1
|
Castedo N, Alfonso A, Alvariño R, Vieytes MR, Botana LM. Cyclophilin A and C are the Main Components of Extracellular Vesicles in Response to Hyperglycemia in BV2 Microglial Cells. Mol Neurobiol 2025:10.1007/s12035-025-04921-6. [PMID: 40199808 DOI: 10.1007/s12035-025-04921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Cyclophilins (Cyps) and CD147 receptor play a crucial role in the inflammatory responses. Chronic inflammation causes tissue damage and is a common condition of several inflammation-based pathologies as diabetes or Alzheimer´s disease. Under high glucose (HG) conditions, microglia is activated and releases inflammatory mediators. In this process the role of Cyps is unknown, so this study was aimed to investigate the profile of Cyps in microglia and their release through extracellular vesicles (EVs) under hyperglycemia. An increase in reactive oxygen species (ROS) and nitric oxide (NO) levels was observed when BV2 glia cells were incubated with HG concentration. These effects were mitigated by the Cyps inhibitor cyclosporine A (CsA), suggesting the implication of Cyps in BV2 activation. In these conditions the intracellular expression of CypA, B, C and D, as well as the membrane expression of CD147 receptor was increased. In addition, only CypA and CypC were detected in the extracellular medium. Then, the presence of Cyps inside EVs was explored as an alternative secretion route. Interestingly, under HG treatment, an increase in the levels of the four Cyps in EVs was observed. When neurons were treated with EVs derived from HG-treated glia cells, their viability was reduced and EVs were detected in cytosol neurons pointing to an EVs-Cyps neurotoxic effect. These findings provide novel insights into the relationship between Cyps and EVs in neuroinflammation in hyperglycemia conditions. The current results strengthen the role of Cyps in cell communication and its potential role in brain function under pathological conditions.
Collapse
Affiliation(s)
- Noelia Castedo
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo, 27002, España.
| |
Collapse
|
2
|
Malan A, Choudhary M, Kaur Bamrah P, Kumari D. Potential benefits of marine-derived compounds for slowing the advancement of Alzheimer's disease. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:479-504. [PMID: 39373659 DOI: 10.1080/10286020.2024.2409869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The incidence of Alzheimer's is increasing and poses a significant social and economic burden. The pathogenesis involved in the expansion of AD includes neuronal oxidative damage, tau phosphorylation, amyloid beta aggregation, neuroinflammation, etc. Despite enormous efforts, there is currently no effective treatment or cure for this condition in the allopathic system. Marine compounds are appealing options and have a strong neuroprotective impact. Marine-derived compounds from sponges, algae, and marine invertebrates can be used for neuroprotection, with fewer adverse effects than synthetic drugs. Various compounds such as bryostatin-1, docosahexaenoic acid, spirolides, and astaxanthin, GV-971, have demonstrated outstanding activity and bioavailability.
Collapse
Affiliation(s)
- Aditya Malan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Prabhjeet Kaur Bamrah
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Dipender Kumari
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| |
Collapse
|
3
|
Zhang C, Xu J, Xu F, Xie X, Ji T, Wang C, Du J. 1-Epilupinine enhances cognition and reduces inflammation in scopolamine-induced dementia model mice. Neurosci Lett 2025; 852:138184. [PMID: 40057172 DOI: 10.1016/j.neulet.2025.138184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Dementia is a growing global public health concern. The search for effective anti-dementia drugs with fewer side effects, particularly in the early stages of the disease, is a key focus of current research. Natural compounds like 1-Epilupinine (ELP) may offer therapeutic potential for cognitive improvement and neuroprotection. To assess the potential of ELP in improving dementia and neuroinflammation in a scopolamine-induced dementia model in mice, a mouse model was induced using scopolamine hydrobromide, with Donepezil as the positive control. After five days of treatment, cognitive performance was assessed using the Morris water maze test. Motor function and anxiety-related behaviors were evaluated through the open field test. An inflammatory factor array was employed to measure inflammatory markers in the prefrontal cortex. The Morris water maze showed that the model group treated with scopolamine hydrobromide (1 mg/kg) had significantly fewer platform crossings and longer latency (P < 0.001) while mice treated with ELP (5 mg/kg) exhibited improved performance, with more crossings and reduced latency (P < 0.01), suggesting ELP effectively reversed cognitive deficits. In the open field test, no significant difference of total movement distance was detected in ELP-treated groups, indicating it did not impair motor function. The result of the inflammation factors array detecting showed lower levels of GM-CSF, IFN-γ, IL-2, and IL-23 significantly in the ELP (5 mg/kg) group, suggesting its potential anti-inflammatory properties for the dementia treatment. Therefore, ELP may serve as a promising treatment for early-stage dementia, offering cognitive improvement alongside anti-inflammatory neuroprotection.
