1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
3
|
Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front Nutr 2022; 9:800901. [PMID: 35571940 PMCID: PMC9099001 DOI: 10.3389/fnut.2022.800901] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Ming Cai
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wanju Sun
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- *Correspondence: Wanju Sun
| | - Jingyun Hu
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Jingyun Hu
| |
Collapse
|
4
|
Ellison G, Hollings AL, Hackett MJ. A review of the “metallome” within neurons and glia, as revealed by elemental mapping of brain tissue. BBA ADVANCES 2022; 2:100038. [PMID: 37082604 PMCID: PMC10074908 DOI: 10.1016/j.bbadva.2021.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
It is now well established that transition metals, such as Iron (Fe), Copper (Cu), and Zinc (Zn) are necessary for healthy brain function. Although Fe, Cu, and Zn are essential to the brain, imbalances in the amount, distribution, or chemical form ("metallome") of these metals is linked to the pathology of numerous brain diseases or disorders. Despite the known importance of metal ions for both brain health and disease, the metallome that exists within specific types of brain cells is yet to be fully characterised. The aim of this mini-review is to present an overview of the current knowledge of the metallome found within specific brain cells (oligodendrocytes, astrocytes, microglia, and neurons), as revealed by direct elemental mapping techniques. It is hoped this review will foster continued research using direct elemental mapping techniques to fully characterise the brain cell metallome.
Collapse
Affiliation(s)
- Gaewyn Ellison
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ashley L. Hollings
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Corresponding author.
| |
Collapse
|
5
|
Hackett MJ, Hollings AL, Lam V, Takechi R, Mamo JCL, de Jonge MD, Paterson D, Okuyama S. [Mapping the Metallo-maze to Memory Loss: Does Neuronal Metal Ion Deficiency Contribute to Dementia?]. YAKUGAKU ZASSHI 2021; 141:835-842. [PMID: 34078791 DOI: 10.1248/yakushi.20-00251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dementia has no cure and is an international health crisis. In addition to the immeasurable loss of QOL caused by dementia, the global economic cost is predicted to reach $2 trillion (USD) by 2030. Although much remains unknown about the biochemical pathways driving cognitive decline and memory loss during dementia, metals have been implicated in neurodegenerative disease. For example, total levels of Fe and Cu increase, which has been proposed to drive oxidative stress; and Fe, Cu, and Zn can bind amyloid-β, catalysing aggregation and formation of amyloid plaques. Unfortunately, despite these known facets through which metal ions may induce pathology, studies in greater detail have been hampered by a lack of microscopy methods to directly visualise metal ions, and their chemical form, within brain cells. Herein we report the use of synchrotron X-ray fluorescence microscopy to simultaneously image Fe, Cu, and Zn within neurons in ex vivo brain tissue sections. Using animal models of dementia, we now demonstrate for the first time that despite global increases in brain metal content and metal ion accumulation within amyloid plaques, key brain regions may also become metal ion deficient. Such deficiency could contribute to cognitive decline because of the essential roles metal ions play in neurotransmitter synthesis and energy metabolism. These recent findings are discussed in the context of memory loss, and the impact that metal ion dis-homeostasis may have on diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Mark J Hackett
- School of Molecular and Life Sciences, Curtin University.,Curtin Health Innovation Research Institute, Curtin University.,Curtin Institute of Functional Molecules and Interfaces, Curtin University
| | - Ashley L Hollings
- School of Molecular and Life Sciences, Curtin University.,Curtin Health Innovation Research Institute, Curtin University.,Curtin Institute of Functional Molecules and Interfaces, Curtin University
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University
| | | | | | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University
| |
Collapse
|
6
|
Rapid brain structure and tumour margin detection on whole frozen tissue sections by fast multiphotometric mid-infrared scanning. Sci Rep 2021; 11:11307. [PMID: 34050224 PMCID: PMC8163866 DOI: 10.1038/s41598-021-90777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023] Open
Abstract
Frozen section analysis is a frequently used method for examination of tissue samples, especially for tumour detection. In the majority of cases, the aim is to identify characteristic tissue morphologies or tumour margins. Depending on the type of tissue, a high number of misdiagnoses are associated with this process. In this work, a fast spectroscopic measurement device and workflow was developed that significantly improves the speed of whole frozen tissue section analyses and provides sufficient information to visualize tissue structures and tumour margins, dependent on their lipid and protein molecular vibrations. That optical and non-destructive method is based on selected wavenumbers in the mid-infrared (MIR) range. We present a measuring system that substantially outperforms a commercially available Fourier Transform Infrared (FT-IR) Imaging system, since it enables acquisition of reduced spectral information at a scan field of 1 cm2 in 3 s, with a spatial resolution of 20 µm. This allows fast visualization of segmented structure areas with little computational effort. For the first time, this multiphotometric MIR system is applied to biomedical tissue sections. We are referencing our novel MIR scanner on cryopreserved murine sagittal and coronal brain sections, especially focusing on the hippocampus, and show its usability for rapid identification of primary hepatocellular carcinoma (HCC) in mouse liver.
Collapse
|
7
|
Hiles-Murison B, Lavender AP, Hackett MJ, Armstrong JJ, Nesbit M, Rawlings S, McGonigle T, Warnock A, Lam V, Mamo JCL, Fitzgerald M, Takechi R. Blood-brain barrier disruption and ventricular enlargement are the earliest neuropathological changes in rats with repeated sub-concussive impacts over 2 weeks. Sci Rep 2021; 11:9261. [PMID: 33927338 PMCID: PMC8084989 DOI: 10.1038/s41598-021-88854-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 01/27/2023] Open
Abstract
Repeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood-brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.
