1
|
Su H, Chan KWY. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo. ACS NANO 2024; 18:33775-33791. [PMID: 39642940 DOI: 10.1021/acsnano.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.
Collapse
Affiliation(s)
- Haoyun Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
He Y, Guan J, Lai L, Zhang X, Chen B, Wang X, Wu R. Imaging of brain clearance pathways via MRI assessment of the glymphatic system. Aging (Albany NY) 2023; 15:14945-14956. [PMID: 38149988 PMCID: PMC10781494 DOI: 10.18632/aging.205322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023]
Abstract
Glymphatic clearance dysfunction may play an important role in a variety of neurodegenerative diseases and the progression of ageing. However, in vivo imaging of the glymphatic system is challenging. In this study, we describe an MRI method based on chemical exchange saturation transfer (CEST) of the Angiopep-2 probe to visualize the clearance function of the glymphatic system. We injected rats with Angiopep-2 via the tail vein and performed in vivo MRI at 7 T to track differences in Angiopep-2 signal changes; we then applied the same principles in a bilateral deep cervical lymph node ligation rat model and in ageing rats. We demonstrated the feasibility of Angiopep-2 CEST for visualizing the clearance function of the glymphatic system. Finally, a pathological assessment was performed. Within the model group, the deep cervical lymph node ligation group and the ageing group showed higher CEST signal than the control group. We conclude that this new MRI method can visualize clearance in the glymphatic system.
Collapse
Affiliation(s)
- Yi He
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jitian Guan
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lingfeng Lai
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiaolei Zhang
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Beibei Chen
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xueqing Wang
- Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
| | - Renhua Wu
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Cell Membrane Biomimetic Nanoparticles with Potential in Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28052336. [PMID: 36903581 PMCID: PMC10005336 DOI: 10.3390/molecules28052336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is to blame for about 60% of dementia cases worldwide. The blood-brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to cell membrane biomimetic nanoparticles (NPs) to solve this situation. Among them, NPs can extend the half-life of drugs in the body as the "core" of the wrapped drug, and the cell membrane acts as the "shell" of the wrapped NPs to functionalize the NPs, which can further improve the delivery efficiency of nano-drug delivery systems. Researchers are learning that cell membrane biomimetic NPs can circumvent the BBB's restriction, prevent harm to the body's immune system, extend the period that NPs spend in circulation, and have good biocompatibility and cytotoxicity, which increases efficacy of drug release. This review summarized the detailed production process and features of core NPs and further introduced the extraction methods of cell membrane and fusion methods of cell membrane biomimetic NPs. In addition, the targeting peptides for modifying biomimetic NPs to target the BBB to demonstrate the broad prospects of cell membrane biomimetic NPs drug delivery systems were summarized.
Collapse
|
4
|
Xu L, Lai L, Wen Y, Lin J, Chen B, Zhong Y, Cheng Y, Zhang X, Guan J, Mikulis DJ, Lin Y, Yan G, Wu R. Angiopep-2, an MRI Biomarker, Dynamically Monitors Amyloid Deposition in Early Alzheimer's Disease. ACS Chem Neurosci 2023; 14:226-234. [PMID: 36599050 PMCID: PMC9854622 DOI: 10.1021/acschemneuro.2c00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The reliable and dynamic detection of amyloid β-protein (Aβ) deposition using imaging technology is necessary for preclinical Alzheimer's disease (AD), which may significantly improve prognosis. The present study aimed to evaluate the feasibility of applying angiopep-2 (ANG), a chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) biomarker, for monitoring Aβ deposition in vivo. ANG exerted a good chemical exchange saturation transfer (CEST) effect and displayed a moderate binding affinity to Aβ1-42 in vitro. Six-month-old mice with AD injected with ANG exhibited a significantly enhanced CEST effect than controls in vivo; this effect gradually became more apparent at 8, 10, and 12 months. Spatial learning impairment caused by abundant Aβ deposition (representing mild cognitive impairment in AD patients) develops at 12 months in APPswe/PSEN1dE9 (line 85) AD mice. To conclude, the CEST of ANG could display very earlier age-related Aβ pathological progress in mice with AD, consistent with immunohistochemistry. ANG has extraordinary potential for clinical transformation as an imaging biomarker to diagnose early AD and track its progress dynamically and nonradiationally.