Collapse
Affiliation(s)
- Chenhui Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Jiyi Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Fang Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaomeng Xie
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| |
Collapse
|
4
|
Baruah P, Padhi D, Moorthy H, Ramesh M, Govindaraju T. Navigating the dichotomy of reactive oxygen, nitrogen, and sulfur species: detection strategies and therapeutic interventions. RSC Chem Biol 2025:d5cb00006h. [PMID: 39877134 PMCID: PMC11770382 DOI: 10.1039/d5cb00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Reactive oxygen, nitrogen and sulfur species (RONSS) collectively encompasses a variety of energetically dynamic entities that emerge as inherent characteristics of aerobic life. This broad category includes reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). A conundrum arises from the indispensable role of RONSS in redox signalling, while its overproduction in the mitochondria poses deleterious effects. This imbalance leads to biomolecular damage and contributes to neurodegenerative disorders, cancer, cardiovascular diseases and inflammation. Notably, the differential roles of RONSS across various diseases can be strategically exploited for therapeutic interventions. Timely, precise, and sensitive detection methods are indispensable for elucidating the spatiotemporal dynamics of RONSS and evaluating disease pathogenesis and progression. By monitoring RONSS levels, we can discern early markers of disease onset, enabling proactive intervention strategies for effective disease management. Therapeutic interventions targeting oxidative/nitrosative stress in disease pathologies have proven to be effective treatment routes in the mitigation of different diseases. This review aims to offer a comprehensive overview of the functional implications and delicate balance of RONSS in disease conditions, and advances made in detection strategies over the years while offering therapeutic strategies to tackle their adverse effects. A special emphasis is focussed on neurodegenerative disorders and cancer with case studies using RONSS-targeted chemical probes and prodrugs.
Collapse
Affiliation(s)
- Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
5
|
Zhang Z, Li X, Zhuang Q, Xu X, Zhang X, Cui M, Wang Y, Li H. Protective effects of a novel bicyclic γ-butyrolactone compound against H 2O 2 or corticosterone-induced neural cell apoptosis. Brain Res 2024; 1842:149099. [PMID: 38942352 DOI: 10.1016/j.brainres.2024.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Oxidative stress plays a pivotal role in various neurological disorders, encompassing both neurodegenerative diseases such as Alzheimer's and Parkinson's, and mood disorders like depression. The balance between the generation of reactive oxygen species (ROS) and the cell's antioxidant defenses, when disrupted, can lead to neuronal damage and neurologic dysfunction. In this study, we focused on the pathogenic role of oxidative stress in various neurologic disease models in vitro and investigated the neuroprotective capabilities of some novel bicyclic γ-butyrolactone compounds, with particular emphasis on the compound designated as 'bd'. Our investigation leveraged the HT22 and SH-SY5Y cells to model oxidative stress induced by H2O2 or corticosterone (CORT), common triggers of neuronal damage in neurodegenerative and mood disorders. We discovered that compound bd robustly reduced ROS production and suppressed neuronal apoptosis, suggesting its potential in treating a wider array of neurological conditions influenced by oxidative stress. In conclusion, our research underscores the importance of addressing oxidative stress in the context of diverse neurological disorders. The identification of compound bd as a neuroprotective agent with potential efficacy against ROS-induced apoptosis in neural cells opens new horizons for therapeutic development, offering hope for patients suffering from neurodegenerative diseases, depression, and other stress-related neurological conditions.
