. Mason
- 3 Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Nick J. Broers
- 4 Department of Methodology and Statistics, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johannes G. Ramaekers
- 3 Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
46
|
Many Drugs of Abuse May Be Acutely Transformed to Dopamine, Norepinephrine and Epinephrine In Vivo. Int J Mol Sci 2021; 22:ijms221910706. [PMID: 34639047 PMCID: PMC8509043 DOI: 10.3390/ijms221910706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.
Collapse
|
47
|
Gonçalves J, Castilho M, Rosado T, Luís Â, Restolho J, Fernández N, Gallardo E, Duarte AP. In Vitro Study of the Bioavailability and Bioaccessibility of the Main Compounds Present in Ayahuasca Beverages. Molecules 2021; 26:5555. [PMID: 34577025 PMCID: PMC8470438 DOI: 10.3390/molecules26185555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Ayahuasca is a psychoactive beverage that contains the psychoactive compound N,N-dimethyltryptamine and β-carboline alkaloids. This study aims at determining in vitro the bioavailability and bioaccessibility of the main compounds present in decoctions of four individual plants, in a commercial mixture and in four mixtures of two individual plants used in the preparation of Ayahuasca. The samples were subjected to an in vitro digestion process, and the Caco-2 cell line was used as an absorption model. The integrity and permeability of the cell monolayer were evaluated, as well as the cytotoxicity of the extracts. After digestion and cell incubation, the compounds absorbed by the cell monolayer were quantified by high-performance liquid chromatography coupled to a diode array detector. The results showed that compounds such as N,N-dimethyltryptamine, Harmine, Harmaline, Harmol, Harmalol and Tetrahydroharmine were released from the matrix during the in vitro digestion process, becoming bioaccessible. Similarly, some of these compounds, after being incubated with the cell monolayer, were absorbed, becoming bioavailable. The extracts did not show cytotoxicity after cell incubation, and the integrity and permeability of the cell monolayer were not compromised.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Miguel Castilho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - José Restolho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
| | - Nicolás Fernández
- Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina;
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (M.C.); (T.R.); (J.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| |
Collapse
|
48
|
Więckiewicz G, Stokłosa I, Piegza M, Gorczyca P, Pudlo R. Lysergic Acid Diethylamide, Psilocybin and Dimethyltryptamine in Depression Treatment: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:793. [PMID: 34451890 PMCID: PMC8399008 DOI: 10.3390/ph14080793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023] Open
Abstract
Despite many different kinds of substances available for depression treatment, depression itself still appears to be a clinical challenge. Recently, formerly illicit substances came to scientists' attention, including lysergic acid diethylamide (LSD), psilocybin and dimethyltryptamine (DMT). Some studies suggest that these substances might be effective in depression treatment. The aim of this study was to evaluate the efficiency of LSD, psilocybin and DMT in depression treatment in the light of current medical literature. The authors followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines for this systematic review. The authors searched the PubMed and Cochrane Library databases to identify relevant publications. Finally, 10 papers were included. Most of the selected studies showed significant correlation between psilocybin and DMT use and reduction in depression symptom intensity. By analyzing qualified studies, it can be concluded that psilocybin and DMT could be useful in depression treatment, but further observations are still required.
Collapse
Affiliation(s)
- Gniewko Więckiewicz
- Department and Clinic of Psychiatry, Medical University of Silesia, 42-612 Tarnowskie Góry, Poland; (I.S.); (M.P.); (P.G.); (R.P.)
| | | | | | | | | |
Collapse
|
49
|
Kubicskó K, Farkas Ö. Quantum chemical (QM:MM) investigation of the mechanism of enzymatic reaction of tryptamine and N,N-dimethyltryptamine with monoamine oxidase A. Org Biomol Chem 2020; 18:9660-9674. [PMID: 33215182 DOI: 10.1039/d0ob01118e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The endogenous psychedelic (mind-altering) N,N-dimethyltryptamine (DMT) molecule has an important role in tissue protection, regeneration, and immunity via sigma-1 receptor activation as its natural ligand. The immunologic properties of DMT suggest this biogenic compound should be investigated thoroughly in other aspects as well. In our in silico project, we examined the metabolism of DMT and its primary analogue, the tryptamine (T), by the monoamine oxidase (MAO) flavoenzyme. MAO has two isoforms, MAO-A and MAO-B. MAOs perform the oxidation of various monoamines by their flavin adenine dinucleotide (FAD) cofactor. Two-layer QM:MM calculations at the ONIOM(M06-2X/6-31++G(d,p):UFF=QEq) level were performed including the whole enzyme to explore the potential energy surface (PES) of the reactions. Our findings reinforced that a hybrid mechanism, a mixture of pure H+ and H- transfer pathways, describes precisely the rate-determining step of amine oxidation as suggested by earlier works. Additionally, our results show that the oxidation of tertiary amine DMT requires a lower activation barrier than the primary amine T. This may reflect a general rule, thus we recommend further investigations. Furthermore, we demonstrated that at pH 7.4 the protonated form of these substrates enter the enzyme. As the deprotonation of substrates is crucial, we presumed protonated cofactor, FADH+, may form. Surprisingly, the activation barriers are much lower compared to FAD with both substrates. Therefore, we suggest further investigations in this direction.
Collapse
Affiliation(s)
- Károly Kubicskó
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
50
|
Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, Vargas MV, McCarroll MN, Taylor JC, Myers-Turnbull D, Liu T, Yaghoobi B, Laskowski LJ, Anderson EI, Zhang G, Viswanathan J, Brown BM, Tjia M, Dunlap LE, Rabow ZT, Fiehn O, Wulff H, McCorvy JD, Lein PJ, Kokel D, Ron D, Peters J, Zuo Y, Olson DE. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 2020; 589:474-479. [PMID: 33299186 PMCID: PMC7874389 DOI: 10.1038/s41586-020-3008-z] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals.1 Unlike most substance use disorder (SUD) medications, anecdotal reports suggest that ibogaine possesses the potential to treat patients addicted to a variety of substances including opiates, alcohol, and psychostimulants. Like other psychedelic compounds, its therapeutic effects are long-lasting,2 which has been attributed to its ability to modify addiction-related neural circuitry through activation of neurotrophic factor signaling.3,4 However, several safety concerns have hindered the clinical development of ibogaine including its toxicity, hallucinogenic potential, and proclivity for inducing cardiac arrhythmias. Here, we apply the principles of function-oriented synthesis (FOS) to identify the key structural elements of its potential therapeutic pharmacophore, enabling us to engineer tabernanthalog (TBG)—a water soluble, non-hallucinogenic, non-toxic analog of ibogaine that can be prepared in a single step. TBG promoted structural neural plasticity, reduced alcohol- and heroin-seeking behavior, and produced antidepressant-like effects in rodents. This work demonstrates that through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant with therapeutic potential.
Collapse
Affiliation(s)
- Lindsay P Cameron
- Neuroscience Graduate Program, University of California, Davis, Davis, CA, USA
| | - Robert J Tombari
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alexander J Pell
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Zefan Q Hurley
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yann Ehinger
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Matthew N McCarroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Jack C Taylor
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas Myers-Turnbull
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Consortium, University of California, San Francisco, San Francisco, CA, USA
| | - Taohui Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guoliang Zhang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | | | - Brandon M Brown
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Michelle Tjia
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lee E Dunlap
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Zachary T Rabow
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - David Kokel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, CA, USA. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA. .,Center for Neuroscience, University of California, Davis, Davis, CA, USA. .,Delix Therapeutics, Inc., Palo Alto, CA, USA.
| |
Collapse
|