Collapse
Affiliation(s)
- Liang Xu
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
- Department
of Medical Imaging, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518000, P. R. China
| | - Lingfeng Lai
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
| | - Yaqi Wen
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
| | - Jia Lin
- Department
of Ultrasound, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
| | - Beibei Chen
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
| | - Yazhi Zhong
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
| | - Yan Cheng
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
| | - XiaoLei Zhang
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Guangdong
Province, Shantou, Guangdong 515041, P. R. China
| | - Jitian Guan
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Guangdong
Province, Shantou, Guangdong 515041, P. R. China
| | - David J Mikulis
- Joint
Department of Medical Imaging and the Functional Neuroimaging Laboratory
(D.J.M.), University Health Network, Toronto M2J4A6, Canada
| | - Yan Lin
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Guangdong
Province, Shantou, Guangdong 515041, P. R. China
| | - Gen Yan
- Department
of Radiology, The Second Affiliated Hospital
of Xiamen Medical College, Xiamen, Fujian 361023, P. R. China
| | - Renhua Wu
- Department
of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515000, P. R. China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Guangdong
Province, Shantou, Guangdong 515041, P. R. China
| |
Collapse
|
5
|
Israel LL, Galstyan A, Cox A, Shatalova ES, Sun T, Rashid MH, Grodzinski Z, Chiechi A, Fuchs DT, Patil R, Koronyo-Hamaoui M, Black KL, Ljubimova JY, Holler E. Signature Effects of Vector-Guided Systemic Nano Bioconjugate Delivery Across Blood-Brain Barrier of Normal, Alzheimer's, and Tumor Mouse Models. ACS NANO 2022; 16:11815-11832. [PMID: 35961653 PMCID: PMC9413444 DOI: 10.1021/acsnano.1c10034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(β-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aβ/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.
Collapse
Affiliation(s)
- Liron L. Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ekaterina S. Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Mohammad-Harun Rashid
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery and Department of Biomedical Sciences,
Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Julia Y. Ljubimova
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| |
Collapse
|
6
|
Cheng Y, Cheng A, Jia Y, Yang L, Ning Y, Xu L, Zhong Y, Zhuang Z, Guan J, Zhang X, Lin Y, Zhou T, Fan X, Li J, Liu P, Yan G, Wu R. pH-Responsive Multifunctional Theranostic Rapamycin-Loaded Nanoparticles for Imaging and Treatment of Acute Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56909-56922. [PMID: 34807583 DOI: 10.1021/acsami.1c16530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke is the second leading cause of death globally and the most common cause of severe disability. Several barriers need to be addressed more effectively to treat stroke, including efficient delivery of therapeutic agents, rapid release at the infarct site, precise imaging of the infarct site, and drug distribution monitoring. The present study aimed to develop a bio-responsive theranostic nanoplatform with signal-amplifying capability to deliver rapamycin (RAPA) to ischemic brain tissues and visually monitor drug distribution. A pH-sensitive theranostic RAPA-loaded nanoparticle system was designed since ischemic tissues have a low-pH microenvironment compared with normal tissues. The nanoparticles demonstrated good stability and biocompatibility and could efficiently load rapamycin, followed by its rapid release in acidic environments, thereby improving therapeutic accuracy. The nano-drug-delivery system also exhibited acid-enhanced magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging signal properties, enabling accurate multimodal imaging with minimal background noise, thus improving drug tracing and diagnostic accuracy. Finally, in vivo experiments confirmed that the nanoparticles preferentially aggregated in the ischemic hemisphere and exerted a neuroprotective effect in rats with transient middle cerebral artery occlusion (tMCAO). These pH-sensitive multifunctional theranostic nanoparticles could serve as a potential nanoplatform for drug tracing as well as the treatment and even diagnosis of acute ischemic stroke. Moreover, they could be a universal solution to achieve accurate in vivo imaging and treatment of other diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Airong Cheng
- Department of Neurology, Chengwu County People's Hospital, Chengwu 274200, Shandong, China
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei 441021, China
| | - Lin Yang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Ning
- Department of TCM, Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Liang Xu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yazhi Zhong
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zerui Zhuang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, China