Collapse
Affiliation(s)
- Ze Zhang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xiaochong Li
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Qishuai Zhuang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xueping Xu
- Ophthalmology Academy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xiaoru Zhang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Mingyu Cui
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yue Wang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Haili Li
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250000, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
6
|
Alvariño R, Alfonso A, Tabudravu JN, González-Jartín J, Al Maqbali KS, Elhariry M, Vieytes MR, Botana LM. Psammaplin A and Its Analogs Attenuate Oxidative Stress in Neuronal Cells through Peroxisome Proliferator-Activated Receptor γ Activation. JOURNAL OF NATURAL PRODUCTS 2024; 87:1187-1196. [PMID: 38632902 PMCID: PMC11061836 DOI: 10.1021/acs.jnatprod.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento
de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Amparo Alfonso
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Jioji N. Tabudravu
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Jesús González-Jartín
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Khalid S. Al Maqbali
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Marwa Elhariry
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| |
Collapse
|
7
|
Wang Y, Zou J, Wang Y, Wang J, Ji X, Zhang T, Chu Y, Cui R, Zhang G, Shi G, Wu Y, Kang Y. Hydralazine inhibits neuroinflammation and oxidative stress in APP/PS1 mice via TLR4/NF-κB and Nrf2 pathways. Neuropharmacology 2023; 240:109706. [PMID: 37661037 DOI: 10.1016/j.neuropharm.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a common chronic progressive neurodegenerative disorder, and curative treatment has not been developed. The objective of this study was to investigate the potential effects of hydralazine (Hyd, a hypertension treatment drug) on the development process of AD and its mechanisms. We treated 6-month-old male APP/PS1 mice with Hyd for 5 weeks, measured changes in behavior and pathological status, and analyzed differences in gene expression by RNA sequencing. The results demonstrated that Hyd improved cognitive deficits and decreased amyloid beta protein deposition in the cortex and hippocampus, while RNA sequencing analysis suggested that the regulation of neuroinflammation and energy metabolism might play pivotal roles for Hyd's beneficial effects. Therefore, we further investigated inflammatory response, redox state, and mitochondrial function, as well as the expression of toll-like receptor 4 (TLR4)/nuclear factor Kappa B (NF-κB)-dependent neuroinflammation gene and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene in AD mice. The results showed that Hyd reduced the damage of neuroinflammation and oxidative stress, improved mitochondrial dysfunction, downregulated pro-inflammation gene expression, and upregulated antioxidant gene expression. The results in lipopolysaccharide (LPS)-induced BV2 cell model demonstrated that Hyd suppressed pro-inflammatory response via TLR4/NF-κB signaling pathway. In addition, by silencing the Nrf2 gene expression, it was found that Hyd can reduce LPS-induced reactive oxygen species production by activating the Nrf2 signaling pathway. Therefore, administration of Hyd in the early stage of AD might be beneficial in delaying the pathological development of AD via inhibiting neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiayang Zou
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinyang Wang
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, China.
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
8
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
9
|
Hu D, Jin Y, Hou X, Zhu Y, Chen D, Tai J, Chen Q, Shi C, Ye J, Wu M, Zhang H, Lu Y. Application of Marine Natural Products against Alzheimer's Disease: Past, Present and Future. Mar Drugs 2023; 21:md21010043. [PMID: 36662216 PMCID: PMC9867307 DOI: 10.3390/md21010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is one of the most intractable illnesses which affects the elderly. Clinically manifested as various impairments in memory, language, cognition, visuospatial skills, executive function, etc., the symptoms gradually aggravated over time. The drugs currently used clinically can slow down the deterioration of AD and relieve symptoms but cannot completely cure them. The drugs are mainly acetylcholinesterase inhibitors (AChEI) and non-competitive N-methyl-D-aspartate receptor (NDMAR) antagonists. The pathogenesis of AD is inconclusive, but it is often associated with the expression of beta-amyloid. Abnormal deposition of amyloid and hyperphosphorylation of tau protein in the brain have been key targets for past, current, and future drug development for the disease. At present, researchers are paying more and more attention to excavate natural compounds which can be effective against Alzheimer's disease and other neurodegenerative pathologies. Marine natural products have been demonstrated to be the most prospective candidates of these compounds, and some have presented significant neuroprotection functions. Consequently, we intend to describe the potential effect of bioactive compounds derived from marine organisms, including polysaccharides, carotenoids, polyphenols, sterols and alkaloids as drug candidates, to further discover novel and efficacious drug compounds which are effective against AD.