Collapse
Affiliation(s)
- Bailey Hiles-Murison
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Andrew P Lavender
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen, VIC, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Joshua J Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Samuel Rawlings
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Terrence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
8
|
Pushie M, Hollings A, Reinhardt J, Webb S, Lam V, Takechi R, Mamo J, Paterson P, Kelly M, George G, Pickering I, Hackett M. Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2020; 35:2498-2508. [PMID: 33795908 PMCID: PMC8009441 DOI: 10.1039/d0ja00323a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transition metal ions (Fe, Mn, Cu, Zn) are essential for healthy brain function, but altered concentration, distribution, or chemical form of the metal ions has been implicated in numerous brain pathologies. Currently, it is not possible to image the cellular or sub-cellular distribution of metal ions in vivo and therefore, studying brain-metal homeostasis largely relies on ex vivo in situ elemental mapping. Sample preparation methods that accurately preserve the in vivo elemental distribution are essential if one wishes to translate the knowledge of elemental distributions measured ex vivo toward increased understanding of chemical and physiological pathways of brain disease. The choice of sample preparation is particularly important for metal ions that exist in a labile or mobile form, for which the in vivo distribution could be easily distorted by inappropriate sample preparation. One of the most widely studied brain structures, the hippocampus, contains a large pool of labile and mobile Zn. Herein, we describe how sucrose cryoprotection, the gold standard method of preparing tissues for immuno-histochemistry or immuno-fluorescence, which is also often used as a sample preparation method for elemental mapping studies, drastically alters hippocampal Zn distribution. Based on the results of this study, in combination with a comparison against the strong body of published literature that has used either rapid plunge freezing of brain tissue, or sucrose cryo-protection, we strongly urge investigators in the future to cease using sucrose cryoprotection as a method of sample preparation for elemental mapping, especially if Zn is an analyte of interest.
Collapse
Affiliation(s)
- M.J. Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - A. Hollings
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, AUS
| | - J. Reinhardt
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, AUS 3168
| | - S.M. Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA 94025
| | - V. Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - R Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - J.C. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - P.G. Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - M.E. Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - G.N. George
- School Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - I.J. Pickering
- School Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - M.J. Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, AUS
| |
Collapse
|
9
|
Perry WJ, Weiss A, Van de Plas R, Spraggins JM, Caprioli RM, Skaar EP. Integrated molecular imaging technologies for investigation of metals in biological systems: A brief review. Curr Opin Chem Biol 2020; 55:127-135. [PMID: 32087551 PMCID: PMC7237308 DOI: 10.1016/j.cbpa.2020.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Metals play an essential role in biological systems and are required as structural or catalytic co-factors in many proteins. Disruption of the homeostatic control and/or spatial distributions of metals can lead to disease. Imaging technologies have been developed to visualize elemental distributions across a biological sample. Measurement of elemental distributions by imaging mass spectrometry and imaging X-ray fluorescence are increasingly employed with technologies that can assess histological features and molecular compositions. Data from several modalities can be interrogated as multimodal images to correlate morphological, elemental, and molecular properties. Elemental and molecular distributions have also been axially resolved to achieve three-dimensional volumes, dramatically increasing the biological information. In this review, we provide an overview of recent developments in the field of metal imaging with an emphasis on multimodal studies in two and three dimensions. We specifically highlight studies that present technological advancements and biological applications of how metal homeostasis affects human health.
Collapse
Affiliation(s)
- William J Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andy Weiss
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Department of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Hartnell D, Gillespie-Jones K, Ciornei C, Hollings A, Thomas A, Harrild E, Reinhardt J, Paterson DJ, Alwis D, Rajan R, Hackett MJ. Characterization of Ionic and Lipid Gradients within Corpus Callosum White Matter after Diffuse Traumatic Brain Injury in the Rat. ACS Chem Neurosci 2020; 11:248-257. [PMID: 31850738 DOI: 10.1021/acschemneuro.9b00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increased recognition of the effects of diffuse traumatic brain injury (dTBI), which can initiate yet unknown biochemical cascades, resulting in delayed secondary brain degeneration and long-term neurological sequela. There is limited availability of therapies that minimize the effect of secondary brain damage on the quality of life of people who have suffered TBI, many of which were otherwise healthy adults. Understanding the cascade of biochemical events initiated in specific brain regions in the acute phase of dTBI and how this spreads into adjacent brain structures may provide the necessary insight into drive development of improved therapies. In this study, we have used direct biochemical imaging techniques (Fourier transform infrared spectroscopic imaging) and elemental mapping (X-ray fluorescence microscopy) to characterize biochemical and elemental alterations that occur in corpus callosum white matter in the acute phase of dTBI. The results provide direct visualization of differential biochemical and ionic changes that occur in the highly vulnerable medial corpus callosum white matter relative to the less vulnerable lateral regions of the corpus callosum. Specifically, the results suggest that altered ionic gradients manifest within mechanically damaged medial corpus callosum, potentially spreading to and inducing lipid alterations to white matter structures in lateral brain regions.
Collapse
Affiliation(s)
- David Hartnell
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Kate Gillespie-Jones
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Cristina Ciornei
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Ashley Hollings
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Alexander Thomas
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Elizabeth Harrild
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Juliane Reinhardt
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia 3168
- Department of Chemistry and Physics, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia 3086
| | - David J. Paterson
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia 3168
| | - Dasuni Alwis
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Ramesh Rajan
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| |
Collapse
|