- Department of Neurosurgery, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaolei Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Lin
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Xiusong Fan
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Jianwu Li
- Transfusion Department, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
7
|
Kaur A, New EJ, Sunde M. Strategies for the Molecular Imaging of Amyloid and the Value of a Multimodal Approach. ACS Sens 2020; 5:2268-2282. [PMID: 32627533 DOI: 10.1021/acssensors.0c01101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein aggregation has been widely implicated in neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and Huntington disease, as well as in systemic amyloidoses and conditions associated with localized amyloid deposits, such as type-II diabetes. The pressing need for a better understanding of the factors governing protein assembly has driven research for the development of molecular sensors for amyloidogenic proteins. To date, a number of sensors have been developed that report on the presence of protein aggregates utilizing various modalities, and their utility demonstrated for imaging protein aggregation in vitro and in vivo. Analysis of these sensors highlights the various advantages and disadvantages of the different imaging modalities and makes clear that multimodal sensors with properties amenable to more than one imaging technique need to be developed. This critical review highlights the key molecular scaffolds reported for molecular imaging modalities such as fluorescence, positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging and includes discussion of the advantages and disadvantages of each modality, and future directions for the design of amyloid sensors. We also discuss the recent efforts focused on the design and development of multimodal sensors and the value of cross-validation across multiple modalities.
Collapse
Affiliation(s)
- Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney, School of Chemistry, Faculty of Science, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales 2006, Australia
- The University of Sydney, Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
8
|
Chen Y, Dai Z, Fan R, Mikulis DJ, Qiu J, Shen Z, Wang R, Lai L, Tang Y, Li Y, Jia Y, Yan G, Wu R. Glymphatic System Visualized by Chemical-Exchange-Saturation-Transfer Magnetic Resonance Imaging. ACS Chem Neurosci 2020; 11:1978-1984. [PMID: 32492333 DOI: 10.1021/acschemneuro.0c00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Dysfunction of the glymphatic system may play a significant role in the development of neurodegenerative diseases. However, in vivo imaging of the glymphatic system is challenging. In this study, we describe an unconventional MRI method for imaging the glymphatic system based on chemical exchange saturation transfer, which we tested in an in vivo porcine model of impaired glymphatic function. The blood, lymph, and cerebrospinal fluid (CSF) from one pig were used for testing the MRI effect in vitro at 7 Tesla (T). Unilateral deep cervical lymph node ligation models were then performed in 20 adult male Sprague-Dawley rats. The brains were scanned in vivo dynamically after surgery using the new MRI method. Behavioral tests were performed after each scanning session and the results were tested for correlations with the MRI signal intensity. Finally, the pathological assessment was conducted in the same brain slices. The special MRI effect in the lymph was evident at about 1.0 ppm in water and was distinguishable from those of blood and CSF. In the model group, the intensity of this MRI signal was significantly higher in the ipsilateral than in the contralateral hippocampus. The correlation between the signal abnormality and the behavioral score was significant (Pearson's, R2 = 0.9154, p < 0.005). We conclude that the novel MRI method can visualize the glymphatic system in vivo.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Zhuozhi Dai
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Ruhang Fan
- Department of Pathology, Medical College of Shantou University, Guangdong, Shantou 515031, P.R. China
| | - David John Mikulis
- Division of Neuroradiology, Department of Medical Imaging, University Health Network, Toronto, Ontario M5T 2S7, Canada
| | - Jinming Qiu
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Zhiwei Shen
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Runrun Wang
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Lihua Lai
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Yanyan Tang
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Yan Li
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Yanlong Jia
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Gen Yan
- Department of Radiology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian Province 361022, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, P.R. China
- Provincial Key Laboratory of Medical Molecular Imaging, Guangdong, Shantou 515041, P.R. China
| |
Collapse