Collapse
Affiliation(s)
- Di Hu
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yating Jin
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiangqi Hou
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Yinlong Zhu
- Zhejiang Chiral Medicine Chemicals Co., Ltd., Hangzhou 311227, China
| | - Danting Chen
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingjing Tai
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qianqian Chen
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cui Shi
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Ye
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Mengxu Wu
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Hong Zhang
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Yanbin Lu
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-571-87103135
| |
Collapse
|
10
|
Organocatalytic enantioselective construction of bicyclic γ-butrolactones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Alvariño R, Alfonso A, Pech-Puch D, Gegunde S, Rodríguez J, Vieytes MR, Jiménez C, Botana LM. Furanoditerpenes from Spongia (Spongia) tubulifera Display Mitochondrial-Mediated Neuroprotective Effects by Targeting Cyclophilin D. ACS Chem Neurosci 2022; 13:2449-2463. [PMID: 35901231 PMCID: PMC9686139 DOI: 10.1021/acschemneuro.2c00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuroprotective properties of five previously described furanoditerpenes 1-5, isolated from Spongia (Spongia) tubulifera, were evaluated in an in vitro oxidative stress model in SH-SY5Y cells. Dose-response treatments revealed that 1-5 improved cell survival at nanomolar concentrations through the restoration of mitochondrial membrane potential and the reduction of reactive oxygen species. Their ability to prevent the mitochondrial permeability transition pore opening was also assessed, finding that 4 and 5 inhibited the channel at 0.001 μM. This inhibition was accompanied by a decrease in the expression of cyclophilin D, the main regulator of the pore, which was also reduced by 1 and 2. However, the activation of ERK and GSK3β, upstream modulators of the channel, was not affected by compounds. Therefore, their ability to bind cyclophilin D was evaluated by surface plasmon resonance, observing that 2-5 presented equilibrium dissociation constants in the micromolar range. All compounds also showed affinity for cyclophilin A, being 1 selective toward this isoform, while 2 and 5 exhibited selectivity for cyclophilin D. When the effects on the intracellular expression of cyclophilins A-C were determined, it was found that only 1 decreased cyclophilin A, while cyclophilins B and C were diminished by most compounds, displaying enhanced effects under oxidative stress conditions. Results indicate that furanoditerpenes 1-5 have mitochondrial-mediated neuroprotective properties through direct interaction with cyclophilin D. Due to the important role of this protein in oxidative stress and inflammation, compounds are promising drugs for new therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain
| | - Dawrin Pech-Puch
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain,Departamento
de Biología Marina, Campus de Ciencias Biológicas y
Agropecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, 97100 Mérida, Yucatán, Mexico
| | - Sandra Gegunde
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,Fundación
Instituto de Investigación Sanitario Santiago de Compostela
(FIDIS), Hospital Universitario Lucus Augusti, 27002 Lugo, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mercedes R. Vieytes
- Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA) e Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain,. Phone/Fax: +34881012170
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain,Grupo
Investigación Biodiscovery, IDIS, 27002 Lugo, Spain,. Phone/Fax: +34982822233
| |
Collapse
|
12
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
13
|
Anti-Alzheimer's Molecules Derived from Marine Life: Understanding Molecular Mechanisms and Therapeutic Potential. Mar Drugs 2021; 19:md19050251. [PMID: 33925063 PMCID: PMC8146595 DOI: 10.3390/md19050251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the most common cause of dementia. It has been confirmed that the pathological processes that intervene in AD development are linked with oxidative damage to neurons, neuroinflammation, tau phosphorylation, amyloid beta (Aβ) aggregation, glutamate excitotoxicity, and cholinergic deficit. Still, there is no available therapy that can cure AD. Available therapies only manage some of the AD symptoms at the early stages of AD. Various studies have revealed that bioactive compounds derived from marine organisms and plants can exert neuroprotective activities with fewer adverse events, as compared with synthetic drugs. Furthermore, marine organisms have been identified as a source of novel compounds with therapeutic potential. Thus, there is a growing interest regarding bioactive compounds derived from marine sources that have anti-AD potentials. Various marine drugs including bryostatin-1, homotaurine, anabaseine and its derivative, rifampicins, anhydroexfoliamycin, undecylprodigioisin, gracilins, 13-desmethyl spirolide-C, and dictyostatin displayed excellent bioavailability and efficacy against AD. Most of these marine drugs were found to be well-tolerated in AD patients, along with no significant drug-associated adverse events. In this review, we focus on the drugs derived from marine life that can be useful in AD treatment and also summarize the therapeutic agents that are currently used to treat AD.
Collapse
|
14
|
Maity S, Sepay N, Pal S, Sardar S, Parvej H, Pal S, Chakraborty J, Pradhan A, Halder UC. Modulation of amyloid fibrillation of bovine β-lactoglobulin by selective methionine oxidation. RSC Adv 2021; 11:11192-11203. [PMID: 35423661 PMCID: PMC8695858 DOI: 10.1039/d0ra09060c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Deposition of oxidation-modified proteins during normal aging and oxidative stress are directly associated with systemic amyloidoses. Methionine (Met) is believed to be one of the most readily oxidisable amino acid residues of protein. Bovine beta-lactoglobulin (β-lg), a model globular whey protein, has been presented as a subsequent paradigm for studies on protein aggregation and amyloid formation. Herein, we investigated the effect of t-butyl hydroperoxide (tBHP)-induced oxidation on structure, compactness and fibrillation propensity of β-lg at physiological pH. Notably, whey protein modification, specifically Met residues, plays an important role in the dairy industry during milk processing and lowering nutritional value and ultimately affecting their technological properties. Several bio-physical studies revealed enhanced structural flexibility and aggregation propensity of oxidised β-lg in a temperature dependent manner. A molecular docking study is used to predict possible interactions with tBHP and infers selective oxidation of methionine residues at 7, 24 and 107 positions. From our studies, it can be corroborated that specific orientations of Met residues directs the formation of a partially unfolded state susceptible to fibrillation with possible different cytotoxic effects. Our studies have greater implications in deciphering the underlying mechanism of different whey proteins encountering oxidative stress. Our findings are also important to elucidate the understanding of oxidation induced amyloid fibrillation of protein which may constitute a new route to pave the way for a modulatory role of oxidatively stressed proteins in neurological disorders.
Collapse
Affiliation(s)
- Sanhita Maity
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Sampa Pal
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Subrata Sardar
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Hasan Parvej
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Swarnali Pal
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Jishnu Chakraborty
- Department of Chemistry, Camellia Institute of Engineering and Technology Budbud Burdwan WB India
| | - Anirban Pradhan
- Department of Chemistry, Ramakrishna Mission Residential College (Autonomous), Vivekananda Centre for Research Narendrapur Kolkata-700103 India
| | | |
Collapse
|
15
|
Chlorogenic acid enhances autophagy by upregulating lysosomal function to protect against SH-SY5Y cell injury induced by H 2O 2. Exp Ther Med 2021; 21:426. [PMID: 33747165 PMCID: PMC7967846 DOI: 10.3892/etm.2021.9843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy serves an important role in amyloid-β (Aβ) metabolism and τ processing and clearance in Alzheimer's disease. The progression of Aβ plaque accumulation and hyperphosphorylation of τ proteins are enhanced by oxidative stress. A hydrogen peroxide (H2O2) injury cell model was established using SH-SY5Y cells. Cells were randomly divided into normal, H2O2 and chlorogenic acid (5-caffeoylquinic acid; CGA) groups. The influence of CGA on cell viability was evaluated using a Cell Counting Kit-8 assay and cell death was assessed using Hoechst 33342 nuclear staining. Autophagy induction and fusion of autophagic vacuoles assays were performed using monodansylcadaverine staining. Additionally, SH-SY5Y cells expressing Ad-mCherry-green fluorescent protein-LC3B were established to detect autophagic flow. LysoTracker Red staining was used to evaluate lysosome function and LysoSensor™ Green staining assays were used to assess lysosomal acidification. The results demonstrated that CGA decreased the apoptosis rate, increased cell viability and improved cell morphology in H2O2-treated SH-SY5Y cells. Furthermore, CGA alleviated the accumulation of autophagic vacuoles, reduced the LC3BII/I ratio and decreased P62 levels, resulting in increased autophagic flux. Additionally, CGA upregulated lysosome acidity and increased the expression levels of cathepsin D. Importantly, these effects of CGA on H2O2-treated SH-SY5Y cells were mediated via the mTOR-transcription factor EB signaling pathway. These results indicated that CGA protected cells against H2O2-induced oxidative damage via the upregulation of autophagosomes, which promoted autophagocytic degradation and increased autophagic flux.