|
9
|
Jia Y, Geng K, Cheng Y, Li Y, Chen Y, Wu R. Nanomedicine Particles Associated With Chemical Exchange Saturation Transfer Contrast Agents in Biomedical Applications. Front Chem 2020; 8:326. [PMID: 32391334 PMCID: PMC7189014 DOI: 10.3389/fchem.2020.00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Theranostic agents are particles containing both diagnostic and medicinal agents in a single platform. Theranostic approaches often employ nanomedicine because loading both imaging probes and medicinal drugs onto nanomedicine particles is relatively straightforward, which can simultaneously provide diagnostic and medicinal capabilities within a single agent. Such systems have recently been described as nanotheranostic. Currently, nanotheranostic particles incorporating medicinal drugs are being widely explored with multiple imaging methods, including computed tomography, positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, and fluorescence imaging. However, most of these particles are metal-based multifunctional nanotheranostic agents, which pose potential toxicity or radiation risks. Hence, alternative non-metallic and biocompatible nanotheranostic agents are urgently needed. Recently, nanotheranostic agents that combine medicinal drugs and chemical exchange saturated transfer (CEST) contrast agents have shown good promise because CEST imaging technology can utilize the frequency-selective radiofrequency pulse from exchangeable protons to indirectly image without requiring metals or radioactive agents. In this review, we mainly describe the fundamental principles of CEST imaging, features of nanomedicine particles, potential applications of nanotheranostic agents, and the opportunities and challenges associated with clinical transformations.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Kuan Geng
- Department of Radiology, The First People's Hospital of Honghe Prefecture, Mengzi, China
| | - Yan Cheng
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Jia Y, Chen Y, Geng K, Cheng Y, Li Y, Qiu J, Huang H, Wang R, Zhang Y, Wu R. Glutamate Chemical Exchange Saturation Transfer (GluCEST) Magnetic Resonance Imaging in Pre-clinical and Clinical Applications for Encephalitis. Front Neurosci 2020; 14:750. [PMID: 32848546 PMCID: PMC7399024 DOI: 10.3389/fnins.2020.00750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Encephalitis is a common central nervous system inflammatory disease that seriously endangers human health owing to the lack of effective diagnostic methods, which leads to a high rate of misdiagnosis and mortality. Glutamate is implicated closely in microglial activation, and activated microglia are key players in encephalitis. Hence, using glutamate chemical exchange saturation transfer (GluCEST) imaging for the early diagnosis of encephalitis holds promise. METHODS The sensitivity of GluCEST imaging with different concentrations of glutamate and other major metabolites in the brain was validated in phantoms. Twenty-seven Sprague-Dawley (SD) rats with encephalitis induced by Staphylococcus aureus infection were used for preclinical research of GluCEST imaging in a 7.0-Tesla scanner. For the clinical study, six patients with encephalitis, six patients with lacunar infarction, and six healthy volunteers underwent GluCEST imaging in a 3.0-Tesla scanner. RESULTS The number of amine protons on glutamate that had a chemical shift of 3.0 ppm away from bulk water and the signal intensity of GluCEST were concentration-dependent. Under physiological conditions, glutamate is the main contributor to the GluCEST signal. Compared with normal tissue, in both rats and patients with encephalitis, the encephalitis areas demonstrated a hyper-intense GluCEST signal, while the lacunar infarction had a decreased GluCEST signal intensity. After intravenous immunoglobulin therapy, patients with encephalitis lesions showed a decrease in GluCEST signal, and the results were significantly different from the pre-treatment signal (1.34 ± 0.31 vs 5.0 ± 0.27%, respectively; p = 0.000). CONCLUSION Glutamate plays a role in encephalitis, and the GluCEST imaging signal has potential as an in vivo imaging biomarker for the early diagnosis of encephalitis. GluCEST will provide new insight into encephalitis and help improve the differential diagnosis of brain disorders.
Collapse
Affiliation(s)
- Yanlong Jia
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanzi Chen
- Department of Radiology, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen, China
| | - Kuan Geng
- Department of Radiology, The First People’s Hospital of Honghe Prefecture, Mengzi, China
| | - Yan Cheng
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jinming Qiu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huaidong Huang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Runrun Wang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yunping Zhang
- Department of Nuclear Medicine, Shenzhen Luohu District People’s Hospital, Shenzhen, China
- *Correspondence: Yunping Zhang,
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Renhua Wu,
| |
Collapse
|