Collapse
|
16
|
Silva J, Alves C, Martins A, Susano P, Simões M, Guedes M, Rehfeldt S, Pinteus S, Gaspar H, Rodrigues A, Goettert MI, Alfonso A, Pedrosa R. Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. Int J Mol Sci 2021; 22:1888. [PMID: 33672866 PMCID: PMC7918146 DOI: 10.3390/ijms22041888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Marco Simões
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Miguel Guedes
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Stephanie Rehfeldt
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Helena Gaspar
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal;
| | - Américo Rodrigues
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
17
|
Long QH, Wu YG, He LL, Ding L, Tan AH, Shi HY, Wang P. Suan-Zao-Ren Decoction ameliorates synaptic plasticity through inhibition of the Aβ deposition and JAK2/STAT3 signaling pathway in AD model of APP/PS1 transgenic mice. Chin Med 2021; 16:14. [PMID: 33478552 PMCID: PMC7818567 DOI: 10.1186/s13020-021-00425-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/08/2021] [Indexed: 01/23/2023] Open
Abstract
Background Suan-Zao-Ren Decoction (SZRD) has been widely used to treat neurological illnesses, including dementia, insomnia and depression. However, the mechanisms underlying SZRD’s improvement in cognitive function remain unclear. In this study, we examined SZRD’s effect on APP/PS1 transgenic mice and mechanisms associated with SZRD’s action in alleviating neuroinflammation and improving synaptic plasticity. Methods
The APP/PS1 mice were treated with different dosages of SZRD (12.96 and 25.92 g/kg/day, in L-SZRD and H-SZRD groups, respectively) for 4 weeks. Morris water maze was conducted to determine changes in behaviors of the mice after the treatment. Meanwhile, in the samples of the hippocampus, Nissl staining and Golgi-Cox staining were used to detect synaptic plasticity. ELISA was applied to assess the expression levels of Aβ1−40 and Aβ1−42 in the hippocampus of mice. Western blot (WB) was employed to test the protein expression level of Aβ1−42, APP, ADAM10, BACE1, PS1, IDE, IBA1, GFAP, PSD95 and SYN, as well as the expressions of JAK2, STAT3 and their phosphorylation patterns to detect the involvement of JAK2/STAT3 pathway. Besides, we examined the serum and hippocampal contents of IL-1β, IL-6 and TNF-α through ELISA. Results Compared to the APP/PS1 mice without any treatment, SZRD, especially the L-SZRD, significantly ameliorated cognitive impairment of the APP/PS1 mice with decreases in the loss of neurons and Aβ plaque deposition as well as improvement of synaptic plasticity in the hippocampus (P < 0.05 or 0.01). Also, SZRD, in particular, the L-SZRD markedly inhibited the serum and hippocampal concentrations of IL-6, IL-1β and TNF-α, while reducing the expression of p-JAK2-Tyr1007 and p-STAT3-Tyr705 in the hippocampus of the APP/PS1 mice (P < 0.05 or 0.01). Conclusions The SZRD, especially the L-SZRD, may improve the cognitive impairment and ameliorate the neural degeneration in APP/PS1 transgenic mice through inhibiting Aβ accumulation and neuroinflammation via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Qing-Hua Long
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Yong-Gui Wu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Li-Ling He
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - Ai-Hua Tan
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China
| | - He-Yuan Shi
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| |
Collapse
|
18
|
Kurt B, Ozleyen A, Antika G, Yilmaz YB, Tumer TB. Multitarget Profiling of a Strigolactone Analogue for Early Events of Alzheimer's Disease: In Vitro Therapeutic Activities against Neuroinflammation. ACS Chem Neurosci 2020; 11:501-507. [PMID: 32017526 DOI: 10.1021/acschemneuro.9b00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropathological changes in Alzheimer's disease (AD) are directly linked to the early inflammatory microenvironment in the brain. Therefore, disease-modifying agents targeting neuroinflammation may open up new avenues in the treatment of AD. Strigolactones (SLs), subclasses of structurally diverse and biologically active apocarotenoids, have been recently identified as novel phytohormones. In spite of the remarkable anticancer capacity shown by SLs, their effects on the brain remained unexplored. Herein, the SIM-A9 microglial cell line was used as a phenotypic screening tool to search for the representative SL, GR24, demonstrating marked potency in the suppression of lipopolysaccharide (LPS)-induced neuroinflammatory/neurotoxic mediators by regulating NF-κB, Nrf2, and PPARγ signaling. GR24 also in the brain endothelial cell line bEnd.3 mitigated the LPS-increased permeability as evidenced by reduced Evans' blue extravasation through enhancing the expression of tight junction protein, occludin. Collectively, the present work shows the anti-neuroinflammatory and glia/neuroprotective properties of GR24, making SLs promising scaffolds for the development of novel anti-AD candidates.
Collapse
Affiliation(s)
- Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Yakup Berkay Yilmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| |
Collapse
|